説明

高分子電解質組成物、高分子電解質成型体および固体高分子型燃料電池

【課題】低加湿条件下おけるプロトン伝導性が優れ、なおかつ、機械特性、化学的安定性に優れ、固体高分子型燃料電池としたときに高出力、長期物理・化学的耐久を達成することができる高分子電解質組成物、ならびにそれを用いた高分子電解質成型体および固体高分子型燃料電池を提供する。
【解決手段】高分子電解質組成物は、イオン性基を含有するセグメント(S1)、イオン性基を含有しないセグメント(S2)をそれぞれ1個以上有する共重合体であって、イオン性基を含有するセグメント(S1)およびイオン性基を含有しないセグメント(S2)がそれぞれ特定の構造で示される構成単位を含有することを特徴とするものである。また、高分子電解質組成物、高分子電解質成型体、および固体高分子型燃料電池は、かかる高分子電解質組成物を用いて構成されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高分子電解質組成物に関し、なかでも、低加湿条件下におけるプロトン伝導性が優れ、なおかつ、機械強度、化学的安定性に優れ、燃料電池としたときに高出力、長期耐久を達成することができる実用性に優れた高分子電解質組成物、ならびにそれを用いた高分子電解質成型体、膜電極複合体および固体高分子型燃料電池に関するものである。
【背景技術】
【0002】
燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
【0003】
燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。高分子電解質膜は高分子電解質組成物を主として構成される。高分子電解質組成物は電極触媒層のバインダー等にも用いられる。高分子電解質膜の要求特性としては、第一に高いプロトン伝導性が挙げられ、特に低加湿条件でも高いプロトン伝導性を有する必要がある。また、高分子電解質膜は、燃料と酸素の直接反応を防止するバリアとしての機能を担うため、燃料の低透過性が要求される。その他にも燃料電池運転中の強い酸化雰囲気に耐えるための化学的安定性、薄膜化や膨潤乾燥の繰り返しに耐えうる機械強度および物理的耐久性などを挙げることができる。
【0004】
これまで高分子電解質膜には、パーフルオロスルホン酸系ポリマーであるナフィオン(登録商標)(デュポン社製)が広く用いられてきた。ナフィオン(登録商標)は多段階合成を経て製造されるため非常に高価であり、燃料である水素のクロスリークが大きいという課題があった。また、膨潤乾燥によって膜の機械強度や物理的耐久性が失われるという問題、軟化点が低く高温で使用できないという問題、さらに、使用後の廃棄処理の問題や材料のリサイクルが困難といった課題が指摘されてきた。

こうした状況において、ナフィオン(登録商標)に替わり得る安価で膜特性に優れた高分子電解質組成物として、炭化水素系電解質膜の開発が近年活発化してきている。
【0005】
例えば、特許文献1には、ポリエーテルスルホンを濃硫酸でスルホン化した高分子電解質組成物が提案されている。特許文献2には、ポリエーテルケトン、ポリエーテルエーテルケトンを濃硫酸でスルホン化した高分子電解質組成物が提案されている。
【0006】
しかしながら、これらの高分子電解質組成物を固体高分子型燃料電池に用いる場合、耐久性が不足するという問題があった。耐久性に関するメカニズムは十分に解明されていないが、発電時に副生成物として生成する過酸化水素、水酸化ラジカルにより、ポリマー鎖が切断され、高分子電解質膜が脆弱になる。加えて、高分子電解質膜が膨潤・収縮する際に発生する内部応力により、脆弱になった高分子電解質膜が破損し、発電できなくなることが考えられる。
【0007】
こうした状況において、炭化水素系電解質膜の化学安定性を向上し、耐久性を改善する検討が行われている。 例えば、特許文献3には、スルホン化したスチレンジビニルペンゼン共重合体に酸化ルテニウム、酸化スズのいずれかの微粒子を含有させる方法が提案されている。

また、特許文献4には、ポリエーテルスルホン骨格とテトラフェニルビスフェノールA骨格を有するブロックポリマー中に、硝酸セリウム、硝酸マンガンのいずれかを含有させる方法が提案されている。 また、特許文献3には、スルホン化したポリエーテルエーテルケトンに二酸化マンガン、酸化スズの微粒子を含有する方法が、特許文献5、6には、スルホン化したポリエーテルエーテルケトンに硝酸セリウム、硝酸マンガンのいずれかを含有させ、スルホン酸基の一部をセリウムイオン、マンガンイオンのいずれかでイオン交換する方法が提案されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平10−045913号公報
【特許文献2】特開平06−049202号公報
【特許文献3】特開2001−118591号公報
【特許文献4】特開2011−028990号公報
【特許文献5】特開2006−099999号公報
【特許文献6】特開2007−188706号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
特許文献3には、スルホン化したスチレンジビニルペンゼン共重合体に酸化ルテニウム、酸化スズのいずれかの微粒子を含有させる方法が提案されている。しかしながら、スチレンジビニルベンゼン共重合体は、主鎖切断して生成するラジカルがベンゼン環と共鳴し安定化することから、酸化劣化に対する化学的安定性が不足し、耐久性に問題が残されていることを本発明者らは見出した。

また、特許文献4には、ポリエーテルスルホン骨格とテトラフェニルビスフェノールA骨格を有するブロックポリマー中に、硝酸セリウム、硝酸マンガンのいずれかを含有させる方法が提案されている。しかしながら、これらはエーテル基とエーテル基に挟まれた電子密度の高く、反応性の高いフェニレン基を含むことから、化学安定性が不足し、耐久性に問題が残されていることを本発明者らは見出した。 このように、従来技術による高分子電解質組成物は、経済性、加工性、出力、耐久性を向上する手段としては不十分であり、産業上有用な高分子電解質組成物とはなり得ていなかった。
【0010】
本発明は、かかる従来技術の背景に鑑み、低加湿条件下におけるプロトン伝導性が優れ、なおかつ、機械強度、化学的安定性に優れ、燃料電池としたときに高出力、長期耐久を達成することができる実用性に優れた高分子電解質組成物、ならびにそれを用いた高分子電解質成型体、膜電極複合体および固体高分子型燃料電池を提供せんとするものである。
【課題を解決するための手段】
【0011】
本発明者らは、前記課題を克服すべく、鋭意検討を重ねた結果、電子吸引性のケトン基で全ての隣接するアリーレン基を化学的に安定化させたポリマーに、酸化劣化を抑制する化合物を配合することにより、相乗効果が得られ、耐久性が向上することを見出したものである。
【0012】
ここで、特許文献3には、スルホン化したポリエーテルエーテルケトンに二酸化マンガン、酸化スズの微粒子を含有する方法が、特許文献5、6には、スルホン化したポリエーテルエーテルケトンに硝酸セリウム、硝酸マンガンのいずれかを含有させ、スルホン酸基の一部をセリウムイオン、マンガンイオンのいずれかでイオン交換する方法が提案されている。これらはケトン基を含んではいるが、全てのフェニレンに隣接しているものではなく、結局のところエーテル基とエーテル基に挟まれた電子密度の高く、反応性の高いフェニレン基を含むことから、酸化劣化に対する化学的安定性が不足し、耐久性に問題が残されているものである。
【0013】
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の高分子電解質組成物は、イオン性基を含有するセグメント(S1)、イオン性基を含有しないセグメント(S2)をそれぞれ1個以上有する共重合体(A成分)と、酸化劣化を抑制する添加剤(B成分)を含有することを特徴とする高分子電解質組成物であって、イオン性基を含有するセグメント(S1)およびイオン性基を含有しないセグメント(S2)がそれぞれ下記一般式(S1)および(S2)で表される構成単位を含有することを特徴とするものである。また、本発明の高分子電解質成型体、および固体高分子型燃料電池は、かかる高分子電解質組成物を用いて構成されていることを特徴とするものである。
【0014】
【化1】

【0015】
(一般式(S1)中、Ar〜Arは任意の2価のアリーレン基を表し、Arおよび/またはArはイオン性基を含有し、ArおよびArはイオン性基を含有しても含有しなくても良い。Ar〜Arは任意に置換されていても良く、互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S1)または他の構成単位との結合部位を表す。)
【0016】
【化2】

【0017】
(一般式(S2)中、Ar〜Arは任意の2価のアリーレン基を表し、任意
に置換されていても良いが、イオン性基を含有しない。Ar〜Arは互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S2)または他の構成単位との結合部位を表す。)
【発明の効果】
【0018】
本発明によれば、低加湿条件下におけるプロトン伝導性が優れ、なおかつ、機械強度、化学的安定性に優れ、燃料電池としたときに高出力、長期耐久を達成することができる実用性に優れた高分子電解質組成物、ならびにそれを用いた高分子電解質成型体、膜電極複合体および固体高分子型燃料電池を提供することができる。
【発明を実施するための形態】
【0019】
以下、本発明について詳細に説明する。
【0020】
本発明者らは、燃料電池等の高分子電解質組成物として、前記課題を克服すべく、鋭意検討を重ねた結果、電子吸引性のケトン基で全ての隣接するアリーレン基を化学的に安定化させ、なおかつ、結晶性付与により強靱化し、ガラス転移温度低下による柔軟化によって機械強度を高めたポリエーテルケトン主鎖骨格からなる共重合体に、酸化劣化を抑制する化合物を配合することにより、相乗効果が得られ、高分子電解質組成物、特に燃料電池用高分子電解質膜として、低加湿条件下を含むプロトン伝導性と発電特性、耐久性に優れ、かかる課題を一挙に解決できることを究明するとともに、さらに種々の検討を加え、本発明を完成した。

すなわち、本発明の高分子電解質組成物は、イオン性基を含有するセグメント(S1)、イオン性基を含有しないセグメント(S2)をそれぞれ1個以上有する共重合体(A成分)と、酸化劣化を抑制する添加剤(B成分)を含有することを特徴とする高分子電解質組成物であって、イオン性基を含有するセグメント(S1)およびイオン性基を含有しないセグメント(S2)が、それぞれ下記一般式(S1)および(S2)で表される構成単位を含有することを特徴とするものである。
【0021】
【化3】

【0022】
(一般式(S1)中、Ar〜Arは任意の2価のアリーレン基を表し、Arおよび/またはArはイオン性基を含有し、ArおよびArはイオン性基を含有しても含有しなくても良い。Ar〜Arは任意に置換されていても良く、互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S1)または他の構成単位との結合部位を表す。)
【0023】
【化4】

【0024】
(一般式(S2)中、Ar〜Arは任意の2価のアリーレン基を表し、任意
に置換されていても良いが、イオン性基を含有しない。Ar〜Arは互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S2)または他の構成単位との結合部位を表す。)

ここで、Ar〜Arとして好ましい2価のアリーレン基は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。Arおよび/またはArはイオン性基を含有し、ArおよびArはイオン性基を含有しても含有しなくても良い。また、イオン性基以外の基で置換されていてもよいが、無置換である方がプロトン伝導性、化学的安定性、物理的耐久性の点でより好ましい。さらに、好ましくはフェニレン基とイオン性基を含有するフェニレン基、最も好ましくはp−フェニレン基とイオン性基を含有するp−フェニレン基である。
【0025】
本発明において、セグメントとは、共重合体中の部分構造である。本発明の共重合体は、イオン性基を含有するセグメント(S1)とともに、イオン性基を含有しないセグメント(S2)を有し、本発明においては、「イオン性基を含有しないセグメント」と記載するが、当該セグメント(S2)は本発明の効果に悪影響を及ぼさない範囲でイオン性基を少量含んでいても構わない。以下「イオン性基を含有しない」は同様の意味で用いる場合がある。 本発明の共重合体に使用されるイオン性基は、負電荷を有する原子団が好ましく、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。
【0026】
かかるイオン性基は、前記官能基が塩となっている場合を含むものとする。前記塩を形成するカチオンとしては、任意の金属カチオン、NR(Rは任意の有機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定されるものではなく、使用することができる。好ましい金属イオンの具体例を挙げるとすれば、Li、Na、K、Rh、Mg、Ca、Sr、Ti、Al、Fe、Pt、Rh、Ru、Ir、Pd等が挙げられる。中でも、本発明に用いる共重合体としては、安価で、容易にプロトン置換可能なNa、K、Liがより好ましく使用される。
【0027】
これらのイオン性基は高分子電解質組成物中に2種類以上含むことができ、組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、原料コストの点から少なくともスルホン酸基を有することが最も好ましい。
【0028】
本発明の共重合体がスルホン酸基を有する場合、そのイオン交換容量は、プロトン伝導性と耐久性のバランスの点から、0.1〜5meq/gであることが好ましく、1.0meq/g以上であることがより好ましく、さらには1.5meq/g以上であることが好ましい。また、3.0meq/g以下であることがより好ましく、さらには2.5meq/g以下であることが好ましい。イオン交換容量が0.1meq/g以上であると、プロトン伝導性が優れるため好ましい。5meq/g以下であると、耐久性が優れるため好ましい。
【0029】
ここで、イオン交換容量とは、共重合体、高分子電解質組成物、および高分子電解質膜の単位乾燥重量当たりに導入されたスルホン酸基のモル量であり、この値が大きいほどスルホン化の度合いが高いことを示す。イオン交換容量は、元素分析、中和滴定法等により測定が可能である。元素分析法を用い、S/C比から算出することもできるが、スルホン酸基以外の硫黄源を含む場合などは測定することが難しい。従って、本発明においては、イオン交換容量は、中和滴定法により求めた値と定義する。本発明の高分子電解質組成物、および高分子電解質膜は、後述するように本発明の共重合体とそれ以外の成分からなる複合体である態様を含むが、その場合もイオン交換容量は複合体の全体量を基準として求めるものとする。
【0030】
中和滴定の測定例は、以下のとおりである。測定は3回以上行ってその平均値を取るものとする。
(1)プロトン置換し、純水で十分に洗浄した電解質膜の膜表面の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求める。
(2)電解質に5wt%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換する。
(3)0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定する。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とする。
(4)イオン交換容量は下記の式により求める。
【0031】
イオン交換容量(meq/g)=
[水酸化ナトリウム水溶液の濃度(mmol/mL)×滴下量(mL)]/試料の乾燥重量(g)
本発明の共重合体を得るためにイオン性基を導入する方法は、イオン性基を有するモノマーを用いて重合する方法と、高分子反応でイオン性基を導入する方法が挙げられる。
【0032】
イオン性基を有するモノマーを用いて重合する方法としては、繰り返し単位中にイオン性基を有したモノマーを用いれば良い。かかる方法は例えば、ジャーナル オブ メンブレン サイエンス(Journal of Membrane Science),197, 2002,p.231−242に記載がある。この方法はポリマーのイオン交換容量の制御、工業的にも適用が容易であり、特に好ましい。
【0033】
高分子反応でイオン性基を導入する方法について例を挙げて説明する。芳香族系高分子へのホスホン酸基導入は、例えば、ポリマープレプリンツ(Polymer Preprints, Japan),51,2002,p.750等に記載の方法によって可能である。芳香族系高分子へのリン酸基導入は、例えばヒドロキシル基を有する芳香族系高分子のリン酸エステル化によって可能である。芳香族系高分子へのカルボン酸基導入は、例えばアルキル基やヒドロキシアルキル基を有する芳香族系高分子を酸化することによって可能である。芳香族系高分子への硫酸基導入は、例えばヒドロキシル基を有する芳香族系高分子の硫酸エステル化によって可能である。芳香族系高分子をスルホン化する方法、すなわちスルホン酸基を導入する方法としては、たとえば特開平2−16126号公報あるいは特開平2−208322号公報等に記載の方法を用いることができる。
【0034】
具体的には、例えば、芳香族系高分子をクロロホルム等の溶媒中でクロロスルホン酸のようなスルホン化剤と反応させる、あるいは濃硫酸や発煙硫酸中で反応させることによりスルホン化することができる。スルホン化剤には芳香族系高分子をスルホン化するものであれば特に制限はなく、上記以外にも三酸化硫黄等を使用することができる。この方法により芳香族系高分子をスルホン化する場合には、スルホン化の度合いはスルホン化剤の使用量、反応温度および反応時間により、制御することができる。芳香族系高分子へのスルホンイミド基の導入は、例えばスルホン酸基とスルホンアミド基を反応させる方法によって可能である。
【0035】
本発明の共重合体としては、イオン性基を含有するセグメント(S1)と、イオン性基を含有しないセグメント(S2)のモル組成比(S1/S2)が、0.2以上であることが好ましく、0.3以上であることがより好ましく、さらには0.5以上であることが好ましい。また、5以下であることが好ましく、3以下であることがより好ましく、さらには2以下であることが好ましい。モル組成比S1/S2が0.2以上であると、プロトン伝導性が高くなり好ましい。5以下であると耐久性が優れるため好ましい。

本発明において、A成分における、アリーレン基100mol%に対する下記一般式(1)で示される化学構造の比率が、35〜55mol%の範囲内であることが好ましく、40〜55mol%の範囲内であることがより好ましく、さらには45〜55mol%の範囲内であることが好ましい。35mol%以上であると、アリーレン基の安定性が増し、耐久性が優れるため好ましい。55mol%以下であると、溶媒への溶解性が増し、製膜性が優れるため好ましい。
【0036】
【化5】

【0037】
本発明の共重合体は、特に限定されるものではないが、例えば芳香族活性ジハライド化合物と2価フェノール化合物の芳香族求核置換反応、またはハロゲン化芳香族フェノール化合物の芳香族求核置換反応を利用して合成することができる。
【0038】
イオン性基を含有するセグメント(S1)に用いる芳香族活性ジハライド化合物として、芳香族活性ジハライド化合物にイオン酸基を導入した化合物をモノマーとして用いることは、化学的安定性、製造コスト、イオン性基の量を精密制御が可能な点から好ましい。イオン性基としてスルホン酸基を有するモノマーの好適な具体例としては、3,3’−ジスルホネート−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホネート−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジクロロジフェニルフェニルホスフィンオキシド、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルフェニルホスフィンオキシド等を挙げることができるが、これらに限定されるものではない。
【0039】
プロトン伝導度および耐加水分解性の点からイオン性基としてはスルホン酸基が最も好ましいが、本発明に使用されるイオン性基を有するモノマーは他のイオン性基を有していても構わない。なかでも化学的安定性と物理的耐久性の点から、3,3’−ジスルホネート−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトンがより好ましく、さらには重合活性の点から3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトンが好ましい。
【0040】
イオン性基を有するモノマーとして、3,3’−ジスルホネート−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホネート−4,4’−ジフルオロジフェニルケトンを用いて合成したイオン性基を含有するセグメント(S1)としては、下記一般式(p1)で表される構成単位をさらに含むものとなり、好ましく用いられる。該芳香族ポリエーテル系重合体は、ケトン基の有する高い結晶性の特性に加え、スルホン基よりも耐熱水性に優れる成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料に有効な成分となるのでさらに好ましく用いられる。これらのスルホン酸基は重合の際には、スルホン酸基が1価カチオン種との塩になっていることが好ましい。1価カチオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限される訳ではない。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
【0041】
【化6】

【0042】
(一般式(p1)中、MおよびMは水素、金属カチオン、アンモニウムカチオン、a1およびa2は1〜4の整数を表す。一般式(p1)で表される構成単位は任意に置換されていてもよい。)
また、芳香族活性ジハライド化合物としては、イオン性基を有するものと持たないものを共重合することで、イオン性基密度を制御することも可能である。しかしながら、本発明のイオン性基を含有するブロック(B1)としては、プロトン伝導パスの連続性確保の観点から、イオン性基を持たない芳香族活性ジハライド化合物を共重合しないことがより好ましい。
【0043】
イオン性基を持たない芳香族活性ジハライド化合物のより好適な具体例としては、4,4’−ジクロロジフェニルスルホン、4,4’−ジフルオロジフェニルスルホン、4,4’−ジクロロジフェニルケトン、4,4’−ジフルオロジフェニルケトン、4,4’−ジクロロジフェニルフェニルホスフィンオキシド、4,4’−ジフルオロジフェニルフェニルホスフィンオキシド、2,6−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、等を挙げることができる。中でも4,4’−ジクロロジフェニルケトン、4,4’−ジフルオロジフェニルケトンが結晶性付与、機械強度や物理的耐久性、耐熱水性の点からより好ましく、重合活性の点から4,4’−ジフルオロジフェニルケトンが最も好ましい。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
【0044】
芳香族活性ジハライド化合物として、4,4’−ジクロロジフェニルケトン、4,4’−ジフルオロジフェニルケトンを用いて合成した高分子電解質組成物としては、下記一般式(p2)で表される構成部位をさらに含むものとなり、好ましく用いられる。該構成単位は分子間凝集力や結晶性を付与する成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料となるので好ましく用いられる。
【0045】
【化7】

【0046】
(一般式(p2)で表される構成単位は任意に置換されていてもよいが、イオン性基は含有しない。)
また、ハロゲン化芳香族ヒドロキシ化合物としても特に制限されることはないが、4−ヒドロキシ−4’−クロロベンゾフェノン、4−ヒドロキシ−4’−フルオロベンゾフェノン、4−ヒドロキシ−4’−クロロジフェニルスルホン、4−ヒドロキシ−4’−フルオロジフェニルスルホン、4−(4’−ヒドロキシビフェニル)(4−クロロフェニル)スルホン、4−(4’−ヒドロキシビフェニル)(4−フルオロフェニル)スルホン、4−(4’−ヒドロキシビフェニル)(4−クロロフェニル)ケトン、4−(4’−ヒドロキシビフェニル)(4−フルオロフェニル)ケトン等を例として挙げることができる。これらは、単独で使用することができるほか、2種以上の混合物として使用することもできる。さらに、活性化ジハロゲン化芳香族化合物と芳香族ジヒドロキシ化合物の反応においてこれらのハロゲン化芳香族ヒドロキシ化合物を共に反応させて芳香族ポリエーテル系化合物を合成しても良い。
【0047】
次に、本発明の酸化劣化を抑制する添加剤(B成分)について具体的に説明する。
【0048】
本発明によれば、B成分として、遷移金属、かかる遷移金属のイオン、かかる遷移金属イオンを含む塩、かかる遷移金属の酸化物からなる群から選ばれる1種以上を用いることができる。
【0049】
遷移金属としては、セリウム、マンガン、コバルト、ニッケル、アルミニウム、チタン、銅、スズ、ケイ素、ジルコニウム、バナジウム、ビスマス、クロム、ルテニウム、パラジウム、モリブデン、タングステン、イットリウム、鉛、ゲルマニウム、インジウム、ベリリウム、ネオジム、ランタン、ニオブ、タンタル、ガリウム等が挙げられる。なかでも、酸化劣化を抑制する効果が高いことから、セリウム、マンガンを用いることが好ましい。
【0050】
遷移金属イオンの塩としては、セリウム、マンガンの遷移金属イオンの塩を用いることが好ましい。+3価のセリウムイオンを含む塩としては、酢酸セリウム、塩化セリウム、硝酸セリウム、炭酸セリウム、硫酸セリウムがあげられる。+4価のセリウムイオンを含む塩としては、硫酸セリウム、硫酸四アンモニウムセリウム等が挙げられる。+2価のマンガンイオンを含む塩としては、酢酸マンガン、塩化マンガン、硝酸マンガン、炭酸マンガン、硫酸マンガンが挙げられる。+3価のマンガンを含む塩としては、酢酸マンガン等が挙げられる。なかでも、酸化劣化を抑制する効果が高いことから、硝酸セリウム、硝酸マンガンを用いることが好ましい。
【0051】
かかる遷移金属イオンは、単独で存在しても良いし、有機化合物、ポリマー等と配位した錯体として存在しても良い。なかでも、窒素原子を含有するピリジン、あるいはフェナントロリン等との錯体であると、使用中における添加剤の溶出が抑えられるという観点で好ましい。
【0052】
また、遷移金属の酸化物としては、酸化セリウム、酸化マンガン、酸化ルテニウム、酸化コバルト、酸化ニッケル、酸化クロム、酸化イリジウム、酸化鉛が挙げられる。なかでも、酸化劣化を抑制する効果が高いことから、酸化セリウム、酸化マンガンを用いることが好ましい。
【0053】
本発明によれば、B成分として、−(Ph−S)−(Sは硫黄原子、Phは任意の置換基を有する、あるいは置換基を有さないフェニレン基、nは10以上の整数)で表されるポリフェニレンスルフィドを用いることができる。
【0054】
上記ポリフェニレンスルフィドは、A成分との親和性を向上するという観点で、イオン性基を有することが好ましい。ポリフェニレンスフィド粒子に導入するイオン性基としては、スルホン酸基、スルホンイミド基、硫酸基、リン酸基、ホスホン酸基、カルボン酸基、水酸基、チオール基、マレイン酸基、無水マレイン酸基、フマル酸基、イタコン酸基、アクリル酸基、メタクリル酸基が好ましく、スルホン酸基、スルホンイミド基、硫酸基、リン酸基、ホスホン酸基、チオール基がより好ましく、スルホン酸基、さらにはリン酸基が好ましい。
【0055】
上記イオン性基を導入したポリフェニレンスルフィドは、パラフェニレンスルフィド骨格を好ましくは70モル%以上、より好ましくは90モル%以上有するポリフェニレンスルフィドである。
【0056】
本発明によれば、B成分として、アゾール環を有する化合物、あるいは、かかる化合物の誘導体を用いることができる。ここで、アゾール環とは環内に窒素原子を1個以上含む複素五員環構造を含む化合物のことをさす。なお、複素五員環には、窒素以外に酸素、硫黄等の原子を含むものであっても構わない。
【0057】
上記アゾール環としては、例えば、炭素原子以外の異原子が2個のものとしては、イミダゾール(1,3−ジアゾール)、オキサゾール、チアゾール、セレナゾール、ピラゾール(1,2−ジアゾール)、イソオキサゾール、イソチアゾール等が、異原子が3個のものとしては、1H−1,2,3−トリアゾール(1,2,3−トリアゾール)、1,2,3−オキサジアゾール(ジアゾアンヒドリド)、1,2,3−チアジアゾール等が、異原子が4個のものとしては、1H−1,2,3,4−テトラゾール(1,2,3,4−テトラゾール)、1,2,3,5−オキサトリアゾール、1,2,3,5−チアトリアゾール等が挙げられる。
【0058】
上記したようなアゾール環は、ベンゼン環等の芳香族環と縮合したものであっても良い。
【0059】
上記複素五員環構造を含む化合物としては、例えば、p−フェニレン基、m−フェニレン基、ナフタレン基、ジフェニレンエーテル基、ジフェニレンスルホン基、ビフェニレン基、ターフェニレン基、2,2−ビス(4−カルボキシフェニレン)ヘキサフルオロプロパン基等の2価の芳香族基が複素五員環と結合した化合物を用いることが耐熱性を得る観点から好ましい。
【0060】
本発明において用いられるアゾール環を有する化合物としては、化学的安定性及び機械強度の観点から、ポリアゾール系化合物が好適である。
【0061】
ポリアゾール系化合物としては、例えば、ポリイミダゾール系化合物、ポリベンズイミダゾール系化合物、ポリベンゾビスイミダゾール系化合物、ポリベンゾオキサゾール系化合物、ポリオキサゾール系化合物、ポリチアゾール系化合物、ポリベンゾチアゾール系化合物等の重合体が挙げられる。具体的には、上記アゾール環を有する化合物として、ポリベンズイミダゾールが好ましく用いられる。
【0062】
上記、アゾール環を有する化合物としては、化学的安定性の観点から、ポリアゾール塩が好ましく用いられる。
【0063】
ポリアゾール塩としては、ポリアゾール系化合物の少なくとも一部がポリアゾール金属塩である化合物が好ましく、例えば、ポリアゾールアルカリ金属塩又はポリアゾールアルカリ土類金属塩が挙げられる。具体的には、Li、Na、K、Rb、Cs等の一価のイオンとのアルカリ金属塩が好ましく、ポリアゾール塩として、ポリアゾールNa塩であることがより好ましい。
【0064】
本発明によれば、B成分として、フラーレン、あるいは、フラーレンの誘導体を用いることができる。具体的には、C60、C70、C84、C60の二量体、C120、C180や、[6,6]−フェニルC61酪酸メチルエステル(PCBM)、[6,6]−ジフェニルC62ビス(酪酸メチルエステル)、[6,6]−チエニルC61酪酸メチルエステル、[6,6]−フェニルC71酪酸メチルエステルなどが挙げられる。
【0065】
本発明によれば、B成分として、トリアジン、トリアジン誘導体、ヒンダードアミン、ヒンダードフェノール、ホスファイト、ホスホナイト等を用いることができる。
【0066】
本発明によれば、上記B成分は、単独で使用することができるが、複数種類の添加剤を併用することも可能である。
【0067】
本発明において、共重合体にB成分を含有させる方法は特に限定されないが、例えば以下の方法が挙げられる。
(1)共重合体の溶液、または分散液に、B成分を溶解、または分散させた後、得られた液を用いて製膜し、高分子電解質膜を作成する方法。
(2)B成分を溶解させた液に、共重合体からなる高分子電解質膜を浸漬する方法。
【0068】
なかでも、量産性に優れるという観点で、(1)の方法を用いることが好ましい。
【0069】
本発明の高分子電解質組成物は高分子電解質成型体として好適に用いられる。本発明において高分子電解質成型体とは、本発明の高分子電解質組成物を含有する成型体を意味する。本発明の高分子電解質成型体としては、膜類(フィルムおよびフィルム状のものを含む)の他、板状、繊維状、中空糸状、粒子状、塊状、微多孔状、コーティング類、発泡体類など、使用用途によって様々な形態をとりうる。ポリマーの設計自由度の向上および機械特性や耐溶剤性等の各種特性の向上が図れることから、幅広い用途に適応可能である。特に高分子電解質成型体が膜類であるときに好適である。
【0070】
本発明の高分子電解質組成物を固体高分子型燃料電池用として使用する際には、高分子電解質膜および電極触媒層などが好適である。中でも高分子電解質膜に好適に用いられる。固体高分子型燃料電池用として使用する場合、通常、膜の状態で高分子電解質膜や電極触媒層バインダーとして使用されるからである。
【0071】
本発明の高分子電解質成型体は、種々の用途に適用可能である。例えば、体外循環カラム、人工皮膚などの医療用途、ろ過用用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、太陽電池用膜、ガスバリアー材料に適用可能である。また、人工筋肉、アクチュエーター材料としても好適である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置等が挙げられるが、中でも燃料電池が最も好ましい。
【0072】
次に、本発明の高分子電解質成型体を得るための製造方法について具体的に説明する。
【0073】
従来のイオン性基を含有するセグメント(S1)、イオン性基を含有しないセグメント(S2)からなる共重合体は、重合時や製膜時に溶剤可溶性が必要という合成上の制限から、イオン性基を含有するセグメント(S1)だけでなく、イオン性基を含有しないセグメント(S2)も溶解性のある非晶性セグメントで構成されていた。これらイオン性基を含有しない非晶性セグメントは、ポリマー分子鎖の凝集力に乏しいため、膜状に成型された場合に靭性が不足したり、イオン性基を含有するセグメント(S1)の膨潤を抑えきれず、十分な機械強度や物理的耐久性を達成することができなかった。また、イオン性基の熱分解温度の問題から、通常キャスト成型が用いられるため、溶解性の乏しい結晶性ポリマーでは、均一で強靱な膜を得ることはできなかった。
【0074】
本発明の高分子電解質成型体は、下記一般式(S2)で表される構成単位を20モル%以上含有し、イオン性基を含有しないセグメント(S2)を有する共重合体から構成される。当該イオン性基を含有しないセグメント(S2)は、結晶性を示すセグメントであるため、少なくともイオン性基を含有しないセグメント(S2)に保護基を導入した共重合体前駆体を成型した後、成型体に含有される該保護基の少なくとも一部を脱保護せしめることにより製造することが出来る。
【0075】
本発明に使用する保護基の具体例としては、有機合成で一般的に用いられる保護基があげられ、該保護基とは、後の段階で除去することを前提に、一時的に導入される置換基であり、反応性の高い官能基を保護し、その後の反応に対して不活性とするものであり、反応後に脱保護して元の官能基に戻すことのできるものである。すなわち、保護される官能基と対となるものであり、例えばt−ブチル基を水酸基の保護基として用いる場合があるが、同じt−ブチル基がアルキレン鎖に導入されている場合は、これを保護基とは呼ばない。保護基を導入する反応を保護(反応)、除去する反応を脱保護(反応)と呼称される。
【0076】
このような保護反応としては、例えば、セオドア・ダブリュー・グリーン(Theodora W. Greene)、「プロテクティブ グループス イン オーガニック シンセシス」(Protective Groups in Organic Synthesis)、米国、ジョン ウイリー アンド サンズ(John Wiley & Sons, Inc)、1981、に詳しく記載されており、これらが好ましく使用できる。保護反応および脱保護反応の反応性や収率、保護基含有状態の安定性、製造コスト等を考慮して適宜選択することが可能である。また、重合反応において保護基を導入する段階としては、モノマー段階からでも、オリゴマー段階からでも、ポリマー段階でもよく、適宜選択することが可能である。
【0077】
保護反応の具体例を挙げるとすれば、ケトン部位をケタール部位で保護/脱保護する方法、ケトン部位をケタール部位のヘテロ原子類似体、例えばチオケタール、で保護/脱保護する方法が挙げられる。これらの方法については、前記「プロテクティブ グループス イン オーガニック シンセシス」(Protective Groups in Organic Synthesis)のチャプター4に記載されている。また、スルホン酸と可溶性エステル誘導体との間で保護/脱保護する方法、芳香環に可溶性基としてt−ブチル基を導入および酸で脱t−ブチル化して保護/脱保護する方法等が挙げられる。しかしながら、これらに限定されることなく、保護基であれば好ましく使用できる。一般的な溶剤に対する溶解性を向上させる点では、立体障害が大きいという点で脂肪族基、特に環状部分を含む脂肪族基が保護基として好ましく用いられる。
【0078】
保護反応としては、反応性や安定性の点で、さらに好ましくは、ケトン部位をケタール部位で保護/脱保護する方法、ケトン部位をケタール部位のヘテロ原子類似体、例えばチオケタール、で保護/脱保護する方法である。本発明の高分子電解質組成物および高分子電解質膜において、保護基を含む構成単位として、より好ましくは下記一般式(U1)および(U2)から選ばれる少なくとも1種を含有するものである。
【0079】
【化8】

【0080】
(式(U1)および(U2)において、Ar〜Ar12は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表し、それぞれが2種類以上の基を表しても良い。式(U1)および(U2)で表される基は任意に置換されていてもよい。)
なかでも、化合物の臭いや反応性、安定性等の点で、前記一般式(U1)および(U2)において、EがOである、すなわち、ケトン部位をケタール部位で保護/脱保護する方法が最も好ましい。
【0081】
一般式(U1)中のRおよびRとしては、安定性の点でアルキル基であることがより好ましく、さらに好ましくは炭素数1〜6のアルキル基、最も好ましく炭素数1〜3のアルキル基である。また、一般式(P4)中のRとしては、安定性の点で炭素数1〜7のアルキレン基であることがより好ましく、最も好ましくは炭素数1〜4のアルキレン基である。Rの具体例としては、−CHCH−、−CH(CH )CH −、−CH(CH)CH(CH)−、−C(CH3 )CH −、−C(CH CH(CH)−、−C(CHO(CH−、−CHCHCH −、−CHC(CHCH−等があげられるが、これらに限定されるものではない。
【0082】
前記一般式(U1)および(U2)で表される構成単位のなかでも、耐加水分解性などの安定性の点から少なくとも前記一般式(U2)を有するものがより好ましく用いられる。さらに、前記一般式(U2)のRとしては炭素数1〜7のアルキレン基、すなわち、Cn12n1(n1は1〜7の整数)で表される基であることが好ましく、安定性、合成の容易さの点から−CHCH−、−CH(CH )CH −、または−CHCHCH−から選ばれた少なくとも1種であることが最も好ましい。
【0083】
前記一般式(U1)および(U2)中のAr〜Ar12として好ましい有機基は、フェニレン基、ナフチレン基、またはビフェニレン基である。これらは任意に置換されていてもよい。本発明のブロック共重合体としては、溶解性および原料入手の容易さから、前記一般式(U2)中のAr11およびAr12が共にフェニレン基であることがより好ましく、最も好ましくはAr11およびAr12が共にp−フェニレン基である。
【0084】
本発明において、ケトン部位をケタールで保護する方法としては、ケトン基を有する前駆体化合物を、酸触媒存在下で1官能および/または2官能アルコールと反応させる方法が挙げられる。例えば、ケトン前駆体の4,4’−ジヒドロキシベンゾフェノンと1官能および/または2官能アルコール、脂肪族又は芳香族炭化水素などの溶媒中で臭化水素などの酸触媒の存在下で反応させることによって製造できる。アルコールは炭素数1〜20の脂肪族アルコールである。本発明に使用するケタールモノマーを製造するための改良法は、ケトン前駆体の4,4’−ジヒドロキシベンゾフェノンと2官能アルコールをアルキルオルトエステル及び固体触媒の存在下に反応させることからなる。
【0085】
本発明において、ケタールで保護したケトン部位の少なくとも一部を脱保護せしめ、ケトン部位とする方法は特に限定されるものではない。前記脱保護反応は、不均一又は均一条件下に水及び酸の存在下において行うことが可能であるが、機械強度、物理的耐久性、耐溶剤性の観点からは、膜等に成型した後で酸処理する方法がより好ましい。具体的には、成型された膜を塩酸水溶液や硫酸水溶液中に浸漬することにより脱保護することが可能であり、酸の濃度や水溶液の温度については適宜選択することができる。
【0086】
ポリマーに対して必要な酸性水溶液の重量比は、好ましくは1〜100倍であるけれども更に大量の水を使用することもできる。酸触媒は好ましくは存在する水の0.1〜50重量%の濃度において使用する。好適な酸触媒としては塩酸、硝酸、フルオロスルホン酸、硫酸などのような強鉱酸、及びp−トルエンスルホン酸、トリフルオロメタンスルホン酸などのような強有機酸が挙げられる。ポリマーの膜厚等に応じて、酸触媒及び過剰水の量、反応圧力などは適宜選択できる。
【0087】
例えば、膜厚25μmの膜であれば、6N塩酸水溶液、5重量%硫酸水溶液に例示されるような酸性水溶液中に浸漬し、室温〜95℃で1〜48時間加熱することにより、容易にほぼ全量を脱保護することが可能である。また、25℃の1N塩酸水溶液に24時間浸漬しても、実質的に全ての保護基を脱保護することは可能である。ただし、脱保護の条件としてはこれらに限定される物ではなく、酸性ガス、有機酸、熱処理によって脱保護しても構わない。
【0088】
具体的には、例えば前記一般式(U1)および(U2)で表される構成単位を含有するブロック共重合体の前駆体は、2価フェノール化合物としてそれぞれ下記一般式(U1−1)および(U2−1)で表される化合物を使用し、芳香族活性ジハライド化合物との芳香族求核置換反応により合成することが可能である。前記一般式(U1)および(U2)で表される構成単位が2価フェノール化合物、芳香族活性ジハライド化合物のどちら側由来でも構わないが、モノマーの反応性の反応性を考慮して2価フェノール化合物由来と使用する方がより好ましい。
【0089】
【化9】

【0090】
(一般式(U1−1)および(U2−1)において、Ar〜Ar12は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表す。一般式(U1−1)および一般式(U2−1)で表される化合物は任意に置換されていてもよい。)
本発明に使用する、特に好ましい2価フェノール化合物の具体例としては、下記一般式(r1)〜(r10)で表される化合物、並びにこれらの2価フェノール化合物由来の誘導体が挙げることができる。
【0091】
【化10】

【0092】
これら2価フェノール化合物のなかでも、安定性の点から一般式(r4)〜(r10)で表される化合物がより好ましく、さらに好ましくは一般式(r4)、(r5)および(r9)で表される化合物、最も好ましくは一般式(r4)で表される化合物である。
【0093】
本発明の共重合体を得るために行う芳香族求核置換反応による重合は、上記モノマー混合物を塩基性化合物の存在下で反応させることで重合体を得ることができる。重合は、0〜350℃の温度範囲で行うことができるが、50〜250℃の温度であることが好ましい。0℃より低い場合には、十分に反応が進まない傾向にあり、350℃より高い場合には、ポリマーの分解も起こり始める傾向がある。反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒などを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されても良い。
【0094】
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、芳香族ジオール類を活性なフェノキシド構造にしうるものであれば、これらに限定されず使用することができる。また、フェノキシドの求核性を高めるために、18−クラウンー6などのクラウンエーテルを添加することも好適である。これらクラウンエーテル類は、スルホン酸基のナトリウムイオンやカリウムイオンに配位して有機溶媒に対する溶解性が向上する場合があり、好ましく使用できる。
【0095】
芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水剤を使用することもできる。
【0096】
反応水又は反応中に導入された水を除去するのに用いられる共沸剤は、一般に、重合を実質上妨害せず、水と共蒸留し且つ約25℃〜約250℃の間で沸騰する任意の不活性化合物である。普通の共沸剤には、ベンゼン、トルエン、キシレン、クロルベンゼン、塩化メチレン、ジクロルベンゼン、トリクロルベンゼン、シクロヘキサンなどが含まれる。もちろん、その沸点が用いた双極性溶媒の沸点よりも低いような共沸剤を選定することが有益である。共沸剤が普通用いられるが、高い反応温度、例えば200℃以上の温度が用いられるとき、特に反応混合物に不活性ガスを連続的に散布させるときにはそれは常に必要ではない。一般には、反応は不活性雰囲気下に酸素が存在しない状態で実施するのが望ましい。
【0097】
芳香族求核置換反応を溶媒中で行う場合、得られるポリマー濃度として5〜50重量%となるようにモノマーを仕込むことが好ましい。5重量%よりも少ない場合は、重合度が上がりにくい傾向がある。一方、50重量%よりも多い場合には、反応系の粘性が高くなりすぎ、反応物の後処理が困難になる傾向がある。
【0098】
重合反応終了後は、反応溶液より蒸発によって溶媒を除去し、必要に応じて残留物を洗浄することによって、所望のポリマーが得られる。また、反応溶液を、ポリマーの溶解度が低く、副生する無機塩の溶解度が高い溶媒中に加えることによって、無機塩を除去、ポリマーを固体として沈殿させ、沈殿物の濾取によりポリマーを得ることもできる。回収されたポリマーは場合により水やアルコール又は他の溶媒で洗浄され、乾燥される。所望の分子量が得られたならば、ハライドあるいはフェノキシド末端基は場合によっては安定な末端基を形成させるフェノキシドまたはハライド末端封止剤を導入することにより反応させることができる。
【0099】
このようにして得られる本発明の共重合体の分子量は、ポリスチレン換算重量平均分子量で、0.1万〜500万、好ましくは1万〜50万である。0.1万未満では、成型した膜にクラックが発生するなど機械強度、物理的耐久性、耐溶剤性のいずれかが不十分な場合がある。一方、500万を超えると、溶解性が不充分となり、また溶液粘度が高く、加工性が不良になるなどの問題がある。
【0100】
なお、本発明の共重合体の化学構造は、赤外線吸収スペクトルによって、1,030〜1,045cm-1 、1,160〜1,190cm-1 のS=O吸収、1,130〜1,250cm-1のC−O−C吸収、1,640〜1,660cm-1のC=O吸収などにより確認でき、これらの組成比は、スルホン酸基の中和滴定や、元素分析により知ることができる。また、核磁気共鳴スペクトル(1H−NMR)により、例えば6.8〜8.0ppmの芳香族プロトンのピークから、その構造を確認することができる。また、溶液13C−NMRや固体13C−NMRによって、スルホン酸基の付く位置や並び方を確認することができる。
【0101】
本発明の高分子電解質組成物を高分子電解質膜に成型する方法に特に制限はないが、ケタール等の保護基を有する段階で、溶液状態より製膜する方法あるいは溶融状態より製膜する方法等が可能である。前者では、たとえば、該高分子電解質組成物をN−メチル−2−ピロリドン等の溶媒に溶解し、その溶液をガラス板等の上に流延塗布し、溶媒を除去することにより製膜する方法が例示できる。
【0102】
製膜に用いる溶媒としては、高分子電解質組成物を溶解し、その後に除去し得るものであればよく、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロパノールなどのアルコール系溶媒、水およびこれらの混合物が好適に用いられるが、非プロトン性極性溶媒が最も溶解性が高く好ましい。また、イオン性基を含有するセグメント(S1)の溶解性を高めるために、18−クラウン−6などのクラウンエーテルを添加することも好適である。
【0103】
また、本発明において、ブロック共重合を使用する場合には、溶媒の選択は相分離構造に対して重要であり、非プロトン性極性溶媒と極性の低い溶媒を混合して使用することも好適な方法である。
【0104】
必要な固形分濃度に調製したポリマー溶液を常圧の濾過もしくは加圧濾過などに供し、高分子電解質溶液中に存在する異物を除去することは強靱な膜を得るために好ましい方法である。ここで用いる濾材は特に限定されるものではないが、ガラスフィルターや金属性フィルターが好適である。該濾過で、ポリマー溶液が通過する最小のフィルターの孔径は、1μm以下が好ましい。濾過を行わないと異物の混入を許すこととなり、膜破れが発生したり、耐久性が不十分となるので好ましくない。
【0105】
次いで、得られた高分子電解質膜はイオン性基の少なくとも一部を金属塩の状態で熱処理することが好ましい。用いる高分子電解質組成物が重合時に金属塩の状態で重合するものであれば、そのまま製膜、熱処理することが好ましい。金属塩の金属はスルホン酸と塩を形成しうるものであればよいが、価格および環境負荷の点からはLi、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Wなどが好ましく、これらの中でもLi、Na、K、Ca、Sr、Baがより好ましく、Li、Na、Kがさらに好ましい。
【0106】
この熱処理の温度は好ましくは80〜350℃、さらに好ましくは100〜200℃、特に好ましくは120〜150℃である。熱処理時間は、好ましくは10秒〜12時間、さらに好ましくは30秒〜6時間、特に好ましくは1分〜1時間である。熱処理温度が低すぎると、機械強度や物理的耐久性が不足する場合がある。一方、高すぎると膜材料の化学的分解が進行する場合がある。熱処理時間が10秒未満であると熱処理の効果が不足する。一方、12時間を超えると膜材料の劣化を生じやすくなる。熱処理により得られた高分子電解質膜は必要に応じて酸性水溶液に浸漬することによりプロトン置換することができる。この方法で成形することによって本発明の高分子電解質膜はプロトン伝導度と物理的耐久性をより良好なバランスで両立することが可能となる。
【0107】
本発明で使用される高分子電解質組成物を膜へ転化する方法としては、該高分子電解質組成物から構成される膜を前記手法により作製後、ケタールで保護したケトン部位の少なくとも一部を脱保護せしめ、ケトン部位とするものである。この方法によれば、溶解性に乏しいイオン性基を含有しないセグメントを含む共重合体の溶液製膜が可能となり、プロトン伝導性と機械強度、物理的耐久性を両立することができる。
【0108】
本発明の高分子電解質膜の膜厚としては、好ましくは1〜2000μmのものが好適に使用される。実用に耐える膜の機械強度、物理的耐久性を得るには1μmより厚い方がより好ましく、膜抵抗の低減つまり発電性能の向上のためには2000μmより薄い方が好ましい。かかる膜厚のさらに好ましい範囲は3〜50μm、特に好ましい範囲は10〜30μmである。かかる膜厚は、溶液濃度あるいは基板上への塗布厚により制御することができる。
【0109】
また、本発明によって得られる高分子電解質膜には、通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、酸化防止剤あるいは離型剤等の添加剤を、本発明の目的に反しない範囲内で添加することができる。
【0110】
また、本発明によって得られる高分子電解質膜には、前述の諸特性に悪影響をおよぼさない範囲内で機械的強度、熱安定性、加工性などの向上を目的に、各種ポリマー、エラストマー、フィラー、微粒子、各種添加剤などを含有させてもよい。また、微多孔膜、不織布、メッシュ等で補強しても良い。
【0111】
かかる高分子電解質膜を燃料電池として用いる際の高分子電解質膜と電極の接合法については特に制限はなく、公知の方法(例えば、電気化学,1985, 53, p.269.記載の化学メッキ法、電気化学協会編(J. Electrochem. Soc.)、エレクトロケミカル サイエンス アンド テクノロジー (Electrochemical Science and Technology), 1988, 135, 9, p.2209.記載のガス拡散電極の熱プレス接合法など)を適用することが可能である。
【0112】
加熱プレスにより一体化する場合は、その温度や圧力は、電解質膜の厚さ、水分率、触媒層や電極基材により適宜選択すればよい。また、本発明では電解質膜が乾燥した状態または吸水した状態でもプレスによる複合化が可能である。具体的なプレス方法としては圧力やクリアランスを規定したロールプレスや、圧力を規定した平板プレスなどが挙げられ、工業的生産性やイオン性基を有する高分子材料の熱分解抑制などの観点から0℃〜250℃の範囲で行うことが好ましい。加圧は電解質膜や電極保護の観点からできる限り弱い方が好ましく、平板プレスの場合、10MPa以下の圧力が好ましく、加熱プレス工程による複合化を実施せずに電極と電解質膜を重ね合わせ燃料電池セル化することもアノード、カソード電極の短絡防止の観点から好ましい選択肢の一つである。この方法の場合、燃料電池として発電を繰り返した場合、短絡箇所が原因と推測される電解質膜の劣化が抑制される傾向があり、燃料電池として耐久性が良好となる。
【0113】
さらに、本発明の高分子電解質組成物および高分子電解質膜を使用した固体高分子型燃料電池の用途としては、特に限定されないが、移動体の電力供給源が好ましいものである。特に、携帯電話、パソコン、PDA、テレビ、ラジオ、ミュージックプレーヤー、ゲーム機、ヘッドセット、DVDプレーヤーなどの携帯機器、産業用などの人型、動物型の各種ロボット、コードレス掃除機等の家電、玩具類、電動自転車、自動二輪、自動車、バス、トラックなどの車両や船舶、鉄道などの移動体の電力供給源、据え置き型の発電機など従来の一次電池、二次電池の代替、もしくはこれらとのハイブリット電源として好ましく用いられる。
【実施例】
【0114】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。また、本実施例中には化学構造式を挿入するが、該化学構造式は読み手の理解を助ける目的で挿入するものであり、これらに限定されるものではない。
【0115】
(1)イオン交換容量
中和滴定法により測定した。測定は3回行って、その平均値を取った。
(1)プロトン置換し、純水で十分に洗浄した電解質膜の膜表面の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
(2)電解質に5wt%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
(3)0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とした。
(4)イオン交換容量は下記の式により求めた。
イオン交換容量(meq/g)=
〔水酸化ナトリウム水溶液の濃度(mmol/mL)×滴下量(mL)〕/試料の乾燥重量(g)
(2)プロトン伝導度
膜状の試料を25℃の純水に24時間浸漬した後、80℃、相対湿度25〜95%の恒温恒湿槽中にそれぞれのステップで30分保持し、定電位交流インピーダンス法でプロトン伝導度を測定した。
【0116】
測定装置としては、Solartron製電気化学測定システム(Solartron 1287 Electrochemical InterfaceおよびSolartron 1255B Frequency Response Analyzer)を使用し、2端子法で定電位インピーダンス測定を行い、プロトン伝導度を求めた。交流振幅は、50mVとした。サンプルは幅10mm、長さ50mmの膜を用いた。測定治具はフェノール樹脂で作製し、測定部分は開放させた。電極として、白金板(厚さ100μm、2枚)を使用した。電極は電極間距離10mm、サンプル膜の表側と裏側に、互いに平行にかつサンプル膜の長手方向に対して直交するように配置した。
【0117】
(3)数平均分子量、重量平均分子量
ポリマーの数平均分子量、重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC−8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM−H(内径6.0mm、長さ15cm)2本を用い、N−メチル−2−ピロリドン溶媒(臭化リチウムを10mmol/L含有するN−メチル−2−ピロリドン溶媒)にて、サンプル濃度0.1wt%、流量0.2mL/min、温度40℃で測定し、標準ポリスチレン換算により数平均分子量、重量平均分子量を求めた。
【0118】
(4)膜厚
ミツトヨ製グラナイトコンパレータスタンドBSG−20にセットしたミツトヨ製ID−C112型を用いて測定した。
【0119】
(5)添加剤の粒径
添加剤の粉末を水またはアルコール類に分散した後に、TEMグリッドに滴下した上で溶媒を揮発させる。こうして作製したサンプルを、TEM観察に供し、100個の粒子のサイズを測定し、その平均をとることで添加剤の粒径を測定した。
【0120】
(6)純度の測定方法
下記条件のガスクロマトグラフィー(GC)により定量分析した。
カラム:DB−5(J&W社製) L=30m Φ=0.53mm D=1.50μm
キャリヤー:ヘリウム(線速度=35.0cm/sec)
分析条件
Inj.temp. 300℃
Detct.temp. 320℃
Oven 50℃×1min
Rate 10℃/min
Final 300℃×15min
SP ratio 50:1
(7)耐熱水性
電解質膜の耐熱水性は95℃、熱水中での寸法変化率を測定することにより評価した。電解質膜を長さ約5cm、幅約1cmの短冊に切り取り、25℃の水中に24時間浸漬後、ノギスで長さ(L1)を測長した。該電解質膜を95℃の熱水中に8時間浸漬後、再度ノギスで長さ(L2)を測長し、その寸法変化の大きさを目視で観察した。
【0121】
(8)核磁気共鳴スペクトル(NMR)
下記の測定条件で、1H−NMRの測定を行い、構造確認、およびイオン性基を含有するセグメント(S1)とイオン性基を含有しないセグメント(S2)のモル組成比の定量を行った。該モル組成比は、8.2ppm(ジスルホネート−4,4’−ジフルオロベンゾフェノン由来)と6.5〜8.0ppm(ジスルホネート−4,4’−ジフルオロベンゾフェノンを除く全芳香族プロトン由来)に認められるピークの積分値から算出した。
装置 :日本電子社製EX−270
共鳴周波数 :270MHz(1H−NMR)
測定温度 :室温
溶解溶媒 :DMSO−d6
内部基準物質:TMS(0ppm)
積算回数 :16回
また、下記の測定条件で、固体13C−CP/MASスペクトルの測定を行い、ケタール基の残存有無確認を行った。
装置 :Chemagnetics社製 CMX−300 Infinity
測定温度 :室温
内部基準物質:Siゴム(1.56ppm)
測定核 :75.188829MHz
パルス幅 :90°パルス、4.5μsec
パルス繰り返し時間:ACQTM=0.03413sec、PD=9sec
スペクトル幅:30.003kHz
試料回転 :7kHz
コンタクトタイム:4msec
(9)化学的安定性
電解質膜の化学的安定性は、約10mgのサンプルを80℃で、大過剰の0.05wt%の過酸化水素水に浸漬することにより評価した。浸漬前、100時間後の80℃、相対湿度25%でのプロトン伝導度を測定すると共に重量平均分子量を測定し、分子量保持率を計算した。
【0122】
(合成例1)
下記一般式(G1)で表される2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン(K−DHBP)の合成
【0123】
【化11】

【0124】
攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4′−ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g、およびp−トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後78〜82℃で2時間保温攪拌した。さらに、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mLで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、濾過し、乾燥して2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン52.0gを得た。この結晶をGC分析したところ99.8%の2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソランと0.2%の4,4′−ジヒドロキシベンゾフェノンであった。
【0125】
(合成例2)
下記一般式(G2)で表されるジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンの合成
【0126】
【化12】

【0127】
4,4’−ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、上記一般式(G2)で示されるジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンを得た。純度は99.3%であった。構造はH−NMRで確認した。不純物はキャピラリー電気泳動(有機物)およびイオンクロマトグラフィー(無機物)で定量分析を行った。
【0128】
(実施例1)
(酸化マンガン粒子含有高分子電解質膜)
下記一般式( G 3 ) で表されるポリマーを合成した。
【0129】
【化13】

【0130】
( 一般式中、COはランダム共重合であることを表す。)
炭酸カリウム3 . 5 g 、前記合成例1 で得た2 , 2 − ビス( 4 − ヒドロキシフェニル)− 1 , 3 − ジオキサン混合物5 . 0 g 、4 , 4 ’ − ジフルオロベンゾフェノン3 . 3 g 、および前記合成例2 で得たジソジウム 3 , 3 ’ − ジスルホネート− 4 , 4 ’ − ジフルオロベンゾフェノン2 . 1 g を用いて、N − メチルピロリドン( N M P ) 中、2 3 0 ℃ で重合を行った。多量の水で再沈することで精製を行い、上記一般式( G 3 ) で示される高分子電解質組成物を得た。重量平均分子量は2 1 万であった。
【0131】
G3で示されるポリマー19gを60gのN−メチルピロリドン(NMP)を溶解した。この溶液に、平均粒径3nmの酸化マンガン(IV) 1gを添加し、撹拌機で20,000rpm、3分間撹拌しポリマー濃度25質量%の透明な溶液を得た。得られた溶液を、ガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、ポリケタールケトン膜(膜厚25μm)を得た。ポリマーの溶解性は極めて良好であった。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜を得た。
【0132】
中和滴定から求めたイオン交換容量は1.2meq/gであった。極めて強靱な電解質膜であり、目視では透明で均一な膜であった。プロトン伝導度は、80℃、相対湿度85%で150mS/cm、80℃、相対湿度25%で0.15mS/cmであり、低加湿プロトン伝導性に優れていた。また、寸法変化率は10%と小さく、耐熱水性にも優れていた。
化学安定性試験後の、80℃、相対湿度25%でのプロトン伝導度は0.13mS/cm、分子量保持率は90%と化学的安定性に優れていた。
【0133】
(実施例2)
(酸化セリウム粒子含有高分子電解質膜の製造)
酸化マンガン(IV)の代わりに平均粒径3nmの酸化セリウム(III)を使用したこと以外は、実施例1と同様にして電解質膜を製造した。
【0134】
G3で示されるポリマー19gを60gのN−メチルピロリドン(NMP)を溶解した。この溶液に、平均粒径3nmの酸化セリウム(III) 1gを添加し、撹拌機で20,000rpm、3分間撹拌しポリマー濃度25質量%の透明な溶液を得た。得られた溶液を、ガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、ポリケタールケトン膜(膜厚25μm)を得た。ポリマーの溶解性は極めて良好であった。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜を得た。
【0135】
中和滴定から求めたイオン交換容量は1.2meq/gであった。極めて強靱な電解質膜であり、目視では透明で均一な膜であった。プロトン伝導度は、80℃、相対湿度85%で170mS/cm、80℃、相対湿度25%で0.15mS/cmであり、低加湿プロトン伝導性に優れていた。また、寸法変化率は10%と小さく、耐熱水性にも優れていた。
【0136】
化学安定性試験後の、80℃、相対湿度25%でのプロトン伝導度は0.14mS/cm、分子量保持率は95%と化学的安定性に優れていた。
【0137】
(実施例3)
(ポリフェニレンスルフィド粒子含有高分子電解質膜の製造)
酸化マンガン(IV)の代わりにポリ(1,4−フェニレンスルフィド)(シグマアルドリッチ社製、310℃での溶融粘度275ポイズ)を使用したこと以外は、実施例1と同様にして電解質膜を製造した。
【0138】
G3で示されるポリマー19gを60gのN−メチルピロリドン(NMP)を溶解した。この溶液に、ポリ(1,4−フェニレンスルフィド) 1gを添加し、撹拌機で20,000rpm、3分間撹拌しポリマー濃度25質量%の透明な溶液を得た。得られた溶液を、ガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、ポリケタールケトン膜(膜厚25μm)を得た。ポリマーの溶解性は極めて良好であった。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜を得た。
【0139】
中和滴定から求めたイオン交換容量は1.1meq/gであった。極めて強靱な電解質膜であり、目視では透明で均一な膜であった。プロトン伝導度は、80℃、相対湿度85%で140mS/cm、80℃、相対湿度25%で0.14mS/cmであり、低加湿プロトン伝導性に優れていた。また、寸法変化率は10%と小さく、耐熱水性にも優れていた。
【0140】
化学安定性試験後の、80℃、相対湿度25%でのプロトン伝導度は0.12mS/cm、分子量保持率は85%と化学的安定性に優れていた。
【0141】
(比較例1)
G3で示されるポリマーを20gとし、酸化マンガン(IV)使用しなかった以外は、実施例1と同様の方法で高分子電解質膜を製造した。
【0142】
中和滴定から求めたイオン交換容量は1.3meq/gであった。極めて強靱な電解質膜であり、目視では透明で均一な膜であった。プロトン伝導度は、80℃、相対湿度85%で170mS/cm、80℃、相対湿度25%で0.20mS/cmであり、低加湿プロトン伝導性に優れていた。また、寸法変化率は10%と小さく、耐熱水性にも優れていた。
【0143】
化学安定性試験後の、80℃、相対湿度25%でのプロトン伝導度は0.05mS/cm、分子量保持率は25%と化学的安定性が不足していた。
【0144】
(比較例2)
ポリエーテルエーテルケトン( ビクトレックス(登録商標) P E E K (登録商標)( ビクトレックス社製) )1 0 g を濃硫酸1 0 0 m L 中、2 5 ℃ で2 0 時間反応させた。大量の水中に徐々に投入することによりポリエーテルエーテルケトンのスルホン化物を得た。
【0145】
スルホン化したポリエーテルエーテルケトン19gを60gのN−メチルピロリドン(NMP)を溶解した。この溶液に、平均粒径3nmの酸化マンガン(IV) 1gを添加し、撹拌機で20,000rpm、3分間撹拌しポリマー濃度25質量%の透明な溶液を得た。得られた溶液を、ガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、ポリエーテルエーテルケトン膜(膜厚25μm)を得た。ポリマーの溶解性は極めて良好であった。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜を得た。
【0146】
中和滴定から求めたイオン交換容量は1.2meq/gであった。極めて強靱な電解質膜であり、目視では透明で均一な膜であった。プロトン伝導度は、80℃、相対湿度85%で150mS/cm、80℃、相対湿度25%で0.2mS/cmであり、低加湿プロトン伝導性に優れていた。また、寸法変化率は10%と小さく、耐熱水性にも優れていた。
【0147】
化学安定性試験後の、80℃、相対湿度25%でのプロトン伝導度は0.1mS/cm、分子量保持率は60%と化学的安定性が不足していた。
【産業上の利用可能性】
【0148】
本発明の高分子電解質組成物および高分子電解質成型体は、種々の電気化学装置(例えば、燃料電池、水電解装置、クロロアルカリ電解装置等)に適用可能である。これら装置の中でも、燃料電池用に好適であり、特に水素を燃料とする燃料電池に好適である。
【0149】
本発明の固体高分子型燃料電池の用途としては、特に限定されないが、携帯電話、パソコン、PDA、ビデオカメラ、デジタルカメラなどの携帯機器、コードレス掃除機等の家電、玩具類、電動自転車、自動二輪、自動車、バス、トラックなどの車両や船舶、鉄道などの移動体の電力供給源、据え置き型の発電機など従来の一次電池、二次電池の代替、もしくはこれらとのハイブリット電源として好ましく用いられる。

【特許請求の範囲】
【請求項1】
イオン性基を含有するセグメント(S1)、イオン性基を含有しないセグメント(S2)をそれぞれ1個以上有する共重合体(A成分)と、酸化劣化を抑制する添加剤(B成分)を含有することを特徴とする高分子電解質組成物。
【化1】

(一般式(S1)中、Ar〜Arは任意の2価のアリーレン基を表し、Arおよび/またはArはイオン性基を含有し、ArおよびArはイオン性基を含有しても含有しなくても良い。Ar〜Arは任意に置換されていても良く、互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S1)または他の構成単位との結合部位を表す。)
【化2】

(一般式(S2)中、Ar〜Arは任意の2価のアリーレン基を表し、任意に置換されていても良いが、イオン性基を含有しない。Ar〜Arは互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S2)または他の構成単位との結合部位を表す。)
【請求項2】
前記A成分における、アリーレン基100mol%に対する下記一般式(1)で示される化学構造の比率が35〜55mol%の範囲内である請求項1記載の高分子電解質組成物。
【化3】

【請求項3】
前記B成分が、ポリフェニレンスルフィド、ポリアゾール、Mnおよび/またはCeを含有する金属、金属酸化物、およびフラーレンから選ばれる少なくとも1種類である請求項1または2に記載の高分子電解質組成物。
【請求項4】
前記B成分の含有量が、組成物全体の0.01〜35質量%の範囲内である請求項1〜3のいずれかに記載の高分子電解質組成物。
【請求項5】
請求項1〜4のいずれかに記載の高分子電解質組成物からなることを特徴とする高分子電解質成型体。
【請求項6】
請求項1〜4のいずれかに記載の高分子電解質組成物を用いて構成されたことを特徴とする固体高分子型燃料電池。

【公開番号】特開2013−67686(P2013−67686A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−205699(P2011−205699)
【出願日】平成23年9月21日(2011.9.21)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】