説明

高分岐型板状押出発泡体用スチレン系樹脂組成物及び板状押出発泡体

【課題】溶融張力と溶融延伸性のバランスに優れる高分岐型超高分子量共重合体を含有する板状押出発泡体用スチレン系樹脂組成物と、それを使用した板状押出発泡体の製造方法および板状押出発泡体を提供する。
【解決手段】スチレン含有モノビニル化合物に、1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、重量基準で100ppm〜3000ppm添加し、1個以上連続して配置された重合反応器に、該原料溶液を連続的に供給して重合反応を進行させ、該共重合体と該ビニル系モノマーが重合して生じる高分岐型超高分子量体を含むスチレン系樹脂組成物であって、200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が6.0g/10分以上20.0g/10分未満である高分岐型板状押出発泡体用スチレン系樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スチレンを必須とするモノビニル化合物と一分子内に複数の二重結合を有する溶剤可溶性多官能ビニル共重合体とを連続的に重合反応器に供給する連続重合法によって得られる高分岐型超高分子量共重合体と線状重合体とを含有する高分岐型板状押出発泡体用スチレン系樹脂組成物に関するものであり、難燃剤が分解しないような低温度で押出することが可能で、機械的強度、難燃性に優れた板状押出発泡体を得ることができる。
【背景技術】
【0002】
スチレン系樹脂からなる板状押出発泡体は、優れた断熱性及び機械的強度を有することから、一般建築物等の床材や壁材、天井材、畳の心材など様々な分野で使用されている。
【0003】
スチレン系樹脂の押出発泡体の製造方法としては、従来より様々な方法が用いられているが、一般にはスチレン系樹脂を押出機で加熱溶融混練した後、発泡剤を添加し、冷却させ、これを低圧雰囲気下に押出発泡させて製造する方法が採用されている。また発泡剤としては、従来よりフロン系発泡剤が用いられてきたが(特許文献1)、近年の環境問題から炭化水素系発泡剤を使用する割合が増えており、炭化水素系発泡剤に適したスチレン系樹脂組成物が求められている。
【0004】
炭化水素系発泡剤としては、主に炭素数が3〜5である飽和炭化水素が使用されるが、フロン系発泡剤に比べると、分散性が悪いため、押出発泡時に発泡剤が分散不良となることがある。また、炭化水素系発泡剤は可燃性のため、難燃性が悪化し、難燃剤の添加量を増やす必要がある。また、押出発泡時の安全性の問題から、発泡剤の使用量は少なめになってきているが、発泡剤の量が減ると押出機内の樹脂粘度が上昇し、その結果樹脂温度が上昇する。樹脂温度が上昇すると、難燃剤の分解が発生し、それによりスチレン系樹脂の劣化が起こるといった問題がある。難燃剤の分解を抑制するため、低温度で押出できるようなスチレン系樹脂が要求されているが、同時に発泡体の機械的強度は維持する必要がある。
【0005】
二酸化炭素や水に代表される無機系発泡剤を主成分として使用することも検討されているが、これらの発泡剤は、炭化水素系発泡剤よりも更にスチレン系樹脂への分散性が悪い。そのため、分散性が良好で、無機系発泡剤の溶解量が増えるよう低温度で押出でき、かつ機械的強度が維持できるようなスチレン系樹脂が要求されている。
【0006】
板状押出発泡体の発泡性に対しては溶融張力と溶融延伸性の高い材料が求められ、これらが不足すると、押出発泡の際に破泡しやすく、発泡体の気泡を微小化、独立化させることが困難となる等の現象があげられる。また発泡体の機械的強度に対しては高分子量かつ高分子量側の分子量分布が広い材料が望ましいが、流動性とのバランスが重要である。
【0007】
これらの改善策としては、スチレン系樹脂に超高分子量成分を含有させる方法が有効であることが知られている。
【0008】
超高分子量成分を含有する樹脂組成物を得る方法としては、例えば、特許文献2に記載された分子量が200万以上の成分を一定範囲内で含有するスチレン系重合体組成物がある。この組成物を得るためには、重合の前段において低温下で重合を進行させる方法やアニオン重合等で別途重合した超高分子量重合体をブレンドする方法が提案されているが、この方法では、生産性に劣ったり、別途重合した成分をブレンドする場合はコスト高となる等の問題点があった。
【0009】
上記の問題を回避するために、例えば特許文献3に記載された多官能ビニル化合物単位を含有する100万以上の分子量成分を一定範囲内で含有するスチレン系重合体などがあり、分岐型超高分子量成分を含有させるために芳香族ジビニル化合物に代表される芳香族多官能ビニル化合物を極少量、ビニル系単量体に添加し重合することが提案されている。しかし、この手段を連続塊状重合に応用すると長期の反応を継続した場合、重合反応器の壁面に存在する境膜と呼ばれる流動が停止している領域においてゲル化が進行するという問題点があり、上記を避けようとすると多官能芳香族ビニル化合物の添加量に制限を受け、望ましい超高分子量成分量を生成させることが困難であった。
【0010】
さらに、特許文献4には多官能重合開始剤を用いてスチレン系共重合体に分岐構造を有する超高分子量成分を含有させる方法が開示されているが、この方法ではスチレン系重合体全体が高分子量化しやすく、それを避けるために多量の連鎖移動剤を使用すると効果が不十分となる。また、特許文献5にも多官能芳香族ビニル化合物と連鎖移動剤を併用することでスチレン系樹脂の重合度を制御する方法が開示されているが、多官能開始剤を用いた場合と同様に効果を相殺する上に、連鎖移動剤としてメルカプタン類を用いると特有の臭気の問題点から使用範囲が制限されるという問題点が有った。特許文献6には多分岐状マクロモノマーを用いて得られる線状ポリスチレンと多分岐状ポリスチレンからなるスチレン系樹脂組成物により、高い分子量を有しながら、流動性や溶融張力に優れることが開示されているが、溶融延伸性の改善は不十分である。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開平10−182870号公報
【特許文献2】特公昭62−61231号公報
【特許文献3】特開平2−170806号公報
【特許文献4】特開平8−59721号公報
【特許文献5】特開2002−241413号公報
【特許文献6】特開2003−292707号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は、炭化水素系発泡剤や二酸化炭素、水に代表される無機系発泡剤を使用した板状押出発泡体の製造において、難燃剤が分解しないような低温度で押出することを可能とし、かつ、機械的強度、難燃性に優れ、ゲル状物がない板状押出発泡体を製造することに適した高分岐型超高分子量共重合体と線状重合体とを含有する高分岐型板状押出発泡体用スチレン系樹脂組成物を提供することである。
【課題を解決するための手段】
【0013】
すなわち、本発明は以下に記載する通りの高分岐型板状押出発泡体用スチレン系樹脂組成物とそれを使用したスチレン系板状押出発泡体の製造方法、及びその発泡体である。
【0014】
(1) スチレンを必須とするモノビニル化合物に、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル共重合体を、重量基準で100ppm〜3000ppm添加し、1個以上連続して配置された重合反応器に、該原料溶液を連続的に供給して重合反応を進行させて得られる、該溶剤可溶性多官能ビニル共重合体と該モノビニル化合物が重合して生じる高分岐型超高分子量共重合体と該モノビニル化合物が重合して生じる線状重合体とを含むスチレン系樹脂組成物であって、200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が6.0g/10分以上20.0g/10分未満であることを特徴とする高分岐型板状押出発泡体用スチレン系樹脂組成物。
【0015】
(2) 溶剤可溶性多官能ビニル共重合体は、ジビニル化合物と共重合可能なモノビニル化合物とを重合して得られ、更に下記式(a1)で表されるジビニル化合物由来のペンダントビニル基含有単位を構造単位中にモル分率として0.10〜0.50の範囲で含有し、その重量平均分子量における慣性半径(nm)と上記モル分率の比が10〜80の範囲内にあることを特徴とする(1)の高分岐型板状押出発泡体用スチレン系樹脂組成物。
【化1】

(式中、R1はジビニル化合物に由来する炭化水素基を示す。)
【0016】
(3) 重量平均分子量(Mw)が15万〜45万で、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.8〜5.5、分子量100万〜150万における分岐比gMが0.85〜0.40であことを特徴とする(1)または(2)の高分岐型板状押出発泡体用スチレン系樹脂組成物。
【0017】
(4) 上記(1)〜(3)の高分岐型板状押出発泡体用スチレン系樹脂組成物を発泡剤、発泡核剤、及び難燃剤とともに発泡押出しすることを特徴とするスチレン系板状押出発泡体の製造方法。
【0018】
(5) 上記(4)の製造方法によって得られることを特徴とするスチレン系板状押出発泡体。
【発明の効果】
【0019】
本発明の高分岐型板状押出発泡体用スチレン系樹脂組成物は、高分岐型超高分子量共重合体と線状重合体をバランスよく含有し、難燃剤が分解しないような低温度での押出が可能であり、機械的強度と難燃性に優れた板状押出発泡体を製造することが可能となる。
【発明を実施するための形態】
【0020】
以下、本発明を詳細に説明する。本発明の高分岐型板状押出発泡体用スチレン系樹脂組成物(以下、スチレン系樹脂組成物ともいう)の製造方法としては、スチレンを含むモノビニル化合物と溶剤可溶性多官能ビニル共重合体(以下、多官能ビニル共重合体ともいう)と、必要に応じて溶剤、重合触媒、連鎖移動剤等を添加混合し、直列および/または並列に配列された1個以上の反応器と未反応単量体等を除去する揮発分除去工程を備えた設備に連続的に単量体類を送入し、段階的に重合を進行させる所謂、連続塊状重合法が好適に用いられる。反応器の様式としては、完全混合型の槽型反応器、プラグフロー性を有する塔型反応器、重合を進行させながら一部の重合液を抜き出すループ型の反応器等が例示される。これら反応器の配列の順序に特に制限は無いが、連続生産においてゲル状物の生成を抑制するためには、多官能ビニル共重合体が未反応の状態で、反応器壁面の境膜中に高濃度に滞留する状態を発現させないことが重要であり、第一の反応器として完全混合型の槽型反応器を選択することが好ましい。脱揮工程は加熱器付きの真空脱揮槽やベント付き脱揮押出機などで構成される。脱揮工程を出た溶融状態の重合体は造粒工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。重合反応器は、1個以上連続して配置されるが、1個の場合は、単独でよく、2個以上の場合は、少なくとも2つは連続的(直列)に配置される。
【0021】
原料溶液は、スチレンを含むモノビニル化合物と多官能ビニル共重合体を含む。本発明のスチレン系樹脂組成物の構成要素となる多官能ビニル共重合体は、モノビニル化合物類、重合溶剤等に溶解した状態で添加することがよいが、必要に応じて上記の反応器の途中から添加することもできる。
【0022】
本発明のスチレン系樹脂組成物の原料として使用されるスチレンを必須とするモノビニル化合物(以下、スチレン系モノマーともいう)は、スチレンが100%であってもよく、スチレンと他のモノビニル化合物を含む混合物であってもよい。他のモノビニル化合物としては、スチレンと共重合可能なオレフィン性二重結合を有するものであればよく、パラメチルスチレン等の芳香族ビニル系モノマー類、アクリル酸、メタクリル酸等のアクリル酸モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、アクリル酸ブチル、メタクリル酸メチル等のアクリル系モノマーや無水マレイン酸、フマル酸等のα,β−エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。これらの他のビニル系モノマーは1種もしくは2種以上を併用して使用することもできる。そして、スチレンと他のモノビニル化合物の割合は、スチレン50〜100モル%、他のモノビニル化合物0〜50モル%であることが、スチレン系樹脂組成物の特性を生かすために好ましい。
【0023】
本発明のスチレン系樹脂組成物の原料として使用される多官能ビニル共重合体は、スチレン系モノマーと共重合化されることで高度に分岐された超高分子量のスチレン系樹脂を与えるものである。
【0024】
上記多官能ビニル共重合体は、特開2004−123873号公報、特開2005−213443号公報、WO2009/110453等に開示されている方法に準じて得ることができる。具体的には、ジビニル化合物と少なくとも1種以上のモノビニル化合物を使用し、共重合させて、式(a1)で示される反応性のペンダントビニル基を有する共重合体を得るものである。さらに、上記特許文献に記載されるように末端にビニル基以外の他の末端基が導入されたものを使用することもでき、特にフェノキシメタクリレート類のような不飽和結合を分子内に有する化合物にて末端変性されたものは(a1)以外にも架橋点として作用することが可能となるため好ましい。この場合は、末端の不飽和結合含有構造単位(a2)もビニル基を有するので、式(a1)の構造単位との合計のモル分率(a3)は、全体のビニル基の存在量を示すことになる。
【0025】
多官能ビニル共重合体を得るために使用するジビニル化合物としては、ジビニルベンゼンに代表されるジビニル芳香族化合物類やエチレングリコールジ(メタ)アクリレートに代表される脂肪族、脂環式(メタ)アクリレート類等が例示される。
【0026】
また、ここで使用するモノビニル化合物としては、前述したようなスチレン等のモノビニル芳香族化合物を含むモノビニル化合物類が挙げられる。
【0027】
多官能ビニル共重合体の製造方法としては、例えば、ジビニル芳香族化合物、モノビニル芳香族化合物及び他のモノビニル化合物から選ばれる2種以上の化合物を、ルイス酸触媒、エステル化合物から選ばれる助触媒の存在下、カチオン共重合させることにより得ることができる。また(メタ)アクリレート系のジビニル、モノビニル化合物を使用する場合は、カチオン重合では反応が進行しないため過酸化物等のラジカル触媒の存在下でラジカル重合することにより得ることができる。
【0028】
ジビニル化合物とモノビニル化合物の使用量は、本発明で使用される多官能ビニル共重合体の組成を与えるように決められるが、ジビニル化合物を、好ましくは全単量体の10〜90モル%、より好ましくは30〜90モル%使用する。モノビニル化合物を好ましくは全単量体の90〜10モル%、より好ましくは70〜10モル%使用する。ここで、2−フェノキシエチルメタクリレートのようなカチオン重合においては末端変性剤として作用するものは単量体としては計算しない。
【0029】
多官能ビニル共重合体の製造で用いられるルイス酸触媒としては、金属イオン(酸)と配位子(塩基)からなる化合物であって、電子対を受け取ることのできるものであれば特に制限なく使用できる。分子量及び分子量分布の制御及び重合活性の観点から、三フッ化ホウ素のエーテル(ジエチルエーテル、ジメチルエーテル等)錯体が最も好ましく使用される。ルイス酸触媒は単量体化合物1モルに対して、0.001〜10モルの範囲内で用いるが、より好ましくは0.001〜0.01モルである。ルイス酸触媒の使用量が過大であると、重合速度が大きくなりすぎるため、分子量分布の制御が困難となるので好ましくない。
【0030】
助触媒としてはエステル化合物から選ばれる1種以上が挙げられる。その中で、重合速度及び共重合体の分子量分布制御の観点から炭素数4〜30のエステル化合物が好適に使用される。入手の容易さの観点から、酢酸エチル、酢酸プロピル及び酢酸ブチルが好適に使用される。助触媒は単量体化合物1モルに対して0.001〜10モルの範囲内で使用するが、より好ましくは0.01〜1モルである。助触媒の使用量が過大であると、重合速度が減少し、共重合体の収率が低下する。一方、助触媒の使用量が過少であると、重合反応の選択性が低下し、分子量分布の増大、ゲルの生成等が生じる他、重合反応の制御が困難となる。
【0031】
またラジカル重合で多官能ビニル共重合体を製造する際に用いられる触媒としては、アゾビスイソブチロニトリルに代表されるアゾ系化合物、ジベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート等の単官能性の過酸化物や1,1−ビス(t−ブチルパーオキシ)シクロヘキサンのような2官能性以上の多官能性の過酸化物が例示され、単独または2種以上を併用して使用することができる。
【0032】
本発明で使用する多官能ビニル共重合体は上記のような製造方法で得ることができるが、単量体として使用するジビニル化合物のビニル基の一部は重合させずに残すことが必要である。そして、少なくとも平均して1分子中に2以上、好ましくは3以上のビニル基が存在するようにする。このビニル基は主として上記式(a1)で表わされる構造単位として存在する。そして、ビニル基の一部は重合させずに残すことにより架橋反応を抑制し、溶剤可溶性を与えることができる。ここで、溶剤可溶性とは、トルエン、キシレン、THF(テトラヒドロフラン)、ジクロロエタン又はクロロホルムに可溶であることをいい、具体的にはこれらの溶媒100gに、25℃において5g以上が溶解し、ゲルが発生しないことをいう。一方、ジビニル化合物の一部は2つビニル基が反応して架橋又は分岐することが必要であり、これにより分岐構造を有する共重合体とすることができる。このように、ジビニル化合物の一部については2つのビニル基の一つは反応させ、一つは重合させずに残し、他の一部については2つのビニル基を共に反応させることにより本発明で使用する多官能ビニル共重合体を得ることができる。このような多官能ビニル共重合体を得る重合方法は、上記のように公知であり、上記のようにして製造することができる。
【0033】
多官能ビニル共重合体の重量平均分子量(Mw)は、1,000〜100,000であることが好ましく、5,000〜70,000がより好ましい。1,000より小さい場合は、芳香族ジビニル化合物や多官能(メタ)アクリレート類を用いた場合と同様に連続重合におけるゲル化の進行抑制効果は小さくなり、連続重合において十分な効果を得にくい。
【0034】
多官能ビニル共重合体に導入されるジビニル化合物由来のビニル基を含有するユニットは上記式(a1)で表わされる構造単位を有するが、この構造単位(a1)のモル分率は、0.10〜0.50であることがよい。0.10モルより少ない場合は、板状押出発泡体用途に必要な高分子量の高分岐型スチレン系共重合体が得られにくい傾向がある。一方、0.50モルを超える場合は、高分岐型スチレン系共重合体の分子量が過度に増大し、ゲル化が起こりやすくなり、スチレン系樹脂組成物を押出発泡する際に破泡現象が発生しやすくなる傾向がある。
【0035】
ここで、構造単位(a1)、末端変性剤由来の二重結合(a2)および両者の合計のモル分率(a3)は日本電子製JNM−LA600型核磁共鳴分光装置を用い、13C−NMR及び1H−NMR分析により構造を決定した。溶媒としてクロロホルム−d1を使用し、テトラメチルシランの共鳴線を内部標準として使用した。
上記したように不飽和結合を分子内に有する化合物にて末端変性したものは、式(a1)で表わされる構造単位の他に、末端の不飽和結合含有構造単位(a2)もビニル基を有するので、両者の合計のモル分率(a3)が、0.10〜0.50であることがよい。
【0036】
また、多官能ビニル共重合体は、その重量平均分子量における慣性半径(nm)と上記構造単位(a1)のモル分率又は上記合計のモル分率(a3)との比が、本用途に必要な溶融張力と溶融延伸性を付与するための高分岐型超高分子量共重合体をゲル化を伴わずに調整するためには、10〜80の範囲にあることが好ましい。上記の比が80を超える場合は、ゲル化は進行しないが、高分岐型超高分子量共重合体が十分に得られにくい。一方、10より小さい場合は、高分岐型超高分子量共重合体がゲルにまで成長する場合があり、発泡体製造時に微小なゲルによる破泡が起こりやすくなる。
【0037】
ここで、慣性半径は、試料を0.5%のTHF溶液に調整した後、メンブランフィルターにてろ過し、ろ液についてGPC多角度光散乱法を用いて測定を行った。さらに、試料を0.2%THF溶液に調整後1日放置した。その後、THFを用いて4種類の濃度(0.02、0.05、0.10、0.12wt%)の溶液に希釈し、これらの溶液を用いてdn/dc値(固有の屈折率増分:溶質の濃度変化に対して、そのポリマー溶液の屈折率がどのくらい変化するかを表した値)の測定を行い、得られたdn/dc値から試料の慣性半径を算出した。
多官能ビニル共重合体は分子量に分布を持つ重合体であり、当然、その慣性半径も分布を有しているため、重量平均分子量における慣性半径を全体の慣性半径の平均値として採用するものである。
【0038】
ここで定義した慣性半径と二重結合の含有量を表わす指標である構造単位(a1)のモル分率又は上記合計のモル分率(a3)の比は、高分岐型超高分子量共重合体を構成する際に、核となる多官能ビニル共重合体が重合反応溶液中でどのような広がりの中に、どれだけの反応点を有しているかを表す指標といえる。この比が小さ過ぎると、反応点が近傍にあり、ゲル化を引き起こしやすくなり、またこの比が大き過ぎると分岐型成分の高分子量化が困難となる。
【0039】
スチレン系モノマーに対する多官能ビニル共重合体の配合率としては、重量基準で100ppm〜3000ppmであり、100ppm〜1000ppmがより好ましい。多官能ビニル共重合体の配合率が100ppmより少ない場合は、高分岐型超高分子量共重合体の生成量が不十分となり、本発明の十分な効果が得られにくいため好ましくない。一方、3000ppmを越える場合は、ゲルを生じ、発泡体製造時に微小なゲルによる破泡を引き起こす可能性がある。
【0040】
前記多官能ビニル共重合体とスチレン系モノマーとを共重合させることにより、多官能ビニル共重合体とスチレン系モノマーとの共重合体である高分岐型超高分子量共重合体と、スチレン系モノマーだけから生成する線状重合体との混合物である本発明のスチレン系樹脂組成物が得られる。スチレン系モノマーとして2種類以上を用いた場合は、線状重合体は共重合体となる。
【0041】
本発明のスチレン系樹脂組成物の200℃、49N荷重の条件にて測定したメルトマスフローレート(MFR)は、6.0g/10分以上20.0g/10分未満であり、10.0g/10分以上16.0g/10分未満であることが好ましい。6.0g/10分未満では、スチレン系樹脂の樹脂粘度が上がりすぎ、低温度での押出が困難となり、樹脂温度の上昇により難燃剤が分解してしまう。仮に、押出機のシリンダー温度を下げたとしても、剪断発熱により樹脂温度が上昇してしまう。20.0g/10分以上では樹脂粘度の不足により、発泡性が悪くなり、圧縮強度等の機械的強度も低下する。このMFRは、JIS K−7210に基づき測定することができる。
【0042】
本発明のスチレン系樹脂組成物の重量平均分子量(Mw)は、15万〜45万であることが好ましく、20万〜40万であることがより好ましい。Mwが小さすぎると板状押出発泡体の圧縮強度等の機械的強度が低下しやすい。Mwが大きすぎると樹脂粘度が上がりすぎ、低温度での押出が困難となり、樹脂温度の上昇により難燃剤が分解する恐れが増大する。仮に、押出機のシリンダー温度を下げたとしても、剪断発熱により樹脂温度が上昇してしまう。スチレン系樹脂組成物のMwは、重合工程の反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。
【0043】
重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工株式会社製 Shodex GPC−101
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
上記分子量の測定は単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
【0044】
また、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は、2.8〜5.5が好ましく、3.0〜4.5であることがより好ましい。Mz/Mwが小さすぎると、高分岐型超高分子量共重合体の含有量が不十分となり、大きすぎると高分岐型超高分子量共重合体の分子量が高くなり、製造過程においてゲルが生成しやすくなる。
【0045】
本発明のスチレン系樹脂組成物の分子量100万〜150万の成分における分岐比gMは、0.85〜0.40であることが好ましく、0.80〜0.50であることがより好ましい。分岐比gMは、スチレン系樹脂組成物中に含まれる高分岐型超高分子量共重合体の分岐の程度を表しており、分岐比gMが低いほど分岐が多いことを表している。分岐比gMが0.85超えると分岐が不足し、分岐比gMが0.40未満として分岐を増やしても、それ以上の改良効果が得られにくい。
【0046】
分岐比gMはゲルパーミエイションクロマトグラフィー多角度レーザー光散乱光度計(GPC−MALS法)により、分子量と回転半径の測定を行い、スチレン系樹脂組成物の回転半径<r2brと直鎖ポリスチレンの回転半径<r2linから分岐比gM=<r2br/<r2linを計算し、分子量100万〜150万の間の平均値として算出した。なお、分岐の大きいポリマーは回転半径が小さいため、分岐比gMの値は小さくなり、分岐が少ないポリマーほど1に近い数値となる。GPC−MALSの測定は次の条件にて行った。
GPC機種:昭和電工株式会社製Shodex DS−4
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:室温
検出器:示差屈折計
MALS機種:Wyatt Technology社製 DAWN DSP−F
波長:633nm(He−Ne)
上記分岐比gMは標準直鎖多分散ポリスチレン(昭和電工製:NBS706)の分岐比gMを1とした場合に対する数値を算出したものである。
【0047】
スチレン系樹脂組成物のMz/Mwは高分岐型超高分子量共重合体の含有量、分岐比gMは分岐の程度に関係しており、これらの因子はスチレン系単量体に対する多官能ビニル共重合体の配合割合や重合条件を調整することにより制御することができる。なお、本発明では多官能ビニル共重合体を用いることで、重合初期から高分岐型超高分子量共重合体を効率よく生成させることができ、重合条件によるポリマー設計の自由度が大きい。
【0048】
本発明のスチレン系樹脂組成物の残存スチレンモノマー及び重合溶媒の総量は、500μg/g以下であることが好ましく、350μg/g以下であることがより好ましい。スチレン系樹脂中の残存スチレンモノマー及び重合溶媒の総量が多いと、得られる板状押出発泡体に臭気等の問題が生じる場合があり、極力低減することが好ましい。
【0049】
上記残存スチレンモノマー及び重合溶媒の量は、樹脂500mgを、内部標準物質としてシクロペンタノールを含むDMF(ジメチルホルムアミド)10mlに溶解し、ガスクロマトグラフィーを用いて以下の条件で測定した。
ガスクロマトグラフ:HP−5890(ヒューレットパッカード社製)
カラム:HP−WAX、0.25mm×30m、膜厚0.5μm
インジェクション温度:220℃
カラム温度:60℃〜150℃、10℃/min
ディテクター温度:220℃
スプリット比:30/1
残存スチレンモノマー及び重合溶媒は、脱揮工程の構成及び脱揮工程の運転条件により、低減することができ、二段脱揮或いは二段注水脱揮などの構成とすることで好ましい範囲に調整することができる。
【0050】
本発明の板状押出発泡体用スチレン系樹脂組成物のメタノール可溶分は、2.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。メタノール可溶分が2.0質量%を超えると押出発泡体の耐熱性が低下して好ましくない。メタノール可溶分とは樹脂中のメタノールに可溶な成分を指し、例えばスチレン系樹脂の重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)の他にホワイトオイル、シリコーンオイル等の各種添加剤や残存スチレンモノマー及び重合溶媒等の低分子量成分が含まれる。メタノール可溶分は、重合過程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)の発生量、ホワイトオイル等の各種添加剤の添加量、残存スチレンモノマー及び重合溶媒の量により調整することができる。
【0051】
なお、メタノール可溶分は樹脂1gを精秤(質量P)し、メチルエチルケトンを40mL加えて溶解し、メタノール400mLを急激に加えて、メタノール不溶分(樹脂成分)を析出、沈殿させる。約10分間静置した後、ガラスフィルターで徐々にろ過してメタノール不溶分を分離し、120℃の真空乾燥機にて2時間減圧下で乾燥した後、デシケータないで約25分間放冷し、乾燥したメタノール不溶分の質量Nを測定することで、次式によって求めた。
メタノール可溶分(質量%)=(P−N)/P×100
【0052】
本発明のスチレン系樹脂組成物の200℃で測定した溶融張力値は5.5〜12gfであること好ましく、6.5〜10gfであることがより好ましい。また、最大溶融延伸倍率は150以上が好ましく、170以上がより好ましい。溶融張力値が過小では、板状押出発泡体を製造する際の発泡性が悪化し、気泡の微小化が困難となる。溶融張力値が12gfを超えると最大溶融延伸倍率が不足がちになる。また、最大溶融延伸倍率が140未満では破泡しやすく、連続気泡が増えるなどの悪影響がある。溶融張力とのバランスが取れる限りは、最大溶融延伸倍率の上限値は制限されるものではない。
【0053】
溶融張力値は、東洋精機製「キャピログラフ1B型」を使用し、バレル温度200℃、バレル径9.55mm、キャピラリー長さ:L=10mm、キャピラリー径:D=1mm(L/D=10)、バレル内の押出し速度10mm/分にて樹脂を押出し、荷重測定部をダイから60cm下方にセットし、キャピラリーより流出してきたストランド状の樹脂を巻き取り器にセットし、巻き取り線速度を4m/分から徐々に速度を上昇していき、ストランドが破断するまでの荷重を測定する。荷重は巻き取り線速度を上げていくと、一定値に安定するので、荷重が安定した範囲を平均化して溶融張力値とした。また、ストランドが破断したときの巻き取り線速度(m/分)とキャピラリー内の流速(m/分)の比を最大溶融延伸倍率(倍)とした。
【0054】
本発明のスチレン系樹脂組成物を製造する際には、重合反応の制御の観点から、必要に応じて重合溶媒、有機過酸化物等の重合開始剤や脂肪族メルカプタン等の連鎖移動剤を使用することができる。
【0055】
重合溶媒は連続塊状重合において反応物の粘性を低下させるために用いるものであり、その有機溶媒としては、例えばベンゼン、トルエン、エチルベンゼン及びキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等が使用できる。
【0056】
特に多官能ビニル共重合体の添加量を多くしたい場合には、ゲル化を抑制する観点から重合溶媒を使用することが好ましい。これにより、先に示した多官能ビニル共重合体の添加量を飛躍的に増量することができ、ゲルが生じにくい。
【0057】
重合溶媒の使用量は、特に限定されるものではないが、ゲル化を制御するという観点から、通常、重合反応器内の組成として、1〜50質量%であることが好ましく、3〜20質量%の範囲内であることがより好ましい。50質量%を超える場合は、生産性が著しく低下したり、スチレン系樹脂の分子量が過度に低下するため好ましくない。
【0058】
重合開始剤としては、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、2,2−ジ(t−ブチルパーオキシ)ブタン、2,2−ジ(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ジ(t−アミルパーオキシ)シクロヘキサン等のパーオキシケタール類、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、t−ブチルパーオキシアセテート、t−アミルパーオキシイソノナノエート等のアルキルパーオキサイド類、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド等のジアルキルパーオキサイド類、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、t−ブチルパーオキシイソプロピルカーボネート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)等のパーオキシカーボネート類、N,N'−アゾビス(シクロヘキサン−1−カルボニトリル)、N,N'−アゾビス(2−メチルブチロニトリル)、N,N'−アゾビス(2,4−ジメチルバレロニトリル)、N,N'−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することができる。
【0059】
さらに本発明の板状押出発泡体用スチレン系樹脂組成物の分子量調整に連鎖移動剤を用いることができ、例えば、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α−メチルスチレンダイマー及びテルピノーレン等が挙げられる。
【0060】
本発明のスチレン系樹脂組成物は、前述のように、スチレン系モノマーに多官能ビニル共重合体を添加して連続重合することにより得られるが、加工の容易さを付与したり、強度の向上のために、予め重合されたスチレン系樹脂や添加剤等を押出機で溶融ブレンドしたり、ペレット状態でドライブレンドして用いることもできる。
【0061】
上記のスチレン系樹脂や添加剤としては、流動性の改良のためのGP−PS樹脂や強度向上のためのゴム質を含有するHI−PS樹脂、MBS樹脂等のゴム強化芳香族ビニル系樹脂やSBS等の芳香族ビニル系熱可塑性エラストマーが挙げられる。また、添加剤としてはステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の高級脂肪酸及びその塩やエチレンビスステアリルアミド等の滑剤、流動パラフィン等の可塑剤、酸化防止剤が挙げられる。
【0062】
本発明のスチレン系樹脂組成物は、押出発泡体用であり、特に押出成形にて板状押出発泡体を製造することに適している。板状押出発泡体は、スチレン系樹脂を発泡核剤や難燃剤とともに加熱溶融、混練した後、発泡剤を注入して混錬した後、発泡最適温度に調整して低圧雰囲気下(通常大気圧)に押出発泡させることにより製造することができる。発泡剤を注入する際の圧力は特に制限するものではなく、押出機などの内圧より高い圧力でガス化しなければよい。また、本発明が対象とする板状押出発泡体の密度は10〜50kg/m3の範囲である。
【0063】
板状押出発泡体を製造する際には、難燃剤を使用する。また、発泡核剤としてシリカ、タルクや炭酸カルシウム等の無機充填剤を用いる。発泡体の密度、発泡倍率や平均気泡径は発泡剤量や発泡核剤量を調整することで変化させることができる。さらに、本発明の効果を阻害しない範囲で、酸化防止剤、可塑剤、滑剤、染顔料、帯電防止剤などを添加することもできる。
【0064】
発泡剤としては公知のもの、例えば、プロパン、ブタン、ペンタン、ヘキサン等の低級炭化水素、ジメチルエーテル、ジエチルエーテルなどのエーテル類、ジメチルケトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、プロピルアルコールなどのアルコール類、トリクロロモノフルオルメタンや塩化メチル等のハロゲン化炭化水素、炭酸ガス、水等の無機ガスなど任意の発泡剤を単独または混合して用いることができるが、低級炭化水素を主成分とすることが好ましい。
【0065】
発泡核剤としては、タルク、炭酸カルシウム、クレー等の無機物粉末が挙げられ、単独あるいは混合物を用いることができる。気泡径を小さくする効果が大きく、安価という点でタルクが最も好ましい。核剤の押出機への添加方法は特に制限は無く、直接押出機の供給孔に添加しても良いし、スチレン系樹脂組成物と共に添加することもできる。また、スチレンの単独重合体であるポリスチレン等を基材としたマスターバッチを作成して、そのマスターバッチを用いて供給することもできる。核剤の添加量は、通常、押出機に供給される樹脂組成物に対して、0.1〜5質量%である。また、該マスターバッチ中に高級脂肪酸金属塩をあらかじめ配合しておいても良い。また、エチレンビスステアリルアミド等の滑剤、流動パラフィンやシリコーンオイル等の展着剤、その他界面活性剤、帯電防止剤、酸化防止剤、可塑剤、耐光剤、顔料等が含まれていても良い。
【0066】
難燃剤としては公知のものが使用でき、ヘキサブロモシクロドデカン、ジブロモネオペンチルグリコール、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA、テトラブロモフタル酸ジオール、テトラブロモフェノール、ポリペンタブロモベンジルアクリレート等の臭素系難燃剤、リン酸グアニール尿素、ポリフォスファゼン、リン酸アンモニウム、ポリリン酸アンモニウム、赤リン等のリン系難燃剤が挙げられる。
【0067】
本発明のスチレン系樹脂組成物は、低温度での押出が可能となり、得られる板状押出発泡体の難燃性に優れ、機械的強度も優れるため、特に押出成形による板状押出発泡体の製造に好適である。
【0068】
本発明でいう板状押出発泡体とは、JIS A 9511:2006R「発泡プラスチック保温材」に相当する押出法ポリスチレンフォーム板のことを意味する。
【実施例】
【0069】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0070】
合成例(多官能ビニル共重合体:架橋剤A)
ジビニルベンゼン3.1モル(399.4g)、エチルビニルベンゼン0.7モル(95.1g)、スチレン0.3モル(31.6g)、2−フェノキシエチルメタクリレート2.3モル(463.5g)、トルエン974.3gを3.0Lの反応器内に投入し、50℃で42.6gの三フッ化ホウ素ジエチルエーテル錯体を添加し、6.5時間反応させた。重合反応を炭酸水素ナトリウム溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、多官能ビニル芳香族共重合体A372.5gを得た。この多官能ビニル共重合体Aの重量平均分子量Mwは8000で、ジビニル化合物由来のビニル基を含有する構造単位(a1)のモル分率は0.44、末端の2−フェノキシエチルメタクリレート由来の二重結合(a2)は0.03、両者を合わせた合計のモル分率(a3)は0.47であった。また重量平均分子量8000における共重合体の慣性半径は6.4nmであった。本共重合体の二重結合のモル分率と慣性半径の比は13.6であり、かつ、直鎖型の分子量8000における慣性半径が15nmであることと比較すると本合成例における多官能ビニル共重合体は分岐構造をとっていることがわかる。
【0071】
製造例(実施例及び比較例)
(スチレン系樹脂組成物PS−1〜PS−11の製造方法)
完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成した。各反応器の容量は、第1反応器を39L、第2反応器を39L、第3反応器を16Lとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。架橋剤は、第1反応器の入口で表1に記載の添加濃度(原料スチレンに対する質量基準の濃度)となるように原料溶液に添加し、均一混合した。重合開始剤及び連鎖移動剤は、表1に示すように第1反応器の入口又は第3反応器入口で表1に記載の添加濃度(原料スチレンに対する質量基準の濃度)となるように添加し、均一混合した。架橋剤は合成例で得た架橋剤A又はジビニルベンゼン(DVB)を使用した。
【0072】
表1に記載の重合開始剤及び連鎖移動剤はそれぞれ次の通りである
重合開始剤−1 :1,1−ジ(t−ブチルパーオキシ)シクロヘキサン(日油株式会社製パーヘキサC)を使用した。
重合開始剤−2 :2,2−ジ(4,4−t−ブチルパーオキシシクロヘキシル)プロパン(日油株式会社製パーテトラA)を使用した。
重合開始剤−3 :t−ブチルクミルパーオキサイド(日油株式会社製パーブチルC)を使用した。
連鎖移動剤−1 :2,4−ジフェニル−4−メチル−1−ペンテン(日油株式会社製ノフマーMSD)を使用した。
【0073】
なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。ここで、PS−1〜4は実施例であり、PS−5〜11は比較例である。実施例のペレットは、板状押出発泡体用のスチレン系樹脂組成物のペレットである。
なお、それぞれの条件にて連続運転でのゲル状物の有無を確認したところ、PS−7とPS−11の条件では24時間の時点で多孔ダイから押出されるストランドにゲル状物が多数含まれ、運転の継続が困難であった。
また、各反応器出口とペレットの分子量Mw、Mzより、多官能ビニル共重合体を用いることで、重合初期より高分岐型超高分子量体が効率良く生成していることがわかる。
【0074】
【表1】

【0075】
得られたスチレン系樹脂組成物の特性を表2に示す。また、実施例における測定方法を以下に示す。
【0076】
発泡体密度(kg/m3)は、発泡体のスキン層(上下10mm厚み分)を除去した中心部を採取し、発泡体の重量(kg)と発泡体の体積(m3)より算出した(発泡体密度=発泡体重量/発泡体体積)。
【0077】
発泡体の気泡径は、板状押出発泡体の断面を顕微鏡により撮影し、直径を計測して体積基準の中位径として算出した。
また、同時に次の基準に従い発泡性の判定を行った。
○:気泡のサイズが均一で独立している。
△:気泡のサイズがやや不均一で、一部連続した気泡が存在する。
×:気泡のサイズが不均一で、一部連続した気泡がやや多く存在する。
【0078】
発泡体の難燃性は、製造後2週間経過した発泡体より、厚さ10mm、長さ200mm、幅25mmの試験片を5個作成し、それぞれJIS A 9511に準じた方法で判定した。
◎:5本とも3秒以内に炎が消える。
○:5本のうち1本乃至2本が3秒以内に炎が消えないが、残りは全て3秒以内に消える。
△:5本のうち3本乃至4本が3秒以内に炎が消えないが、残りは全て3秒以内に消える。
×:5本とも3秒以内に炎が消えない。
【0079】
発泡体の圧縮強度は、製造後2週間経過した発泡体より、JIS K 7220に準じた方法で測定した。
【0080】
実施例1〜4、比較例1〜5
スチレン系樹脂組成物100質量部に対して、ヘキサブロモシクロドデカン4質量部、気泡調整剤としてタルクを0.5質量部添加した後ブレンドし、得られた混合物を40mm径の単軸押出機(シリンダー温度200℃)に供給し、溶融混合した後、発泡剤としてブタンガス5質量部を圧入した。その後、65mm径の単軸押出機(シリンダー温度135℃)に移送し、押出機の先端に厚さ方向2mm、幅方向400mmの長方形断面のスリットを有するダイより押出して、厚さ50mm、幅500mmの板状の発泡体を製造した。それぞれの組成物について、表2の発泡体密度及び気泡径となるよう、発泡剤量や気泡調整剤の量を調整した。得られた発泡体の難燃性、圧縮強度及び押出機出口の樹脂温度を表2に示す。
【0081】
【表2】


【特許請求の範囲】
【請求項1】
スチレンを必須とするモノビニル化合物に、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル共重合体を、重量基準で100ppm〜3000ppm添加した原料溶液を、1個以上連続して配置された重合反応器に、連続的に供給して重合反応を進行させて得られる、該溶剤可溶性多官能ビニル共重合体と該モノビニル化合物が共重合して生じる高分岐型超高分子量共重合体と該モノビニル化合物が重合して生じる線状重合体とを含むスチレン系樹脂組成物であって、200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が6.0g/10分以上20.0g/10分未満であることを特徴とする高分岐型板状押出発泡体用スチレン系樹脂組成物。
【請求項2】
溶剤可溶性多官能ビニル共重合体が、ジビニル化合物と、これと共重合可能なモノビニル化合物とを重合して得られ、更に下記式(a1)で表されるジビニル化合物由来のペンダントビニル基含有単位を構造単位中にモル分率として0.10〜0.50の範囲で含有し、その重量平均分子量における慣性半径(nm)と上記モル分率の比が10〜80の範囲内にあることを特徴とする請求項1記載の高分岐型板状押出発泡体用スチレン系樹脂組成物。
【化1】

(式中、R1はジビニル化合物に由来する炭化水素基を示す。)
【請求項3】
重量平均分子量(Mw)が15万〜45万で、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.8〜5.5、分子量100万〜150万における分岐比gMが0.85〜0.40であることを特徴とする請求項1〜2のいずれか1項に記載の高分岐型板状押出発泡体用スチレン系樹脂組成物。
【請求項4】
請求項1〜3のいずれか1項に記載の高分岐型板状押出発泡体用スチレン系樹脂組成物を発泡剤、発泡核剤、及び難燃剤とともに発泡押出しすることを特徴とするスチレン系板状押出発泡体の製造方法。
【請求項5】
請求項4に記載の製造方法によって得られることを特徴とするスチレン系板状押出発泡体。

【公開番号】特開2013−100429(P2013−100429A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2011−245876(P2011−245876)
【出願日】平成23年11月9日(2011.11.9)
【出願人】(000006644)新日鉄住金化学株式会社 (747)
【出願人】(399051593)東洋スチレン株式会社 (37)
【Fターム(参考)】