説明

高分子発光材料、有機エレクトロルミネッセンス素子および表示装置

【課題】高い純度の青色光の発光が高い発光効率で得られる高分子発光材料を提供する。
【解決手段】下記一般式(1)で表されるイリジウム錯体から導かれる構造単位を含む重合体からなる高分子発光材料。


(R1およびR2はアルコキシ基などを表し、Z1は炭素原子C1〜C3とともに五員または六員の炭素環または複素環を形成する原子群を表し、A1は炭素原子などを表し、A1が炭素原子、置換基を有してもよい。Lは重合性官能基を有する1価アニオンの2座配位子を表す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高分子発光材料および有機エレクトロルミネッセンス素子に関する。より詳しくは、本発明は、高い純度の青色光の発光を有し、駆動寿命の長い高分子発光材料、および製造工程が簡略化され、大面積化が実現できるとともに、耐久性に優れた有機エレクトロルミネッセンス素子に関する。
【背景技術】
【0002】
近年、有機エレクトロルミネッセンス素子(本明細書において、「有機EL素子」ともいう。)に用いる材料開発が活発に行われている。たとえば、フルカラー表示を実現するためには、光の3原色(RGB)(赤色、緑色および青色)の各単色光を発光する材料が必要であるが、これらに関しては、高い発光効率とともに、様々な色の発光を有し、駆動寿命の長い材料が求められている。
【0003】
最近、リンを含有する誘導体を配位子として含むオルトメタル化イリジウム錯体が開示されている(特許文献1参照)。
なお、本明細書での「オルトメタル化」とは、一般式(1)でのベンゼン環において、配位原子を有する置換基の結合位置に対してオルト位のC−H結合が、分子内反応で金属−炭素結合を含むキレート環を生成する反応をいう(特許文献1参照)。
【0004】
特許文献1によれば、該錯体を含む有機EL素子材料を用いて作製された有機EL素子は、青色領域に近い発光を有すると記載されているが、その寿命に関しては詳細な記載はない。
【0005】
また、一般に、発光層を形成する際に、上記錯体のような低分子化合物では、真空蒸着法が用いられるが、この方法で得られる発光層の膜厚は不均一になりやすい。
また、真空蒸着法には大型の設備が必要となり、その条件も厳密な制御が必要とされるなど、簡便な製造方法とは言えない。
【0006】
一方、該錯体を高分子中に分散させたポリマー組成物、すなわちドープ型発光材料で発光層を形成する場合は塗布法も利用できる可能性がある。しかし、ドープ型発光材料は熱安定性に劣り、相分離または偏析を起こしやすいという欠点を有する。
【特許文献1】特表2005−535722号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、高い純度の青色光の発光が高い発光効率で得られる高分子発光材料を提供することにある。また、本発明の別の目的は、製造工程が簡略化され、大面積化が実現できるとともに、耐久性に優れた有機EL素子および表示装置を提供することにある。
【課題を解決するための手段】
【0008】
りん光性の高効率の発光材料としては、特に色純度のよい青色発光材料が求められている。しかしながら、発光波長の短波化が難しく実用に耐えうる性能を十分に達成できていないのが現状である。
【0009】
波長の短波化に関してはこれまで、フェニルピリジンにフッ素を置換基として導入すること、配位子としてピコリン酸やピラザボール系の配位子を導入することが知られている。しかし、このような置換基効果を利用して発光波長を短波化し青色を出そうとするとす
ると、オルトメタル化錯体自体の発光寿命は大幅に劣化することが知られている。
【0010】
本発明者らは、上記課題を解決すべく鋭意研究した結果、特定のイリジウム錯体から導かれる構造単位を含む重合体からなる高分子発光材料が、様々な色の発光を有し、特に色純度のよい青色発光材料において駆動寿命の長いことを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明は以下のとおりに要約される。
[1] 下記一般式(1)で表されるイリジウム錯体から導かれる構造単位を含む重合体からなることを特徴とする高分子発光材料。
【0012】
【化1】

【0013】
(式中、R1およびR2は、各々独立に炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表し、R1とR2とは互いに結合して環構造を形成してもよい。
【0014】
1は、炭素原子C1〜C3とともに五員または六員の炭素環または複素環を形成する原
子群を表し、該炭素環または複素環は置換基を有してもよく、さらに他の環との縮合環を形成してもよい。
【0015】
1は、炭素原子、ケイ素原子、酸素原子または窒素原子を表し、A1が炭素原子、ケイ素原子または窒素原子のときは置換基を有してもよい。
Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
【0016】
[2] 上記イリジウム錯体が、下記一般式(2)〜(4)のいずれかで表されることを特徴とする上記[1]に記載の高分子発光材料。
【0017】
【化2】

【0018】
【化3】

【0019】
【化4】

【0020】
(式中、R1およびR2は、各々独立に炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表し、R1とR2とは互いに結合して環構造を形成してもよい。
【0021】
3〜R9は、各々独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、−OH、−SX1、−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、−NX89(ここで、X1〜X9は、炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
【0022】
[3] 上記イリジウム錯体が、下記一般式(5)〜(8)のいずれかで表されることを特徴とする上記[1]に記載の高分子発光材料。
【0023】
【化5】

【0024】
【化6】

【0025】
【化7】

【0026】
【化8】

【0027】
(式中、Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
【0028】
[4] 上記Lが、下記一般式(9)または(10)で表される2座配位子であることを特徴とする上記[1]〜[3]のいずれかに記載の高分子発光材料。
【0029】
【化9】

【0030】
【化10】

【0031】
(式中、X10は、水素原子、ハロゲン原子、ニトロ基、シアノ基、−OH、−SX1
−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、−NX89(ここ
で、X1〜X9は、炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
【0032】
1およびY2はそれぞれ独立に、重合性官能基を有する置換基を表す。)
【0033】
[5] 上記重合体が、さらに、ホール輸送性の重合性化合物および電子輸送性の重合性化合物からなる群より選ばれる少なくとも1種の重合性化合物から導かれる構造単位を含むことを特徴とする上記[1]〜[4]のいずれかに記載の高分子発光材料。
【0034】
[6] 陽極と陰極とに挟まれた1層または2層以上の有機高分子層を含む有機エレクトロルミネッセンス素子において、上記有機高分子層の少なくとも1層に、上記[1]〜[5]のいずれかに記載の高分子発光材料を含むことを特徴とする有機エレクトロルミネッセンス素子。
【0035】
[7] 上記[6]に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする画像表示装置。
【0036】
[8] 上記[6]に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする面発光光源。
【発明の効果】
【0037】
本発明によれば、様々な色の発光を有し、特に色純度のよい青色発光が可能で駆動寿命
の長い高分子発光材料を提供することができる。中でも、素子の長寿命化に有効である。また、本発明によれば、製造工程が簡略化され、大面積化が実現できるとともに、耐久性に優れた有機EL素子および表示装置を提供することができる。
【発明を実施するための最良の形態】
【0038】
有機EL素子において、一般に励起三重項状態の寿命が励起一重項の寿命に比べて長く、分子が高エネルギー状態に長く留まるため、周辺物質との反応、分子自体の構造変化、励起子同士の反応などが起こるため、これまでの金属配位化合物ではりん光発光素子の駆動寿命が短かったのではないかと考えられる。
【0039】
そこで、本発明者らは種々の検討を行い、特定のイリジウム錯体から導かれる構造単位を含む重合体からなることを特徴とする高分子発光材料が有効であることを見出した。
以下、本発明について具体的に説明する。
【0040】
1.高分子発光材料
本発明に係る高分子発光材料は、特定のイリジウム錯体から導かれる構造単位を含む重合体からなる。このような材料では、イリジウム錯体の三重項励起状態からの発光が得られる。上記高分子発光材料は、さらに、ホール輸送性の重合性化合物および電子輸送性の重合性化合物からなる群から選択される少なくとも1種の重合性化合物から導かれる構造単位を含む重合体からなることが好ましい。
<イリジウム錯体から導かれる構造単位を含む重合体>
本発明に用いられる重合体は、上記式(1)で表されるイリジウム錯体を含む単量体を重合して得られる。上記重合体において、上記イリジウム錯体の単量体は、1種単独で、または2種以上を組み合わせて用いてもよい。本明細書において、上記重合体には、上記錯体の単独重合体、および2種以上の該錯体の共重合体も含む。
【0041】
上記式(1)で表されるイリジウム錯体は、リンを含有する誘導体を配位子として含む。該錯体を用いた高分子発光材料は青色光〜緑色光を発光する。また、この高分子発光材料によれば、優れた耐久性を有する有機EL素子を製造できる。
【0042】
上記式(1)〜(10)に記載した記号(R1〜R9、X1〜X10、A1、Z1、L、Y1、Y2)について以下により具体的に説明する。
式中、R1およびR2は、各々独立に炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表し、R1とR2とは互いに結合して環構造を形成してもよい
また、式中、R3〜R9は、各々独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、−OH、−SX1、−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、−NX89(ここで、X1〜X9は炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
【0043】
ここで、X1〜X9は置換基を有していてもよく、置換基の例として、ハロゲン原子、シアノ基、アルデヒド基、アミノ基、アルキル基、アルコキシ基、アルキルチオ基、カルボキシル基、スルホン酸基、ニトロ基等を挙げることができる。これらの置換基は、さらにハロゲン原子、メチル基等によって置換されていてもよい。
【0044】
直鎖、環状もしくは分岐のアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、tert−ブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基を挙げることができる。
【0045】
アリール基、ヘテロアリール基もしくはアラルキル基の例としては、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、ベンジル基、フェネチル基、メチルベンジル基、ジフェニルメチル基、スチリル基、シンナミル基、ビフェニル残基、ターフェニル残基、ナフチル基、アントリル基、フルオレニル基、フラン残基、チオフェン残基、ピロール残基、オキサゾール残基、チアゾール残基、イミダゾール残基、ピリジン残基、ピリミジン残基、ピラジン残基、トリアジン残基、キノリン残基、キノキサリン残基を挙げることができる。
【0046】
アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基、オクチルオキシ基、tert−オクチルオキシ基、フェノキシ基、4−tert−ブチルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基を挙げることができる。
【0047】
−SX1の例としては、メチルチオ基、エチルチオ基、tert−ブチルチオ基、ヘキ
シルチオ基、オクチルチオ基、フェニルチオ基、2−メチルフェニルチオ基、4−tert−ブチルフェニルチオ基を挙げることができる。
【0048】
−OCOX2の例としては、アセトキシ基、ベンゾイルオキシ基を挙げることができる

−COOX3の例としては、メトキシカルボニル基、エトキシカルボニル基、tert
−ブトキシカルボニル基、フェノキシカルボニル基、ナフチルオキシカルボニル基等を挙げることができる。
【0049】
−SiX456の例としては、トリメチルシリル基、トリエチルシリル基、トリフェ
ニルシリル基等を挙げることができる。
−NHX7の例としては、N−メチルアミノ基、N−エチルアミノ基、N−ベンジルア
ミノ基、N−フェニルアミノ基等を挙げることができる。
【0050】
−NX89の例としては、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、N,N−ジイソプロピルアミノ基、N,N−ジブチルアミノ基、N,N−ジベンジルアミノ基、N,N−ジフェニルアミノ基等を挙げることができる。
【0051】
1は、炭素原子C1〜C3とともに五員または六員の炭素環または複素環を形成する原
子群を表し、Z1と炭素原子C1〜C3とで形成される五員または六員の炭素環または複素
環の環構造としては、芳香族環が好ましく、例えば、イミダゾール環、チアゾール環、オキサゾール環、ピロール環、オキサジアゾール環、チアジアゾール環、ピラゾール環、1,2,3−トリアゾール環、1,2,4−トリアゾール環、セレナゾール環、フラン環、チオフェン環、ベンゼン環、チオフェン環、ナフチル環、ピリジン環、ピリミジン環、ピ
ラジン環およびピリダジン環が挙げられる。これらのうち、チアゾール環、ピロール環、ベンゼン環、チオフェン環、ナフチル環、およびピリジン環が好ましい。上記炭素環または複素環は置換基を有してもよく、さらに他の環との縮合環を形成してもよい。
【0052】
1は、炭素原子、ケイ素原子、酸素原子または窒素原子を表し、A1が炭素原子またはケイ素原子のときは、A1は置換基を1つまたは2つ有してもよく、A1が窒素原子のときは、A1は置換基を1つ有してもよい。
【0053】
上記式(1)で表されるイリジウム錯体の誘導体としては、合成の容易さや作成した素子の寿命および色純度の点から、下記一般式(2)〜(4)のいずれかで示されるイリジウム錯体がより好ましい。
【0054】
【化11】

【0055】
【化12】

【0056】
【化13】

【0057】
(式中、R1およびR2は、各々独立に炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置
換ヘテロアリール基もしくはハロゲン置換アラルキル基を表し、R1とR2とは互いに結合して環構造を形成してもよい。
【0058】
また、式中、R3〜R9は、各々独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、−OH、−SX1、−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、および−NX89(ここで、X1〜X9は炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
【0059】
Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
イリジウム錯体の誘導体としてより好ましくは、例えば下記一般式(5)〜(8)で表される構造を挙げることができる。
【0060】
【化14】

【0061】
【化15】

【0062】
【化16】

【0063】
【化17】

【0064】
(式中、Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
上記式(1)〜(8)において、Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。
【0065】
1価アニオンの2座配位子としては、例えば、水素イオンが1つ脱離して、2つの配位座を含む共役構造が、全体として1価アニオン性となり得る構造を有する化合物から、水素イオンが1つ脱離し、1価のアニオンとなった化合物;または、分子内にピリジン環、カルボニル基、イミン基等の非イオン性の配位座と、水酸基、カルボキシル基等の水素イオンが1つ脱離して1価のアニオン性配位座になり得る部位を有する化合物などが挙げられる。
【0066】
好ましくは、下記一般式(9)または(10)で表される2座配位子である。
【0067】
【化18】

【0068】
【化19】

【0069】
(式中、X10は、上記式(2)中のR3と同義であり、水素原子、ハロゲン原子、ニト
ロ基、シアノ基、−OH、−SX1、−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、−NX89(ここで、X1〜X9は、炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
【0070】
1およびY2はそれぞれ独立に、重合性官能基を有する置換基を表す。)
上記式(9)または(10)で表される2座配位子は、Y1或いはY2で示される重合性官能基を有する。該官能基は、ラジカル重合性、カチオン重合性、アニオン重合性、付加重合性、および縮合重合性の官能基のいずれであってもよい。これらのうちで、ラジカル重合性の官能基は、重合体の製造が容易であるため好ましい。
【0071】
上記重合性官能基としては、例えば、アリル基、アルケニル基、アクリレート基、メタクリレート基、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、ビニルアミド基およびこれらの誘導体などを挙げることができる。これらのうちで、アルケニル基が好ましい。
【0072】
Lは、具体的には、上記官能基を、下記式(A1)〜(A12)で表される置換基として有することがより好ましい。これらのうちで、下記式(A1)、(A5)、(A8)、(A12)で表される置換基は、イリジウム錯体に官能基が容易に導入できるためさらに好ましい。
【0073】
【化20】

【0074】
これらの配位子から、上記式(1)〜(8)のいずれかで表されるイリジウム錯体として、もっとも好ましくは以下のイリジウム錯体である。
【0075】
【化21】

【0076】
上記式(1)〜(8)のいずれかで表されるイリジウム錯体は、例えば、以下のようにして製造することができる。
まず、特表2005−535722号公報記載の方法、D.E.C.Corbridg著、「Studies in Inorganic Chemistry 10, Phosphorus, An Outline of its Chemistry, Biochemistry and Technology」第4版、(1990年、Elsevier Science Publishers)に記載の方法等により、所望するリンを有する誘導体を得る。
【0077】
次いでリンを有する誘導体と、塩化イリジウムなどのイリジウム化合物(0.5当量)とを、2−エトキシエタノールなどの溶媒中で反応させる。次いで、得られたイリジウム2核錯体と、重合性官能基を有する、1価アニオンの2座配位子の誘導体を、炭酸ナトリウムと共に、2−エトキシエタノールなどの溶媒中で加熱した後、精製して式で表されるイリジウム錯体を得ることができる。
【0078】
イリジウム2核錯体の合成法としては、例えば、Inorganic Chemistry,2001年,40巻,1704頁に記載の方法が挙げられる。以下に、本発明で用いられるイリジウム2核錯体の代表例を示す。
【0079】
【化22】

【0080】
上記イリジウム錯体から導かれる構造単位を含む重合体の重量平均分子量は、1,00
0〜2,000,000であることが好ましく、5,000〜1,000,000であることがより好ましい。本明細書における分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法を用いて測定されるポリスチレン換算分子量をいう。上記分子量がこの範囲にあると、重合体が有機溶媒に可溶であり、均一な薄膜を得られるため好ましい。
【0081】
上記重合体は、ランダム共重合体、ブロック共重合体、および交互共重合体のいずれでもよい。
上記重合体の重合方法は、ラジカル重合、カチオン重合、アニオン重合、および付加重合のいずれでもよいが、ラジカル重合が好ましい。
<キャリア輸送性の重合性化合物から導かれる構造単位を有する重合体>
本発明に用いられる重合体は、1種または2種以上の上記イリジウム錯体の単量体と共に、ホール輸送性の重合性化合物および電子輸送性の重合性化合物からなる群より選択される少なくとも1種の重合性化合物を含む単量体を共重合して得られる重合体であることが好ましい。なお、本明細書において、ホール輸送性の重合性化合物および電子輸送性の重合性化合物を併せて、キャリア輸送性の重合性化合物ともいう。
【0082】
すなわち、上記高分子発光材料は、1種または2種以上の上記イリジウム錯体から導かれる構造単位と共に、1種または2種以上のホール輸送性の重合性化合物から導かれる構造単位、または1種または2種以上の電子輸送性の重合性化合物から導かれる構造単位を含む重合体からなることが好ましい。このような高分子発光材料では、上記イリジウム錯体から導かれる構造単位上で、ホールと電子とが効率よく再結合するため、高い発光効率が得られる。
【0083】
また、上記高分子発光材料は、1種または2種以上の上記イリジウム錯体から導かれる構造単位と共に、1種または2種以上のホール輸送性の重合性化合物から導かれる構造単位と、1種または2種以上の電子輸送性の重合性化合物から導かれる構造単位とを含む重合体からなることがより好ましい。このような高分子発光材料は、発光性、ホール輸送性および電子輸送性のすべての機能を備えているため、イリジウム錯体上で、ホールと電子とがさらに効率よく再結合するため、より高い発光効率が得られる。
【0084】
上記ホール輸送性の重合性化合物および上記電子輸送性の重合性化合物は、重合性官能基を有することのほか、特に制限されず、公知のキャリア輸送性の化合物が用いられる。
上記重合性官能基は、ラジカル重合性、カチオン重合性、アニオン重合性、付加重合性、および縮合重合性の官能基のいずれであってもよい。これらのうちで、ラジカル重合性の官能基は、重合体の製造が容易であるため好ましい。
【0085】
上記重合性官能基としては、上記式(9)におけるY1と同義であり、好ましい範囲も
同じである。
上記重合性化合物は、具体的には、上記官能基を、上記式(A1)〜(A12)で表される置換基として有することがより好ましい。
【0086】
上記ホール輸送性の重合性化合物としては、具体的には、下記式(E1)〜(E6)で表される化合物が好ましく、共重合体におけるキャリア移動度が高いため、下記式(E1)〜(E3)で表される化合物がより好ましい。
【0087】
【化23】

【0088】
上記電子輸送性の重合性化合物としては、具体的には、下記式(E7)〜(E15)で表される化合物が好ましく、共重合体におけるキャリア移動度が高いため、下記式(E7)、(E12)〜(E14)で表される化合物がより好ましい。
【0089】
【化24】

【0090】
なお、上記式(E1)〜(E15)において、上記式(A1)で表される置換基を、上記式(A2)〜(A12)で表される置換基に代えた化合物も好適に用いられるが、重合性化合物に官能基を容易に導入できるため、上記式(A1)、(A5)で表される置換基を有する化合物が特に好ましい。
【0091】
これらのうちで、上記ホール輸送性の重合性化合物として、上記式(E1)〜(E3)のいずれかで表される化合物と、上記電子輸送性の重合性化合物として、上記式(E7)、(E12)〜(E14)のいずれかで表される化合物とを、上記イリジウム錯体と組み合わせて共重合させることがより好ましい。このような高分子発光材料は、高い発光効率および高い最高到達輝度を有し、耐久性にも優れる。
【0092】
この場合に、上記イリジウム錯体として、より長寿命化が図れるため上記式(C1)、(C2)、(C4)、(C6)、(C7)または(C10)で表される錯体を用いることが特に好ましい。
【0093】
上記式(E1)〜(E15)で表される重合性化合物は、公知の方法によって製造することができる。
なお、上記重合体は、さらに、他の重合性化合物から導かれる構造単位を有していてもよい。上記他の重合性化合物としては、例えば、アクリル酸メチル、メタクリル酸メチル等の(メタ)アクリル酸アルキルエステル、スチレンおよびその誘導体などのキャリア輸送性を有さない化合物が挙げられるが、何らこれらに制限されるものではない。
【0094】
また、上記重合体の重量平均分子量は、1,000〜2,000,000であることが好ましく、5,000〜1,000,000であることがより好ましい。上記分子量がこの範囲にあると、重合体が有機溶媒に可溶であり、均一な薄膜を得られるため好ましい。
【0095】
イリジウム錯体と、キャリア輸送性の重合性化合物(ホール輸送性および/または電子輸送性の重合性化合物)との比率を適宜設定すれば、所望の上記重合体が得られ、該重合体は、ランダム共重合体、ブロック共重合体、および交互共重合体のいずれでもよい。
【0096】
上記重合体における、上記イリジウム錯体から導かれる構造単位数をmとし、キャリア輸送性化合物から導かれる構造単位数(ホール輸送性の重合性化合物および/または電子輸送性の重合性化合物から導かれる構造単位の総数)をnとしたとき(m、nは1以上の整数を示す)、全構造単位数に対する上記イリジウム錯体から導かれる構造単位数の割合、すなわちm/(m+n)の値は、0.001〜0.5の範囲にあることが好ましく、0.001〜0.2の範囲にあることがより好ましい。m/(m+n)の値がこの範囲にあると、キャリア移動度が高く、濃度消光の影響が小さい、高い発光効率の有機EL素子が得られる。
【0097】
また、上記重合体が、ホール輸送性化合物から導かれる構造単位と電子輸送性化合物から導かれる構造単位とを含む場合、ホール輸送性化合物から導かれる構造単位数をx、電子輸送性化合物から導かれる構造単位数をyとすると(x、yは1以上の整数を示す)、上記nとの間に、n=x+yの関係が成り立つ。キャリア輸送性化合物から導かれる構造単位数に対する、ホール輸送性化合物から導かれる構造単位数の割合x/n、および電子輸送性化合物から導かれる構造単位数の割合y/nの最適値は、各構造単位の電荷輸送能、イリジウム錯体から導かれる構造単位の電荷輸送性、濃度などによって決まる。この重合体を有機EL素子の発光層を形成する唯一の化合物として用いる場合、x/nおよびy/nの値は、それぞれ0.05〜0.95の範囲にあることが好ましく、0.20〜0.80の範囲にあることがより好ましい。なお、ここで、x/n+y/n=1が成り立つ。
【0098】
上記重合体の重合方法は、ラジカル重合、カチオン重合、アニオン重合、および付加重合のいずれでもよいが、ラジカル重合が好ましい。
【0099】
2.有機エレクトロルミネッセンス素子
本発明に係る高分子発光材料は、有機EL素子の材料として好適に用いられる。上記有機EL素子は、陽極と陰極とに挟まれた1層または2層以上の有機高分子層を含み、該有機高分子層の少なくとも1層に、上記高分子発光材料が含まれる。本発明に係る高分子発光材料は、簡便な塗布法で発光層を成膜でき、素子の大面積化が図れる。
【0100】
本発明に係る有機EL素子の構成の一例を図1に示すが、本発明に係る有機EL素子の
構成は、これに制限されない。図1では、透明基板(1)上に設けた陽極(2)および陰極(6)の間に、ホール輸送層(3)、発光層(4)および電子輸送層(5)を、この順で設けている。上記有機EL素子では、例えば、陽極(2)と陰極(6)の間に、1)ホール輸送層/発光層、2)発光層/電子輸送層のいずれかを設けてもよい。また、3)ホール輸送材料、発光材料、電子輸送材料を含む層、4)ホール輸送材料、発光材料を含む層、5)発光材料、電子輸送材料を含む層、6)発光材料の単独層のいずれかの層を1層のみ設けてもよい。さらに、発光層を2層以上積層してもよい。
【0101】
上記のような素子において、本発明に係る高分子発光材料が、上記イリジウム錯体から導かれる構造単位と、ホール輸送性の重合性化合物から導かれる構造単位と、電子輸送性の重合性化合物から導かれる構造単位とを含む重合体からなる場合は、該材料を含む上記有機高分子層は、ホール輸送性および電子輸送性を併せ持つ発光層として利用できる。このため、他の有機材料の層を設けない場合であっても、高い発光効率および耐久性を有する有機EL素子を作製できる。また、製造工程がさらに簡略化できる。
【0102】
上記の各層は、バインダとして高分子材料などを混合して、形成してもよい。上記高分子材料としては、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイドなどが挙げられる。
【0103】
また、上記の各層に用いられる発光材料、ホール輸送材料および電子輸送材料は、それぞれ単独で各層を形成しても、機能の異なる材料を混合して、各層を形成していてもよい。本発明に係る有機EL素子における発光層においても、本発明に係る高分子発光材料の他に、キャリア輸送性を補う目的で、さらに他のホール輸送材料および/または電子輸送材料が含まれていてもよい。このような輸送材料としては、低分子化合物であっても、高分子化合物であってもよい。
【0104】
上記ホール輸送層を形成するホール輸送材料、または発光層と混合させるホール輸送材料としては、例えば、TPD(N,N’−ジメチル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’ジアミン);α−NPD(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル);m−MTDATA(4、4’,4’’−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;上記トリフェニルアミン誘導体に重合性官能基を導入して重合した高分子化合物;ポリパラフェニレンビニレン、ポリジアルキルフルオレン等の蛍光発光性高分子化合物などが挙げられる。上記高分子化合物としては、例えば、特開平8−157575号公報に開示されているトリフェニルアミン骨格の高分子化合物などが挙げられる。上記ホール輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なるホール輸送材料を積層して用いてもよい。ホール輸送層の厚さは、ホール輸送層の導電率などに依存するが、通常、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。
【0105】
上記電子輸送層を形成する電子輸送材料、または発光層と混合させる電子輸送材料としては、例えば、Alq3(アルミニウムトリスキノリノレート)等のキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体、トリアリールボラン誘導体等の低分子化合物;上記の低分子化合物に重合性置換基を導入して重合した高分子化合物を挙げることができる。上記高分子化合物としては、例えば、特開平10−1665号公報に開示されているポリPBDなどが挙げられる。上記電子輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる電子輸送材料を積層して用いてもよい。電子輸送層の厚さは、電子輸送層の導電率などに依存するが、通常、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。
【0106】
また、発光層の陰極側に隣接して、ホールが発光層を通過することを抑え、発光層内でホールと電子とを効率よく再結合させる目的で、ホール・ブロック層が設けられていてもよい。上記ホール・ブロック層の形成には、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体などの公知の材料が用いられる。
【0107】
陽極とホール輸送層との間、または陽極と陽極に隣接して積層される有機層との間に、ホール注入において注入障壁を緩和するために、バッファ層が設けられていてもよい。上記バッファ層を形成するためには、銅フタロシアニン、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合物などの公知の材料が用いられる。
【0108】
陰極と電子輸送層との間、または陰極と陰極に隣接して積層される有機層との間に、電子注入効率を向上するために、厚さ0.1〜10nmの絶縁層が設けられていてもよい。上記絶縁層を形成するためには、フッ化リチウム、フッ化マグネシウム、酸化マグネシウム、アルミナなどの公知の材料が用いられる。
【0109】
本発明に係る有機EL素子に用いる陽極材料としては、例えば、ITO(酸化インジウムスズ)、酸化錫、酸化亜鉛、ポリチオフェン、ポリピロール、ポリアニリン等の導電性高分子など、公知の透明導電材料が好適に用いられる。この透明導電材料によって形成された電極の表面抵抗は、1〜50Ω/□(オーム/スクエアー)であることが好ましい。陽極の厚さは50〜300nmであることが好ましい。
【0110】
本発明に係る有機EL素子に用いる陰極材料としては、例えば、Li、Na、K、Cs等のアルカリ金属;Mg、Ca、Ba等のアルカリ土類金属;Al;MgAg合金;AlLi、AlCa等のAlとアルカリ金属との合金など、公知の陰極材料が好適に用いられる。陰極の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。アルカリ金属、アルカリ土類金属などの活性の高い金属を使用する場合には、陰極の厚さは、好ましくは0.1〜100nm、より好ましくは0.5〜50nmであることが望ましい。また、この場合には、上記陰極金属を保護する目的で、この陰極上に、大気に対して安定な金属層が積層される。上記金属層を形成する金属として、例えば、Al、Ag、Au、Pt、Cu、Ni、Crなどが挙げられる。上記金属層の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。
【0111】
本発明に係る有機EL素子の基板としては、上記発光材料の発光波長に対して透明な絶縁性基板が好適に用いられ、具体的には、ガラスのほか、PET(ポリエチレンテレフタレート)、ポリカーボネート等の透明プラスチックなどが用いられる。
【0112】
上記のホール輸送層、発光層および電子輸送層の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、インクジェット法、スピンコート法、印刷法、スプレー法、ディスペンサー法などを用いることができる。低分子化合物の場合は、抵抗加熱蒸着または電子ビーム蒸着が好適に用いられ、高分子材料の場合は、インクジェット法、スピンコート法、または印刷法が好適に用いられる。
【0113】
本発明に係る高分子発光材料を用いて発光層を成膜する場合は、インクジェット法、スピンコート法、ディップコート法または印刷法が好ましく用いられるため、製造工程が簡略化され、素子の大面積化も図れる。
【0114】
また、上記陽極材料の成膜方法としては、例えば、電子ビーム蒸着法、スパッタリング
法、化学反応法、コーティング法などが用いられ、上記陰極材料の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などが用いられる。
3.用途
本発明に係る有機EL素子は、公知の方法で、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機EL素子は、画素を形成せずに、面発光光源としても好適に用いられる。
【0115】
本発明に係る有機EL素子は、具体的には、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。
【0116】
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例]
[合成例1]イリジウム錯体(C1)の合成
【0117】
【化25】

【0118】
ベンジルジフェニルホスフィン25g(90mmol)、塩化イリジウム三水和物15g(43mmol)、2−エトキシエタノール300mlおよび水100mlの混合物を12時間加熱還流した。生成した沈殿を冷メタノールで洗浄し、減圧乾燥することによって二核錯体(D1)を得た。得られた錯体(D1)1.0g(0.64mmol)に20mlのN,N−ジメチルホルムアミドを加え、化合物(a)(特開2003−113246号公報に記載の方法に従って合成した)0.50g(2.3mmol)および炭酸カリウム0.32g(2.3mmol)を加えて、90℃で4時間加熱撹拌した。得られた反応液を水中に投入し、生じた沈殿を水洗後、減圧乾燥した。シリカゲルのカラムクロマトグラフィーによって精製することにより、イリジウム錯体(C1)0.46g(0.48
mmol)を得た。
【0119】
化合物(C1)の同定データは以下の通りである。
元素分析: 計算値(C5247IrO22) C,65.19;H,4.94. 測定値
C,64.88;H,5.31.
質量分析(FAB+): 958(M+).
[合成例2]イリジウム錯体(C2)の合成
ベンジルジフェニルホスフィンの替わりにジフェニル(4−フェニルベンジル)ホスフィン(特許文献1に記載の方法と同様な方法で合成した)を用いた以外は、合成例1と同様な方法でイリジウム錯体(C2)を合成した。
【0120】
化合物(C2)の同定データは以下の通りである。
元素分析: 計算値(C6455IrO22) C,69.23;H,4.99. 測定値
C,69.80;H,5.22.
質量分析(FAB+): 1110(M+).
[合成例3]イリジウム錯体(C4)の合成
(3−1)化合物(b)の合成
【0121】
【化26】

【0122】
ジフェニルホスフィン10g(54mmol)とテトラヒドロフラン50mlの混合物を−40℃に冷却し、n−ブチルリチウム(1.6Mヘキサン溶液)34ml(54mmol)を加えて同温で0.5時間撹拌した。得られた反応液を臭化4−フルオロベンジル10g(53mmol)のテトラヒドロフラン30ml溶液に−78℃で滴下し、室温で3時間撹拌した。減圧で溶媒を留去した後、ジクロロメタンを加え、セライトで濾過した。得られた濾液から減圧で溶媒を留去することによって化合物(b)を得た。
(3−2)イリジウム錯体(C4)の合成
【0123】
【化27】

【0124】
化合物(b)5.0g(17mmol)、塩化イリジウム三水和物3.0g(8.5mmol)、2−エトキシエタノール180mlおよび水60mlの混合物を12時間加熱還流した。生成した沈殿を冷メタノールで洗浄し、減圧乾燥することによって二核錯体(D3)を得た。得られた錯体(D3)1.0g(0.61mmol)に20mlのN,N−ジメチルホルムアミドを加え、化合物(c)(特開2003−206320に記載の方法に従って合成した)0.30g(2.0mmol)および炭酸カリウム0.30g(2.2mmol)を加えて、90℃で4時間加熱撹拌した。得られた反応液を水中に投入し、生じた沈殿を水洗後、減圧乾燥した。シリカゲルのカラムクロマトグラフィーによって精製することにより、イリジウム錯体(C4)0.39g(0.42mmol)を得た。
【0125】
化合物(C4)の同定データは以下の通りである。
元素分析: 計算値(C46362IrNO22) C,59.60;H,3.91;N
,1.51. 測定値 C,59.28;H,4.05;N,1.29.
質量分析(FAB+): 927(M+).
[合成例4]イリジウム錯体(C6)の合成
化合物(b)の替わりにジフェニル(1−フェニルエチル)ホスフィン(特許文献1に記載の方法と同様な方法で合成した)を用いた以外は、合成例3−2と同様な方法でイリジウム錯体(C6)を合成した。
【0126】
化合物(C6)の同定データは以下の通りである。
元素分析: 計算値(C4842IrNO22) C,62.73;H,4.61;N,1.52. 測定値 C,62.40;H,4.88;N,1.82.
質量分析(FAB+): 919(M+).
[合成例5]イリジウム錯体(C7)の合成
(3−1)化合物(d)の合成
【0127】
【化28】

【0128】
クロロジフェニルホスフィン10g(45mmol)およびトリエチルアミン4.6g(45mmol)を100mlのジエチルエーテルに溶解し、氷冷しながらフェノール4.2g(45mmol)のジエチルエーテル50ml溶液を滴下した。1時間撹拌した後、セライトで濾過し、減圧で溶媒を留去することによって化合物(d)を得た。
(3−2)イリジウム錯体(C7)の合成
【0129】
【化29】

【0130】
化合物(d)5.0g(18mmol)、塩化イリジウム三水和物3.0g(8.5mmol)、2−エトキシエタノール180mlおよび水60mlの混合物を12時間加熱還流した。生成した沈殿を冷メタノールで洗浄し、減圧乾燥することによって二核錯体(
D5)を得た。得られた錯体(D5)1.0g(0.64mmol)に20mlのN,N−ジメチルホルムアミドを加え、化合物(e)(特開2003−206320に記載の方法に従って合成した)0.50g(2.0mmol)および炭酸カリウム0.30g(2.2mmol)を加えて、90℃で4時間加熱撹拌した。得られた反応液を水中に投入し、生じた沈殿を水洗後、減圧乾燥した。シリカゲルのカラムクロマトグラフィーによって精製することにより、イリジウム錯体(C7)0.30g(0.30mmol)を得た。
【0131】
化合物(C7)の同定データは以下の通りである。
元素分析: 計算値(C5140IrNO52) C,61.19;H,4.03;N,1.40. 測定値 C,60.81;H,4.29;N,1.55.
質量分析(FAB+): 1001(M+).
[合成例6]イリジウム錯体(C10)の合成
【0132】
【化30】

【0133】
ジフェニル(2−フェニルベンジル)ホスフィン(特許文献1に記載の方法と同様な方法で合成した)5.0g(14mmol)、塩化イリジウム三水和物2.5g(7.1mmol)、2−エトキシエタノール150mlおよび水50mlの混合物を12時間加熱還流した。生成した沈殿を冷メタノールで洗浄し、減圧乾燥することによって二核錯体(D7)を得た。得られた錯体(D7)1.0g(0.54mmol)に50mlのテトラヒドロフランを加え、化合物(f)(特開2003−113246に記載の方法に従って合成した)0.50g(2.2mmol)および炭酸カリウム0.30g(2.2mmol)を加えて、48時間加熱還流した。得られた反応液を濃縮し、反応液を氷冷しながら
フッ化テトラ−n−ブチルアンモニウム0.60g(2.1mmol)を加え、室温で3時間撹拌した。減圧で溶媒を留去した後、シリカゲルカラムクロマトグラフィーによって精製することにより、イリジウム錯体(g)0.55g(0.54mmol)を得た。得られたイリジウム錯体(g)に20mlのジクロロメタンを加え、氷冷しながらトリエチルアミン0.10gおよび塩化メタクリロイル0.10g(1.0mmol)を順に滴下した後、室温で3時間撹拌した。生じた沈殿を濾別して濾液から減圧で溶媒を留去し、シリカゲルのカラムクロマトグラフィーによって精製することにより、イリジウム錯体(C10)0.50g(0.46mmol)を得た。
【0134】
化合物(C10)の同定データは以下の通りである。
元素分析: 計算値(C5951IrO42) C,65.72;H,4.77. 測定値
C,65.29;H,5.02.
質量分析(FAB+): 1078(M+).
【0135】
[実施例1]共重合体(I)の合成
密閉容器に、イリジウム錯体(C1)80mg、上記式(E1)で表される化合物460mg、および上記式(E7)で表される化合物460mgを入れ、脱水トルエン(9.9mL)を加えた。次いで、V−601(和光純薬工業(株)製)のトルエン溶液(0.1M、198μL)を加え、凍結脱気操作を5回繰り返した。真空のまま密閉し、60℃で60時間撹拌した。反応後、反応液をアセトン500mL中に滴下し、沈殿を得た。さらにトルエン−アセトンでの再沈殿精製を2回繰り返した後、50℃で一晩真空乾燥して、共重合体(I)を得た。共重合体(I)の重量平均分子量(Mw)は38100、分子量分布指数(Mw/Mn)は2.21であった。ICP元素分析および13C−NMR測定の結果から見積もった共重合体におけるm/(m+n)の値は0.038であった。また、共重合体(I)において、x/nの値は、0.42であり、y/nの値は、0.58であった。
【0136】
[実施例2]共重合体(II)の合成
イリジウム錯体(C1)の替わりにイリジウム錯体(C2)を用いた他は、実施例1と同様にして共重合体(II)を得た。共重合体(II)の重量平均分子量(Mw)は35500、分子量分布指数(Mw/Mn)は2.09であった。ICP元素分析および13C−NMR測定の結果から見積もった共重合体におけるm/(m+n)の値は0.034であった。また、共重合体(II)において、x/nの値は、0.44であり、y/nの値は、0.56であった。
【0137】
[実施例3]共重合体(III)の合成
イリジウム錯体(C1)の替わりにイリジウム錯体(C4)を用いた他は、実施例1と同様にして共重合体(III)を得た。共重合体(III)の重量平均分子量(Mw)は32600、分子量分布指数(Mw/Mn)は2.13であった。ICP元素分析および13C−NMR測定の結果から見積もった共重合体におけるm/(m+n)の値は0.039であった。また、共重合体(III)において、x/nの値は、0.41であり、y/nの値は、0.59であった。
【0138】
[実施例4]共重合体(IV)の合成
イリジウム錯体(C1)の代わりにイリジウム錯体(C6)を、上記式(E1)で表される化合物の代わりに上記式(E2)で表される化合物を、上記式(E7)で表される化合物の代わりに上記式(E14)で表される化合物を用いた他は、実施例1と同様にして、共重合体(IV)を得た。共重合体(IV)の重量平均分子量(Mw)は40700、分子量分布指数(Mw/Mn)は2.30であった。ICP元素分析および13C−NMR測定の結果から見積もった共重合体におけるm/(m+n)の値は0.050であった。
また、共重合体(IV)において、x/nの値は、0.48であり、y/nの値は、0.52であった。
【0139】
[実施例5]共重合体(V)の合成
イリジウム錯体(C6)の代わりにイリジウム錯体(C7)を用いた他は、実施例4と同様にして、共重合体(V)を得た。共重合体(V)の重量平均分子量(Mw)は36600、分子量分布指数(Mw/Mn)は2.040であった。ICP元素分析および13C−NMR測定の結果から見積もった共重合体におけるm/(m+n)の値は0.049であった。また、共重合体(V)において、x/nの値は、0.50であり、y/nの値は、0.50であった。
【0140】
[実施例6]共重合体(VI)の合成
イリジウム錯体(C6)の代わりにイリジウム錯体(C10)を用いた他は、実施例4と同様にして、共重合体(VI)を得た。共重合体(VI)の重量平均分子量(Mw)は31700、分子量分布指数(Mw/Mn)は2.29であった。ICP元素分析および13C−NMR測定の結果から見積もった共重合体におけるm/(m+n)の値は0.045であった。また、共重合体(VI)において、x/nの値は、0.51であり、y/nの値は、0.49であった。
【0141】
[実施例7]有機EL素子の作製および発光特性の評価
ITO付き基板(ニッポ電機(株)製)を用いた。これは、25mm角のガラス基板の一方の面に、幅4mmのITO(酸化インジウム錫)電極(陽極)が、ストライプ状に2本形成された基板であった。
【0142】
まず、上記ITO付き基板上に、ポリ(3,4−エチレンジオキシチオフェン)・ポリスチレンスルホン酸(バイエル(株)製、商品名「バイトロンP」)を、回転数3500rpm、塗布時間40秒の条件で、スピンコート法により塗布した。その後、真空乾燥器で減圧下、60℃で2時間乾燥し、陽極バッファ層を形成した。得られた陽極バッファ層の膜厚は、約50nmであった。次に、共重合体(I)90mgをトルエン(和光純薬工業(株)製、特級)2910mgに溶解し、この溶液を孔径0.2μmのフィルターでろ過し、塗布溶液を調製した。次いで、上記陽極バッファ層上に、上記塗布溶液を、回転数3000rpm、塗布時間30秒の条件で、スピンコート法により塗布した。塗布後、室温(25℃)で30分間乾燥し、発光層を形成した。得られた発光層の膜厚は、約100nmであった。
【0143】
次に、発光層を形成した基板を蒸着装置内に載置した。次いで、カルシウムおよびアルミニウムを重量比1:10で共蒸着し、陽極の延在方向に対して直交するように、幅3mmの陰極をストライプ状に2本形成した。得られた陰極の膜厚は、約50nmであった。
【0144】
最後に、アルゴン雰囲気中で、陽極と陰極とにリード線(配線)を取り付けて、縦4mm×横3mmの有機EL素子を4個作製した。上記有機EL素子に、プログラマブル直流電圧/電流源(TR6143、(株)アドバンテスト社製)を用いて電圧を印加して発光させた。その発光輝度を、輝度計(BM−8、(株)トプコン社製)を用いて測定した。
【0145】
作製した有機EL素子は青色の発光を示し、発光スペクトルにおける発光極大波長は450nmであった。
最大発光外部量子効率は2.3%、最高輝度は3200cd/m2であった。また初期
輝度100cd/m2で電流値を一定にして通電して連続発光し、強制劣化させた際、輝
度が半減するまで、1000時間であった。
【0146】
[実施例8]有機EL素子の作製および発光特性の評価
共重合体(I)の代わりに共重合体(II)を用いたほかは、実施例7と同様にして、有機EL素子を作製し、発光色などの測定を行った。
【0147】
作製した有機EL素子は青色の発光を示し、発光スペクトルにおける発光極大波長は460nmであった。
最大発光外部量子効率は2.1%、最高輝度は25000cd/m2であった。また初
期輝度100cd/m2で電流値を一定にして通電して連続発光し、強制劣化させた際、
輝度が半減するまで、750時間であった。
【0148】
[実施例9]有機EL素子の作製および発光特性の評価
共重合体(I)の代わりに共重合体(III)を用いたほかは、実施例7と同様にして、有機EL素子を作製し、発光色などの測定を行った。
【0149】
作製した有機EL素子は青色の発光を示し、発光スペクトルにおける発光極大波長は450nmであった。
最大発光外部量子効率は1.9%、最高輝度は2200cd/m2であった。また初期
輝度100cd/m2で電流値を一定にして通電して連続発光し、強制劣化させた際、輝
度が半減するまで、600時間であった。
【0150】
[実施例10]有機EL素子の作製および発光特性の評価
共重合体(I)の代わりに共重合体(IV)を用いたほかは、実施例7と同様にして、有機EL素子を作製し、発光色などの測定を行った。
【0151】
作製した有機EL素子は青色の発光を示し、発光スペクトルにおける発光極大波長は450nmであった。
最大発光外部量子効率は2.2%、最高輝度は3000cd/m2であった。また初期
輝度100cd/m2で電流値を一定にして通電して連続発光し、強制劣化させた際、輝
度が半減するまで、900時間であった。
【0152】
[実施例11]有機EL素子の作製および発光特性の評価
共重合体(I)の代わりに共重合体(V)を用いたほかは、実施例7と同様にして、有機EL素子を作製し、発光色などの測定を行った。
【0153】
作製した有機EL素子は青色の発光を示し、発光スペクトルにおける発光極大波長は455nmであった。
最大発光外部量子効率は1.9%、最高輝度は2100cd/m2であった。また初期
輝度100cd/m2で電流値を一定にして通電して連続発光し、強制劣化させた際、輝
度が半減するまで、600時間であった。
【0154】
[実施例12]有機EL素子の作製および発光特性の評価
共重合体(I)の代わりに共重合体(VI)を用いたほかは、実施例7と同様にして、有機EL素子を作製し、発光色などの測定を行った。
【0155】
作製した有機EL素子は青色の発光を示し、発光スペクトルにおける発光極大波長は450nmであった。
最大発光外部量子効率は2.0%、最高輝度は2700cd/m2であった。また初期
輝度100cd/m2で電流値を一定にして通電して連続発光し、強制劣化させた際、輝
度が半減するまで、700時間であった。
【図面の簡単な説明】
【0156】
【図1】図1は、本発明に係る有機EL素子の例の断面図である。
【符号の説明】
【0157】
1: ガラス基板
2: 陽極
3: ホール輸送層
4: 発光層
5: 電子輸送層
6: 陰極

【特許請求の範囲】
【請求項1】
下記一般式(1)で表されるイリジウム錯体から導かれる構造単位を含む重合体からなることを特徴とする高分子発光材料。
【化1】

(式中、R1およびR2は、各々独立に炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表し、R1とR2とは互いに結合して環構造を形成してもよい。
1は、炭素原子C1〜C3とともに五員または六員の炭素環または複素環を形成する原
子群を表し、該炭素環または複素環は置換基を有してもよく、さらに他の環との縮合環を形成してもよい。
1は、炭素原子、ケイ素原子、酸素原子または窒素原子を表し、A1が炭素原子、ケイ素原子または窒素原子のときは置換基を有してもよい。
Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
【請求項2】
前記イリジウム錯体が、下記一般式(2)〜(4)のいずれかで表されることを特徴とする請求項1に記載の高分子発光材料。
【化2】

【化3】

【化4】

(式中、R1およびR2は、各々独立に炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表し、R1とR2とは互いに結合して環構造を形成してもよい。
3〜R9は、各々独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、−OH、−SX1、−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、−NX89(ここで、X1〜X9は、炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
【請求項3】
前記イリジウム錯体が、下記一般式(5)〜(8)のいずれかで表されることを特徴とする請求項1に記載の高分子発光材料。
【化5】

【化6】

【化7】

【化8】

(式中、Lは、重合性官能基を有する、1価アニオンの2座配位子を表す。)
【請求項4】
前記Lが、下記一般式(9)または(10)で表される2座配位子であることを特徴とする請求項1〜3のいずれかに記載の高分子発光材料。
【化9】

【化10】

(式中、X10は、水素原子、ハロゲン原子、ニトロ基、シアノ基、−OH、−SX1
−OCOX2、−COOX3、−SiX456、−NH2、−NHX7、−NX89(ここ
で、X1〜X9は、炭素数1〜22の直鎖、環状もしくは分岐のアルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基、または、炭素数7〜21のアラルキル基を表し、X1〜X9はそれぞれ同一であっても異なっていてもよい。)、炭素数1〜10のアルコキシ基、炭素数1〜22の直鎖、環状もしくは分岐アルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6〜21のアリール基、炭素数2〜20のヘテロアリール基もしくは炭素数7〜21のアラルキル基またはそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基もしくはハロゲン置換アラルキル基を表す。
1およびY2はそれぞれ独立に、重合性官能基を有する置換基を表す。)
【請求項5】
前記重合体が、さらに、ホール輸送性の重合性化合物および電子輸送性の重合性化合物からなる群より選ばれる少なくとも1種の重合性化合物から導かれる構造単位を含むことを特徴とする請求項1〜4のいずれかに記載の高分子発光材料。
【請求項6】
陽極と陰極とに挟まれた1層または2層以上の有機高分子層を含む有機エレクトロルミネッセンス素子において、前記有機高分子層の少なくとも1層に、請求項1〜5のいずれかに記載の高分子発光材料を含むことを特徴とする有機エレクトロルミネッセンス素子。
【請求項7】
請求項6に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする画像表示装置。
【請求項8】
請求項6に記載の有機エレクトロルミネッセンス素子を用いたことを特徴とする面発光光源。

【図1】
image rotate


【公開番号】特開2007−169475(P2007−169475A)
【公開日】平成19年7月5日(2007.7.5)
【国際特許分類】
【出願番号】特願2005−369457(P2005−369457)
【出願日】平成17年12月22日(2005.12.22)
【出願人】(000002004)昭和電工株式会社 (3,251)
【Fターム(参考)】