説明

高度なナビゲーション性能のための方法およびシステム

ナビゲーションのための方法およびシステムが開示される。一実施例においては、地上局の視野内におけるGPS衛星からのデータがイリジウム衛星などのLEO衛星に再伝送され、必要であれば、ユーザに伝送される前に相互リンクされる。次いで、ユーザは、干渉またはジャミングによるエラーを解決するために、GPS衛星から直接受取ったデータとフィードフォワードされたデータを組合せることができる。代替的には、方法は、ユーザ装置において少なくとも1つの搬送波信号を受信するステップを含み、各々の搬送波信号は別個のLEO衛星によって伝送される。ユーザ装置は、第1の搬送波位相情報を得るよう搬送波信号を処理する。ユーザ装置は、慣性基準ユニットにおいて得られる慣性位置決定を再現する。ユーザ装置は、慣性位置決定および第1の搬送波位相情報に基づいてユーザ装置の位置を導き出す。

【発明の詳細な説明】
【技術分野】
【0001】
発明の分野
この発明は、概して、ナビゲーションのための方法およびシステムに関する。
【0002】
関連出願
この出願は、以下の特許出願、すなわち、(1)2004年1月15日に出願され、「屋内および独立型のナビゲーション用のLEOベースの位置決めシステム(“LEO-BASED POSITIONING SYSTEM FOR INDOOR AND STAND-ALONE NAVIGATION”)」と題された米国仮出願番号第60/536,823号、(2)2004年1月15日に出願され、「高度なGPS性能を支援する実時間データ(“REAL-TIME DATA AIDING FOR ENHANCED GPS PERFORMANCE”)」と題された米国仮出願番号第60/536,788号、(3)2004年6月29日に出願され、「屋内および独立型のナビゲーション用のLEOベースの位置決めシステム(“LEO-BASED POSITIONING SYSTEM FOR INDOOR AND STAND-ALONE NAVIGATION”)」と題された米国出願番号第10/879,256号、および(4)2004年6月22日に出願され、「高度なGPS性能を支援する実時間データ(“REAL-TIME DATA AIDING FOR ENHANCED GPS PERFORMANCE”)」と題された米国出願番号第10/873,581号からの優先権を主張し、これらの出願が引用によりこの明細書中に援用されている。
【背景技術】
【0003】
発明の背景
GPSまたは衛星利用測位システムは、米国国防総省(DOD)が資金を提供し制御している。GPSの一般の利用者が世界中に何千何万人もいるが、このシステムは米軍のために設計されたものであり、米軍が操作している。GPSは、GPS受信機において処理可能であり、当該受信機が位置、速度および時間を計算することを可能にする特別に符号化された衛星信号を供給する。4つのGPS衛星信号を用いて、三次元での位置と、受信機クロックにおける時間オフセットとを計算する。GPS衛星は、アメリカ国防総省が操作する一群の約24個のGPS衛星のうちの1つであり、約1万マイルの高度で24時間ごとに地球をほぼ2回、周回し、地球表面上のある位置の上空を約4時間で横断する。
【0004】
地球周回ナビゲーションシステム(GLONASS)と称される別の衛星ベースのシステムがロシアによって開発され、配備されている。GLONASSの基本的な目的、機能および能力はGPSに類似している。この説明はGPSベースのシステムに向けられているが、同様の結果をもたらす同様の機能のためにGLONASSベースのシステムが用いられてもよい。
【0005】
GPS受信機は、通常、多数のGPS(またはNAVSTAR)衛星から同時に伝送された信号の相対的な到達時間を計算することによって、それら自体の位置を判断する。これらの衛星は、それらのメッセージの一部として、衛星位置決めデータと、クロックタイミングについてのデータ、いわゆる「暦表」データとを伝送する。
【0006】
GPS衛星は2つのマイクロ波搬送波信号を伝送する。L1周波数(1575.42MHz)は、ナビゲーションメッセージおよび衛星測位サービス(SPS)コード信号を搬送する。L2周波数(1227.60MHz)は、精密測位システム(PPS)が搭載された受信機によって電離層遅延を測定するのに用いられる。GPS受信システムの2つの主な機能には、(1)さまざまなGPS衛星までの疑似距離の計算と、(2)これらの疑似距離ならびに衛星タイミングおよび暦表データを用いた受信プラットフォームの位置の計算とがある。疑似距離は、単に、各衛星から受信した信号とローカルクロックとの間で
測定された時間遅延に過ぎない。衛星の暦表およびタイミングデータは、獲得され追跡されると、GPS信号から抽出される。
【0007】
実質的にすべての公知のGPS受信機は、疑似距離を計算するのに相関法を用いる。これらの相関法は、しばしばハードウェア相関器を用いて実時間で実行される。GPS信号は、疑似ランダム(PN)シーケンスと呼ばれる高速の反復信号を含む。民間のアプリケーションに利用可能なコードはC/Aコードと呼ばれ、1.023MHzのバイナリ位相反転レートまたは「チッピング(chipping)」レートと、1msecのコード期間にわたる1023チップの反復期間とを有する。コードシーケンスは、ゴールドコード(Gold codes)として知られるファミリに属する。各々のGPS衛星は、固有のゴールドコードを用いて信号を同報通信する。
【0008】
所与のGPS衛星から受信した信号については、ベースバンドへのダウンコンバージョンプロセスの後、相関受信機が、そのローカルメモリ内に含まれる適切なゴールドコードの記憶されたレプリカで当該受信した信号を逓倍し、当該信号の存在した印を得るために、その積を積分するかまたはローパスフィルタリングする。このプロセスは「相関」動作と称される。受信した信号に対してこの記憶されたレプリカの相対的なタイミングを連続的に調節し、相関出力を観察することにより、受信機は、受信した信号とローカルクロックとの間の時間遅延を判定することができる。このような出力が存在するとの最初の判断は、「獲得」と称される。獲得が行われると、プロセスが「追跡」段階に入り、ここで、高い相関出力を維持するために、ローカル基準のタイミングがわずかに調節される。追跡段階中の相関出力は、疑似ランダムコードが除去されたかまたは一般的な専門用語では「デスプレッド」されたGPS信号と見なされてもよい。この信号は狭帯域であり、帯域幅は、GPS波形に重ね合わされた毎秒50ビットの二相位相シフトキーイングデータ信号に対応している。相関獲得プロセスは、特に受信した信号が弱い場合、非常に時間がかかってしまう。獲得時間を改善するために、軍用の最新のGPS受信機は、相関ピークを並行して探索することを可能にする多数の相関器を利用する可能性がある。
【0009】
低出力GPS信号を追跡する能力は、GPS信号が減衰されるか、ジャミングされるかまたは干渉に晒される可能性がある場合を含め、いくつかの実時間のアプリケーションにとって重要である。これらの障害に対するこれまでの方策には、程度の差はあれ、(i)感度を高めるための信号処理、(ii)ジャミングを阻止するための制御された放射パターンアンテナ(CRPA)、および(iii)可能であれば、干渉を防ぐための受信環境の制御、が含まれていた。残念ながら、これらの場合の多くにおいては、実際的な制約のために、性能が制限された改善しかなされない。
【0010】
(i)の信号処理の場合には、向上した性能に対する基本的な限界が、GPSメッセージにおけるデータビット境界によって設定される。固有のGPSデータ同報通信速度は毎秒50ビットである。通常の受信機は、これらの20msの間隔にわたって信号を積分することができない。積分間隔を広くすることにより、実際には性能が低下することとなる。というのも、データビットが、平均して0になるランダムノイズとして現われるからである。したがって、一般の実際的な限度は平均して20msである。
【0011】
実際に携わっている人々の中には、GPS信号を二乗することによってこの限度に近づこうとする人もいた。しかしながら、二乗することは、情報を回復する手段としては不十分である。というのも、それ自体とノイズとが混合されて、結果として、かなりのベースバンドノイズ成分が、ベースバンドにおいて、二乗された信号に重ね合わされてしまうからである。考案された他の技術では、GPSデータを除去し、より長い積分時間を得るために、データストリッピングを用いる。すなわち、頻繁に同じシーケンスを複数回繰返すGPSの傾向を利用する、GPSビットシーケンスの限られた先験的な知識を局所的に用
いる。残念ながら、この技術は、特に重要なアプリケーションにおいては、しばしばほんのわずかな結果しかもたらないおそれがある。主な欠点は、GPSメッセージが変化した場合に完全に分解してしまい、このことが頻繁かつ予測不可能に起こることである。
【0012】
先行技術の処理の取組みではまた、性能を高めるためにフィードフォワードデータを用いるこの発明を排除するように述べられてきた。たとえば、米国特許第6,133,874号には、「20ミリ秒を超えるコヒーレントな積分は、通常、得策ではない。というのも、信号の上に配置された先験的な未知の50ボーの二相位相シフトキーイングデータ(衛星データメッセージ)の存在により、1データビット期間または20ミリ秒を超える一貫性のある処理利得が不可能になる」ことが教示されている。同様に、米国特許第5,664,734号においては、「搬送波周波数およびすべてのデータレートが非常に正確に分かっており、データが存在していなかった場合、連続したフレームを相互に追加することにより、信号対ノイズ比が著しく向上し、データが著しく低減し得る。・・・GPS信号上に重ね合わされた50ボーのデータの存在により、20msecの期間を超えて、PNフレームの整合的な加算が依然として制限されてしまう」と説明されている。
【0013】
ヌル・ステアリングアンテナ(ii)は、妨害電波の出てくる方向を識別し、その方向のすべての信号を空間的に記録することによって、ジャミングを低減させる。残っているのは、他の方向から送られてくるジャミングされていないGPS信号である。フェーズドアレイ電子機器が追加されると、個々のGPS衛星に対してより厳密に焦点が合わされたビームを生成し、これにより、信号強度を高めることも可能となる。CRPAのジャミング防止は優れているが、このようなアンテナは、しばしば重く、嵩張り、費用がかかってしまう。
【0014】
加えて、干渉源を最小にするよう受信環境を制限すること(iii)がしばしば必要とされる。というのも、これは規制制度の下で実行されなければならないからである。たとえば、超広帯域(UWB)装置が、しばしば何らかのGPS装置に干渉することが既に明らかになっている。これらの装置をともに共存させたいという一般的な要望があるが、潜在的なユーザベースは基本的に同じである。世界の中でも、UWBがGPSおよび他の上層の帯域と共存することを可能にする規制環境が現われることとなる。しかしながら、このような規制環境を作り出し、これに準拠させる最善の努力にもかかわらず、適切な性能に例外を設ける逸脱が常に存在する。これらの場合については、この明細書中に記載されるこの発明は、予想外の干渉に対して、いわゆる「セーフティネット」として最も有用となる可能性がある。
【0015】
多くの場合には、GPSはナビゲーションユーザにとって利用不可能であるかもしれない。過酷な条件では、GPSはジャミングされるかまたは無効にされるおそれがある。屋内のアプリケーションにおいては、GPSの出力は、建物の壁を貫通するには不十分である。
【0016】
GPSは、瞬間的な三次元の位置決めを可能にする少なくとも4つの測距源を同時に提供する。しかしながら、GPSは、屋内で、またはジャミングがひどい条件下で動作を制限する低出力信号を有する。この明細書中に記載されるシステムの基本的な利点は、屋内でも、またはジャミングがある場合でも、その先代モデルの制限に同時に対処して動的な三次元の正確な位置決定をもたらすことである。
【0017】
イリジウムなどの低周回軌道(LEO)衛星配置は、GPSを用いずにナビゲーションを可能にする正確なユーザ時間基準を提供するものとして提案されてきた。GPSシステムの機能を高めるためにLEO衛星からの時間基準を用いることが認められた特許には、「正確な位置決定をもたらすためのシステムおよび方法(“System and Method For Gene
rating Precise Position Determinations”)」と題され、コーエン(Cohen)他に発行された米国特許RE37,256と、「衛星利用測位システムを強化するために低周回軌道衛星信号を用いる方法および受信機(“Method And Receiver Using A Low Earth Orbiting Satellite Signal To Augment The Global Positioning System”)」と題され、エンゲ(Enge)他に発行された米国特許第5,812,961号と、「衛星利用測位システムを強化するために低周回軌道衛星信号を用いる方法および受信機(“Method And Receiver Using A Low Earth Orbiting Satellite Signal To Augment The Global Positioning System”)」と題され、エンゲ他に発行された米国特許第5,944,770号と、「センチメートルレベルのナビゲーションのためにLEO衛星を用いるシステム(“System
Using LEO Satellites For Centimeter-Level Navigation”)」と題され、ラビノウィッツ(Rabinowitz)他に発行された米国特許第6,373,432号などの特許が含まれる。これらの特許は、依然として、大部分がGPSシステムに依存している。
【0018】
MEMS技術の性能は、急速に発展しつつあり、しばしばさまざまなアプリケーションのために最適化され得る。MEMS技術は、何らかのナビゲーション用途を可能にするよう、加速度をある程度決定する加速度計を作り出すために音叉に適用されてきた。慣性グレードの機械的慣性ユニットはまた、慣性ナビゲーションのための手段を提供し得る。いくつかの応用例においては、GPSアクセスが断続的であるナビゲーションのために、GPSナビゲーションと慣性ナビゲーションとが交互に用いられてきた。このようなシステムは、引き続き行われる慣性ナビゲーションのために最初に位置を決定するGPSの存在に依存している。
【発明の開示】
【発明が解決しようとする課題】
【0019】
GPSから独立して作動する正確なナビゲーションのための、低費用でアクセス可能な手段が必要とされる。また、サイズ、重量、出力および費用の点で関連する不利点を招くことのない単純な解決策で、これらのいずれの不利な条件の下でもロバストなGPS性能を提供するシステムが必要とされる。
【課題を解決するための手段】
【0020】
発明の概要
高度なナビゲーション性能のための方法およびシステムが開示される。この発明の一実施例においては、地上局の視野内のGPS衛星からのデータはイリジウム衛星などのLEO衛星に再伝送され、ユーザに伝送される前に必要に応じて相互リンクされる。次いで、ユーザは、干渉またはジャミングによるエラーを解決するために、フィードフォワードされたデータを、GPS衛星から直接受取ったデータと組合せることができる。こうして、イリジウムおよびデータの支援により、データが損なわれたさまざまな条件下でGPS性能を拡張するための手段が提供される。というのも、これにより、そのデータリンクにわたって実時間で何らかの支援情報を供給することができるからである。
【0021】
この発明の応用例は、超広帯域干渉防止、ジャミング対策、および、GPSを屋内で用いるための高度な能力を含む(が、これらには限定されない)。
【0022】
超広帯域(UWB)干渉防止。多くの消費者およびビジネス用のローカルネットワークは、無線通信のためにUWBを採用し始めている。ビジネス旅行者の間で人気が高い可能性があるので、UWBは、飛行機旅行のための、ボーイング(Boeing)社のConnexionsサービスなどの候補に挙げられている。残念ながら、UWBはまた、GPSに対する干渉リスクになってしまうことがある。というのも、UWBが部分的にGPS周波数に重ね合わされるからである。GPSおよび航空機業界は、GPSとUWBとの間に、これら2つが共存し得るように法的な保護帯域を設けるよう、FCCを通じてあらゆる努力
を行なっている。しかしながら、法的な保護帯域があっても、航空機上での偶発的なUWB放射が、搭載されたGPSナビゲーション機器に干渉する可能性がある。イリジウムデータは、世界中のどこであっても航空機に実時間で供給されるが、UWB干渉がある場合でも、GPS信号の連続した追跡を可能にするのに十分な情報を提供するだろう。
【0023】
ジャミング対策。戦場環境におけるジャミングも重要な問題となる。独立型のY−コードGPS受信機は、典型的には、ロックを損失する前には、最大で50dBまでのジャミング対信号(J/S)比に耐えることができる。実時間でユーザ受信機に供給されたイリジウムデータは、独立型の受信機を上回る対ジャム性能の大幅な向上をユーザに提供し得る。
【0024】
屋内での動作。強いイリジウム信号を用いて、減衰された信号にしかアクセスできない建物内のGPS受信機に実時間で支援情報を伝送し得る。一実施例においては、この明細書に記載されるシステムは、干渉、ジャミングまたは強度の低い信号がある場合に搬送波および疑似距離(pseudorange)ロックを維持することを目的としている。GPS衛星を捕捉するのに必要な典型的なパラメータには、その疑似ランダムノイズコード位相、ドップラーシフトおよびユーザクロックオフセットの知識が含まれる。GPS信号に対するデータ変調がない場合には、捕捉パラメータにおける所与の信号強度および不確実性のために、捕捉する時間と感度との間に標準的なトレードオフが存在する。この発明の一目的が受信機の感度を高めることであるので、このことは、受信機が既に信号に上手くロックしていると想定する以外には、信号の捕捉には対処しない。(引用によりこの明細書中に援用される)同時係属の特許出願連続番号第10/720,736号は、付加的な10dBの処理利得が所望される場合、より過酷な条件下でいかにこのような捕捉を実行することができるかを示す。この発明は、条件によってこの信号が殆ど検出できなくなる場合に、受信機が当該信号をいかに追跡し続け得るかを示す。
【0025】
この発明の別の実施例は、少なくとも2つのナビゲーションシステム、すなわち、慣性ナビゲーションシステムおよびLEO衛星ナビゲーションシステム、の相対的な強度を高めるためのシステムを含む。慣性ナビゲーションシステムは、LEO衛星ナビゲーション処理システムに対する積分負荷を改善するのに用いられ、慣性システムは、ジャミングまたは屋内の環境によってLEO衛星ナビゲーションの使用が妨げられる場合、ユーザ装置の変化している位置の好適な近似値を与える。LEO衛星ナビゲーションシステムは、正確な位置が入手可能であれば必ず慣性位置決定を改善するよう正確な位置選定をもたらすだろう。
【0026】
現在好ましい実施例は、地上ベースの基準局から入力された信号で位置をさらに決定する能力を含む。この地上ベースの基準局は、ユーザ装置において受信された信号がユーザ装置に到達するのに通過した地球大気の部分に伝搬特性が類似している地球大気の部分を通じて、LEO衛星から信号を受信するよう有利に位置決めされる。
【0027】
この発明のさらに別の局面に従うと、GPS位置決めシステムによって導き出される位置は、LEOベースの衛星ナビゲーションシステムおよび慣性位置決めシステムの両方に対して用いられる位置の決定を改善するのに用いることができる。加えて、正確に分かっている位置にユーザ装置を位置決めすることにより、慣性位置決定とLEO衛星から導き出された位置とが適切に改善されることとなる。
【0028】
この発明の実施例が、低周回軌道(LEO)衛星からの信号からユーザ装置の正確な位置を推定するための方法を提供し、各々が別個のLEO衛星に伝送される少なくとも1つの搬送波信号をユーザ装置において受信するステップを含むことが容易に認識されるだろう。ユーザ装置は、搬送波信号を処理して第1の搬送波位相情報を得る。ユーザ装置は、
慣性基準ユニットにおいて導き出された慣性位置決定を再現する。ユーザ装置は、慣性位置決定と第1の搬送波位相情報とに基づいてユーザ装置の位置を導き出す。
【0029】
この発明の好ましい代替的な実施例が、添付の図面を参照して、以下に詳細に説明される。
【発明を実施するための最良の形態】
【0030】
発明の詳細な説明
この発明は、衛星ナビゲーションシステムを含む高度なナビゲーションシステムのための方法およびシステムに関する。この発明のいくつかの実施例の多くの特定の詳細が、このような実施例を完全に理解できるようにするために、以下の説明と図1〜図16とにおいて述べられる。しかしながら、当業者であれば、この発明が付加的な実施例を有し得ること、または、以下の説明に記載される詳細のうちのいくつかがなくてもこの発明が実施可能であることを理解するだろう。
【0031】
図1は、GPSアンテナ12およびGPS受信機13を備えた民間の旅客機10内で発生した干渉の例10を示す。GPSアンテナ12は、その視野内の衛星からGPS信号16およびLEO衛星信号17を受信することができる。
【0032】
乗客がノートブックコンピュータなどの携帯型電子装置14を作動させた場合、この装置14はGPS帯域において干渉15を放出する可能性がある。この干渉15は、いくつかの経路を通じて、航空機に搭載されナビゲーションのために用いられているGPSアンテナ12に到達し得る。干渉15は、その強度に応じて、GPS受信機を役に立たないものにしてしまい、場合によっては、航空機およびその乗員を危険にさらすおそれがある。
【0033】
3つのバイナリコードは、L1またはL2搬送波位相をシフトする。C/Aコード(粗捕捉(Coarse Acquisition))はL1搬送波位相を変調する。C/Aコードは、反復する1MHz疑似ランダムノイズ(PRN)コードである。このコードは、L1搬送波信号を変調して、1MHz帯域幅にわたってスペクトルを拡散させる。C/Aコードは、1023ビット(1ミリ秒)ごとに反復する。各々の衛星は異なるPRN C/Aコードを有し、GPS衛星は、しばしば、それらのPRN番号によって、各々の疑似ランダムノイズコードについての固有の識別子が識別される。L1搬送波を変調するC/Aコードは、民間のSPSに基づいている。
【0034】
暗号機器およびキーならびに特別に備え付けられた受信機で許可されたユーザは、精密測位システムまたはPPSを用いる。許可されたユーザには、米国および連合軍、何らかの米国政府機関、ならびに米国政府によって特別に認可された選択された民間のユーザが含まれる。PPSにおいては、P−コード(Precise)は、L1搬送波位相およびL2搬送波位相をともに変調する。P−コードは、非常に長い(7日間)10MHz PRNコードである。スプーフィング防止(AS)モードの動作では、P−コードはY−コードに暗号化される。暗号化されたY−コードは、各々の受信器チャネルのために分類されたASモジュールを必要とし、暗号キーで許可されたユーザによってのみ用いられる。P/YコードはPPSに基づいている。
【0035】
ナビゲーションメッセージはまた、L1−C/Aコード信号を変調する。ナビゲーションメッセージは、GPS衛星軌道、クロック補正および他のシステムパラメータを記述するデータビットを含む50Hz信号である。GPSナビゲーションメッセージは、SVによって伝送される時に、各サブフレームの伝送の時間を記録する時間タグ付きのデータビットを含む。データビットフレームは、5個の300ビットサブフレームに分割された1500ビットからなる。データフレームは30秒ごとに伝送される。3つの6秒のサブフ
レームは、軌道データおよびクロックデータを含む。衛星(Satellite Vehicle)(SV)クロック補正はサブフレーム1において送信され、伝送SVのための正確な衛星軌道データセット(暦表データパラメータ)は、サブフレーム2および3において送信される。サブフレーム4および5は、システムデータの異なるページを伝送するのに用いられる。25フレーム(125のサブフレーム)の組全体が、12.5分の期間にわたって送信される完全なナビゲーションメッセージを構成する。
【0036】
暦表データパラメータは、衛星軌道の短い部分についてのSV軌道を記述する。通常、受信機は1時間ごとに新しい暦表データを収集するが、さほどエラーもなく最大で4時間までの間、古いデータを用いることができる。暦表パラメータは、暦表パラメータセットによって記述される軌道の期間内の任意の時間に亘るSV位置を計算するアルゴリズムとともに用いられる。
【0037】
C/Aコードは、2.046MHzの広帯域において1,575.42MHzで(完全にヌル対ヌルで)同報通信され、民間での作業に用いられ、軍事活動における最初の捕捉のために用いられる。P/Yコードは、そのより高いチッピングレートに応じたC/Aコードよりも10倍高い測距精度を与え、20.46MHzに亘る、より広帯域の信号である。しばしば、C/Aコードはジャミングの最初の犠牲者となる。C/Aコードの1.023MHzチッピングレートは何らかの保護を提供するが、P/Yコードの10.23MHzチッピングレートは、付加的な10dBのJ/S保護を提供する。C/Aコード信号成分を敵が使用するのを拒否するために、ジャミングが狭帯域であることと、C/Aコード周波数帯域内で発生することとが分かっていれば、一般に、受信機に入力されるP/Yコードの中心の2MHzをノッチフィルタリングすることによって、さらなる保護が得られる。
【0038】
図2および図3を参照すると、図2は、ユーザ60(図3を参照)において実時間で受信される、第1のGPS衛星30a(図3を参照)からの50bpsデータストリーム80を概念的に例示する。実時間のデータストリーム20または中継されたフィードフォワードデータストリーム22からのGPSナビゲーションメッセージ全体は、長さが25フレームであり、GPSメッセージの各フレームが、長さが6秒または300ビットである5個のサブフレームにさらに分割される。同じGPS衛星30aからのフィードフォワードデータストリーム22は同一のデータを含むが、これは、フィードフォワードストリーム22が実時間のストリーム20よりも遅くユーザ60に到達するイリジウムシステムを通じた伝搬遅延のためである。図2に示されるように、フィードフォワードストリーム22は、フレーム1のデータを含むフレーム21が、遅延期間26として表わされるその同じフレーム1のデータを伝えるフレーム23に対する時間関係を伝えるように、単一のフレームの何分の1かの期間26に亘って遅らされる。実際の遅延の期間26は、GPS衛星および地上局に対するユーザ位置に応じて変化することとなる。この発明の一部として、フィードフォワードデータ22は、実時間データを向上させるのに用いることができるように、イリジウムデータストリームから検索され、GPS実時間データ20と時間的に整合される。
【0039】
図3は、この発明の好ましい実施例におけるシステムアーキテクチャを示す。基準GPS受信機50a、bは、干渉、ジャミングおよび減衰といったGPS信号条件が低い領域から離れた地球上に配置される。単一の応用例においては、このような受信機50a、bのうちの1つだけ、または複数のこのような受信機50a、bが用いられてもよい。これらの基準GPS基準受信機は、図示される各々の衛星30a、30b、30cおよび30dのために、それぞれ、50bpsのGPS測距信号データストリーム34a、34b、34cおよび34dを追跡する。
【0040】
一実施例においては、イリジウム地上送信機50aは、図示される各々の衛星30a、30b、30cおよび30dからそれぞれ実時間データストリームを受信し、この場合、この受信されたGPSフィードフォワードデータストリーム20を含む信号34aを、最も近い衛星40を介して実時間でイリジウムシステムにテレメータ送信する。近傍にある地上送信機が、その唯一の目的として、一群のイリジウム衛星上に実時間データストリーム20を配置する必要はないが、ただし、関連する衛星は、地上監視局50a、50bおよびユーザ60の両方にとって通常見ることができるものであるにすぎない。
【0041】
イリジウム衛星40は、数百マイルの高度で地球を周回し、約10分で空を横断する一群の低周回軌道衛星のうちの1つである。(この応用例全体にわたって、イリジウム衛星は、使用可能にする目的でLEO衛星17の具体例として用いられるが、ただし、必ずしもこの発明をイリジウム衛星に限定する、イリジウムに固有のものはない。データを適切に同報通信するLEO衛星はいずれもこの発明にとって好適であり、このため、この発明はLEO衛星には限定されない。)
ビットストリーム信号36a、36bはイリジウム同報通信チャネルに符号化される。この同報通信メッセージは、その相互リンク42、44を介しイリジウムネットワーク全体にわたって広められる。イリジウムは、最も遠いイリジウムLEO衛星40から伝送されている同報通信信号46によって、図3に示されるように、イリジウム群における各衛星から各GPS衛星のために50bps実時間データストリームを同報通信する。次いで、干渉、ジャミングまたは減衰のある質の低い環境におけるユーザ受信機60が、これらのGPSデータビットにアクセスする。ユーザ受信機はこれらのGPSデータビットを適用して、それ自体の実時間GPS測定の信号処理を高め得る。
【0042】
図4は、GPSおよびイリジウム衛星の信号をともに受信および復調する好ましい受信機100を示す。この発明がイリジウムまたは他の特定のいずれかの衛星システムに限定されるべきでないことに留意されたい。むしろ、当該システムは、GPSデータがユーザに再伝送されフィードフォワードされ得る他のいずれかの衛星システムのための受信機を用いることによって、同様に十分に動作し得る。
【0043】
受信機100は、デュアルバンドアンテナ102、バンドパスフィルタ104およびプリアンプ106を含む。フィルタおよびプリアンプは、L1およびL2 GPS信号がともに、L1信号周波数(GPSについては1575+/−10.23MHz;イリジウムについては1621+/−5MHz)に近いイリジウム信号とともに通過することを可能にする。フィルタリングされ増幅された信号は、GPS受信機110とイリジウム(または他のLEO)受信機112とに送られる。イリジウム受信機およびGPS受信機は、好ましくは温度補償型水晶発振器である共通のクロック108で繋ぎ合されている。
【0044】
GPS受信機100は、上述された態様で、出力として位置決定を生成する。GPS受信機はまた、干渉またはジャミング条件下でGPS受信機において減衰されたデータまたは欠損しているデータを解明するのを支援するために、イリジウム受信機112から転送されるGPS支援データを用いる。随意には、受信機はまた、GPS受信機と通信する慣性ユニット(IRU)114を含む。IRU114は、GPS受信機110に慣性運動情報を与えて、GPS受信機110が、衛星からのデータが制限されているかまたはデータが無い期間中に正確かつ最新の位置決定をもたらすことを可能にする。IRUの品質に応じて、GPS受信機からの位置決定は、最初の正確な位置決定の後に、GPSデータなしに、かなり長期間にわたって正確であり続ける可能性がある。
【0045】
好ましい実施例においては、衛星信号は、図5に図示のとおり、ソフトウェア受信機で復調され得る。代替的には、既存のイリジウム受信機は、この目的のために捕捉され、使用されてもよい。それにもかかわらず、この発明の好ましい形態は、保守および更新を容
易に低費用で行なえるようにするために、イリジウム受信機112の大部分に対しソフトウェアを用いる。
【0046】
受信機112の前端部はバンドパスフィルタ120を含む。現在好ましい実施例においては、バンドパスフィルタ120は、急なカットオフのある状態で1,621MHzで10MHz通過帯域を有しているので、高いQフィルタである必要がある。新しい技術により、この周波数でシャープなフィルタリングを行なうことができる。シャープなフィルタリングにより、近傍の携帯電話などの帯域外の干渉が排除される。この目的に適した電気部品の一例には、IBMのGPS受信機IBM43GAENGP0001に内蔵されている専用のRFチップペアがある。この受信機は、帯域通過を実行する一体型のSiGeチップと、自動利得制御(AGC)と、2ビット量子化を用いるダイレクトRFサンプリング関数とを含む。概略的には、図5に示されるこれらの機能としては、信号がバンドパスフィルタ120から伝わり、ハイブリッドカプラ122を介して同相および直交の成分に分割される。成分信号は、同相および直交のA/Dコンバータ124、126に送られる。一実施例では、信号が46MHzだけイリジウム帯域までダウンコンバートされる。しかしながら、直接のダウンコンバートすることは重要ではない。従来の直交ダウンコンバート方式を用いることもできる。
【0047】
A/Dコンバータ124、126は、入ってくる同相および直交の信号を40MHzでサンプリングする。出力が直接供給されるデジタル信号プロセッサ(DSP)130(好ましくは、TMS320DSP)は、イリジウム信号を捉え追跡するようデータの部分を処理し、信号位相および位相速度を計算し、イリジウム衛星によってフィードフォワードされるGPSデータを含む同報通信ビットを抽出し得る。イリジウム同報通信メッセージからのGPSデータビットは、イリジウム規格に従って復調される。メモリ132はまた、DSP130によって処理されるデータとコンピュータプログラミング命令とを記憶するのに設けられる。メモリ132は、EEPROMチップまたは他の電磁もしくは光学記憶装置などのさまざまないかなる形をも取り得る。
【0048】
図6は、半チャネルのためにGPS追跡がいかに実現されるかを示す。未処理の実時間デジタルGPSデータ測定値200が入力され、イリジウム衛星から得られるフィードフォワードデータ201で動作するコードジェネレータ204によって与えられた特定バージョンのGPSコードと第1のミキサ202において混合される。2つの同一の半チャネルで完全なチャネルを構成するが、これは、以下により詳細に記載されるとおりである。
【0049】
コードミキサの出力はまた、シンセサイザ208において受信機の搬送波追跡ループによって生成された内部合成バージョンのGPS搬送波と、第2のミキサ206において混合される。アキュムレータ210は、受信された信号エポックと境界が整列している入力チャネルの1ミリ秒サンプルを蓄積する。この積分境界は、1ミリ秒などの短い全体の積分時間に対処するが、より長い積分時間にも対応するのに十分に包括的になるよう選択される。GPS信号規格[ICD−200]に従うと、データビット境界はまた、受信した信号エポックと整列した20msの境界上に発生し得る。したがって、1ミリ秒のエポック境界は、決してデータビットを横断しない。
【0050】
【数1】

【0051】
イリジウム受信機(図示せず)は、イリジウムシステムを介した視野においてGPS衛星すべてについてのフィードフォワードGPSデータビットを復調する。ユーザ受信機における復調器214は、イリジウムデータフレーム内の入力ビットストリームを分類し、各チャネルに対する適切な位相合わせの際に基準GPSビットを一時的に位置決めする。遅延を追跡するために、GPSデータは、それがGPS衛星から同報通信されたGPS時間に従って時間タグが付けられる。一般に、これらのGPSデータビットは、GPS衛星から空間を通って地上基準受信機に伝搬すると、約80msのレイテンシをこうむる。地上基準局で受信された時間から10〜90msのオーダである付加的なレイテンシは、イリジウムシステムを通じた伝搬遅延のために、地上局からユーザへの伝送から発生することとなる。
【0052】
実時間GPSデータビットを適切に遅延させ、デコミュテータ214において生成されたデコミュテートされた(decommutated)フィードフォワードデータビットと時間的に整列させることを確実にするために、先入れ先出し(FIFO)同期バッファ216を用いて、(IRUデータと随意に混合された)アキュムレータからデータを受取ってバッファリングする。各データストリーム上のGPS時間タグを用いて、データのうちの同じミリ秒エポックが混合されることを確実にする。FIFO216は、アキュムレータからのミリ秒測定値の各バッチを、それらがイリジウムからの入力データビットと正確に時間整合されるまで保持する。次いで、イリジウムデータビットストリームを用いて、第4のミキサ218において、入力GPS信号からの50bpsデータ変調を消し去る。結果として、正しいコヒーレントなGPS搬送波位相検出器がもたらされるが、これは、アキュムレータ220において、1msから、慣性ユニットの品質によって制限されるより長い積分時間にまで、場合によっては慣性グレードユニットのために20秒を十分に超えて、拡張可能である。
【0053】
各チャネルは、2つの半チャネルによって形成される。図7に図示のとおり、各々の半チャネルの出力は以下のとおりに解釈され得る。すなわち、半チャネルコードジェネレータが初期のマイナス遅延コードシーケンス204bを合成するよう命令された場合、その半チャネル230の出力の実質的な成分232が、その衛星についてのコード位相追跡エラーに対応することとなる。半チャネルコードジェネレータが、規則的なコードシーケンス204bを合成するよう命令された場合、その半チャネル240の出力242は搬送波位相エラーに対応し得る。
【0054】
結果として得られる搬送波位相追跡エラーは、図8に示される推定器250に送り込ま
れる。この汎用の推定器250は、最新の位相追跡エラー測定値Δφを受信すると、搬送波位相と、任意の数のその時間導関数とを推定することができる。開始時に、補正されていない受信された搬送波位相が、位相補正信号242に従って入力搬送波の位相を調節することのできる搬送波同期ノード232に供給される。
【0055】
現在好ましい実施例においては、第3のオーダ追跡ループが、主として衛星軌道の動きを考慮に入れて実現される。したがって、追跡ループ推定器/シンセサイザに対する3つの状態、φ、すなわち、位相、位相速度および位相加速度が存在する。以下のマトリックス動的モデル、Φ、を用いて、1つのエポックにおける帰納的な推定値から次のエポックにおける先験的な推定値までの搬送波位相シンセサイザをその進行中にモデリングする。
【0056】
【数2】

【0057】
可観測性マトリックスH=[100]において符号化された唯一の観測可能なものは、測定された追跡エラーである。
【0058】
【数3】

【0059】
最適な推定理論を用いて、ブロック238において、最適利得Lが、以下のとおり、追跡エラーから測定更新式をもたらすよう選択され得る。
【0060】
【数4】

【0061】
エポックごとに、この補正ベクトルが、その進行を調整するよう搬送波位相シンセサイザ240に送信される。結果として、予測される搬送波位相242が、搬送波を有効に遅延させるかまたは進めるために搬送波同期ノード232に供給される。最終結果として、有効に最適な搬送波位相追跡ループ230がもたらされる。イリジウムからのレイテンシが同じ間隔のかなりの部分にまで達してしまわないことを確実にするよう注意を払わなければならないが、ただし、これは、サンプル間隔が1秒よりも長い場合には起こる可能性が低い。レイテンシが問題となる場合、遅延を考慮に入れた動的モデルを実現することが得策であり得る。また、好ましい実施例においては、搬送波位相シンセサイザ240は、1つの積分間隔から次の積分間隔までの第3のオーダ機能を有効に提供する。これについ
ての理由は、積分間隔が1秒に対して有意になる場合に当てはまる。
【0062】
このような積分期間においては、積分間隔にわたるいかなるユーザの動きをも説明するために、受信され補正された搬送波位相を整列させるよう慣性センサを補正することが好ましくなる。図6と整合性のある慣性搬送波同期ノード234においては、測定された追跡エラーが、
【0063】
【数5】

【0064】
となり、この場合、
【0065】
【数6】

【0066】
である。
慣性搬送波同期ノード234における位相補正は、密に連結された慣性ユニットによって推定されるGPSアンテナの位置の、所与のGPS衛星への視線への投影である。
【0067】
好適な慣性基準ユニット114についての一般的なモデルが図9aに示される。慣性基準ユニットのためのセンサは、随意には、ジンバル式ユニットではなくストラップダウン式の慣性の種類のものであるが、いずれも機能し得る。したがって、慣性基準ユニットは、ストラップダウン式慣性ナビゲーションシステム400を含む。
【0068】
ストラップダウン式慣性ナビゲーションシステム400は移動体に堅固に固定される。したがって、ストラップダウン式慣性基準ユニットは本体とともに移動し、それらのジャイロは、角速度に関して、移動している本体と同じ変化を経験しかつ測定する。ストラップダウン式慣性基準ユニット400は、本体の固定軸の点から、線形速度の変化を測定する加速度計を含む。本体の固定軸は、一定の慣性基準系とは反対の、移動する基準系として機能する。ナビゲーションコンピュータは、ジャイロの角度情報と加速度計の線形情報とを用いて、慣性基準系に対する本体の3Dの動きを計算する。
【0069】
17状態カルマンフィルタ(17-State Kalman Filter)は、位置、速度、加速度計バイアス、姿勢、ジャイロバイアス、クロックバイアス、およびクロックバイアスレート410を推定する。慣性エラープロセッサブロック404は、スケール係数および整列エラーを含む予め較正されたパラメータを補正する。次いで、補正された測定値が、加速度計およびジャイロのバイアス状態の追加、ならびに位置、速度および姿勢へのストラップダウン式測定値の積分を含めて、ブロック416において座標変換を実行する時間更新ブロックを通過する。四元積分がブロック418において行われる。予め較正されたレバーアームbは、ブロック420においてユーザアンテナの推定される位置を計算するのに用いられる。
【0070】
状態時間更新ブロックのGPS受信機402側においては、エラープロセッサブロック406の記述が、大気/電離層の影響、時間タグ整列、およびコードと搬送波との混合などのために補正を適用する。好ましい実施例におけるように差動基準局が利用可能になれば、GPS受信機からの測定値は、データリンク424を通じて供給される基準測定値に対して較正される。
【0071】
次いで、エラープロセッサ406が、ブロック422における位置決定のために、スカラー受信機クロックおよびクロックバイアス推定値を未処理の測定値に適用する。図6、図7および図8に関連して記載されるように、位置決定がブロック422において行なわれる。共分散時間更新ブロック414が状態共分散推定値を伝搬する。従来の密に連結された慣性の測定更新は、GPS位置推定値と慣性位置推定値との差から得られる。
【0072】
図9bは、現在好ましい実施例における過度に密に連結された慣性ユニットを示す。図9aに示される実施例とは異なり、GPSと慣性位置との差は、図6および図8に図示のとおり追跡ループレベルで受信機において獲得される。慣性位置および姿勢推定値は、受信機追跡ループにルーティングされる。時間更新差は、受信機追跡ループが、損なわれた信号で動力を受けた追跡ループ動作中に著しい妨害に耐えることができることを除いては、図9aと数学的に同一である。
【0073】
この発明を実現するための方法を、図10および図11を参照してさらに説明する。第1のステップ300においては、監視局、たとえば地上監視および制御局50(図3を参照)は、その視野におけるそれらのGPS衛星からGPS信号を受信する。監視局は、イリジウム衛星規格に従ってこれらの信号を変調し、第2のステップ302において、受信および変調されたGPSデータをイリジウム衛星に伝送する。イリジウム以外の他のLEO衛星が用いられてもよいことが理解されるべきである。実際に、LEO衛星は好ましい実施例であるが、いずれの幅広のフットプリントデータチャネルも、通信リンクが、変調されたGPSデータを供給することを可能にするだろう。
【0074】
最初のイリジウム衛星によって受信されると、次のステップ304において、GPSフィードフォワードデータが他のイリジウム衛星に相互リンクされる。フィードフォワードデータの相互リンクがいくつあってもよく、この発明と一致して、相互リンクが全くなくてもよい。最終的に、フィードフォワードデータは、最終ステップ308においてフィードフォワードデータを受信する何人ものユーザによって受信されるよう地球306に向かって同報通信される。
【0075】
図10を参照すると、ユーザは、ステップ310において、イリジウム衛星を介して実時間GPS信号およびフィードフォワードGPSデータを受信する。ユーザ受信機は両方のデータストリームを処理し、ステップ312においてフィードフォワードGPSデータを抽出し、ステップ314において、概して並行して実時間GPSデータを処理し、これをバッファリングして、フィードフォワードデータに同期させるようにする。次いで、フィードフォワードデータを用いて、実時間データ316を補って、ジャミングまたは干渉条件下でも、システムがユーザのところで正確なGPSデータを獲得および使用することを可能にする。最後に、受信機は、随意には慣性基準ユニットによって支援されて、処理済みのGPSデータから位置決定318を生成する。
【0076】
別の実施例においては、概要として、低周回軌道(LEO)衛星からの信号からユーザ装置の正確な位置を推定するための方法は、ユーザ装置において少なくとも1つの搬送波信号を受信するステップを含み、各々の搬送波信号は別個のLEO衛星によって伝送される。ユーザ装置は、当該搬送波信号を処理して第1の搬送波位相情報を得る。ユーザ装置は、慣性基準ユニットにおいて得られる慣性位置決定を再現する。ユーザ装置は、慣性位
置決定および第1の搬送波位相情報に基づいてユーザ装置の位置を導き出す。
【0077】
図12は、イリジウム(または他のLEO)衛星512、514が、1つ以上の基準局516、518とともにユーザに測距システムを提供するのに用いられる好ましいシステムを示す。イリジウムを用いる利点のうちの1つは、GPS衛星によって生成されるよりもはるかに強い信号を生成できることである。状況に応じて、イリジウム衛星は、GPSよりも約20dB〜40dB以上高い受信された出力をユーザに与えるよう構成され得る。
【0078】
イリジウムを有する三次元の動的環境において単一の測距源を用いた位置決めは、単一の測距源が理想的な表面上の二次元での解決策に限定されてきた点で、以前の位置決めシステムとは大きく異なっている。たとえば、TRANSITとして知られる米海軍のナビゲーション衛星システムでは、ユーザは、精度が制限された準静的な二次元の測定しか行うことができなかった。通常、正確なナビゲーション決定の所要の周波数を提供するのに、最低4つの動作可能なTRANSIT衛星が必要とされた。
【0079】
GPSは、瞬間的な三次元の位置決めを可能にするために少なくとも4つの測距源を同時に提供する。しかしながら、GPSは、屋内での動作、またはジャミングが激しい条件における動作を制限する低出力信号を有する。この発明のシステムの基本的な利点は、その先代モデルの制限に同時に対処して、屋内でも、またはジャミングがある場合でも、動的な三次元の正確な位置決定を提供することである。イリジウムを用いた高度な位置決めにより、主として周囲の多重経路の影響によって制限される好適な性能を実現することが可能になるはずである。
【0080】
差動基準測定値を提供するための地上のサポートインフラストラクチャが存在する。現在好ましい実施例においては、基準局516は、基準機器を用いて衛星512および514から信号を受信する。このような基準機器は、受信アンテナの局所的な位置が、GPS位置決めを含む調査または他の従来の手段によって正確に知られているという点においてのみ異なるユーザ機器520と機能的に同一であり得る。
【0081】
差動基準測定には、少なくとも2つの受信機、基準局516およびユーザ機器520の協働を伴う。少なくとも2つの受信機の協働は、実質的に同じエラーによって劣化する基準局516およびユーザ機器520において受信される信号524に依拠する。この協働は、信号526に対する同じ障害物を含む大気の実質的に同じ薄層を通過する場合に、地球上で起り得る。地球の表面上で発生させるために、ユーザ機器520および基準局516が、概して、約1000キロメートル未満だけ離され得る。このようなジオメトリが存在する場合、ユーザ機器520および基準局516の両方に到達する信号524は、同じ障害物526を通って伝わるか、または、同じパターンのジャミングによって増強されることとなる。
【0082】
基準局516はイリジウムクロックの実時間の測定値を提供する。データメッセージ522は、現在好ましい実施例においては、イリジウムを介して基準局516からユーザ受信機520に伝送されるが、障害物526またはジャミングを含むイリジウムクロックエラーおよび大気影響の両方を説明するよう各々の測定値に実時間範囲の補正を施す。ユーザ受信機520がその位置を計算するのに多くの利用可能な衛星のうちのどれを用いるかを基準局516が知り得ないので、基準受信機516は、衛星514などの目に見える衛星をすべて迅速に調べ、その信号528に付随するエラーを計算する。計算された結果を基準局の既知の局所的な位置と適合させるのに必要な補正が、ジャミング環境下で適度に信頼性のある任意の好適な帯域上で時間基準に関連してユーザ機器に伝送されて、ほぼ実時間の補正を確立させる。一般に、信号524が被る障害物526またはジャミングにお
ける付随する差のせいでユーザと基準局との間の分離がより大きくなると、ナビゲーション性能が低下する。
【0083】
第2の基準局518が好適に近接している場合、第2の基準局518は、たとえば衛星514からの第2の補正係数をもたらす第1の基準局516と同じ計算を信号528上で実行して、ユーザ機器が、エラー計算を平均することによって、またはエラー計算を整合させる他の好適な手段によって精度をより高めることを可能にし得る。
【0084】
図13を参照すると、位置決めシステム530のための現在好ましいシステムアーキテクチャについてのブロック図では、イリジウムまたは他のLEO衛星が用いられる。位置決めシステム530の各構成要素は、同じマスタクロック、すなわち、正確な時間基準540から駆動される。シンセサイザ538は、正確な時間基準540からデータバス542を通じてシンセサイザ538に供給されるクロック信号に基づいて、各々の構成要素のために必須のコヒーレントな正弦波およびクロック信号の各々を生成する。
【0085】
アンテナ532は、現在好ましい実施例がL帯域受信のために構成され最適化されるとおりに、イリジウムまたは他のLEO衛星からの伝送を受信するよう構成される。イリジウム受信機534は、アンテナ532において受信された未処理の信号を受信し、これを、シンセサイザ538によって生成されかつデータバス548において受信機534に提示される信号と比較する。データバス548における信号をアンテナ532において受信された伝送と比較することにより、イリジウム受信機534は、位置解を計算するのに十分なデータを提示する。
【0086】
増補された位置解は、シンセサイザ538からクロック信号を受信する慣性測定ユニット536を用いて計算される。現在好ましい実施例における慣性測定ユニット536を用いた加速度の測定は、3つの直交軸に方向付けられた加速度計によって実現され、垂直軸に対して正確に姿勢を計算するこのような各々の軸を中心とした角速度の測定は、正確な姿勢検知を実現する。ユーザの姿勢および他のパラメータまたは配向および動きは、共通のアセンブリ内における加速度計および速度センサによって生成されるデータから導き出される。現在好ましい実施例においては、加速度計はMEMS慣性センサである。
【0087】
現在好ましい実施例における慣性測定ユニット536で加速度を測定することにより、システムが増強されて、ユーザの次の位置を予想するシステムが提供される。随意には、慣性測定ユニット536を用いることによって導き出される位置解が前の解と整合されて、自己テスト能力を獲得し、慣性測定ユニット536での位置の計算時におけるエラーの範囲を低減させ得る。
【0088】
イリジウムを用いた三次元の位置決めおよびフィルタリングは、84分のシューラー(Schuler)周期よりもはるかに短い約10分の時間スケールにわたって作動する。シューラー周期は、地球の半径に相当する長さをもった単純な不減衰の振子のための周期であり、地表のある地点の湾曲した動きに対して従来の慣性ナビゲーション機器を補正するのに用いられてきた。したがって、慣性ユニットは、イリジウム信号のフィルタリングされた範囲測定精度よりも精度が著しく優れている相対位置測定値を提供することができなければならない。
【0089】
十分な性能を持ったMEMS慣性センサでは、屋内環境の周囲の多重経路による劣化は、全体的なシステムレベルの精度を左右する。全体的なシステム精度は、標準偏差における1シグマを表わす4メートル範囲において始まる。イリジウム信号に適用される高度な信号処理技術は、屋内での多重経路エラーを大いに低減させる。空の視界が妨げられていない屋外の応用例においては、精度はかなり優れたものになるが、主として慣性基準ユニ
ットの性能によって制限される。
【0090】
この発明の現在好ましい実施例においては、この発明の方法および装置は安定したイリジウム同報通信信号を生成する。イリジウム信号は技術的にはTDMA信号であるが、高出力信号を作成するためにいくつかのサブ帯域を重ね合せると、安定したCDMA信号により近くなる。このように作成された場合、ナビゲーションユーザは事前にコードが分かっているので、当該コードを利用することができる。安定したイリジウム同報通信信号を構成するパルスパターンが正しくプログラミングされていれば、高出力信号は、処理のために、GPSまたはその同等物の安定したY−コード信号のように現われることとなる。
【0091】
多重経路によって駆動される屋内の場合のシステムアーキテクチャは、10分の惰走の後、約1メートルの全体の位置バイアスに対して潜在的な要件を課す。限定的な慣性パラメータは、ジャイロ・レートのバイアス安定性または角度ランダムウォーク・エラーから生じる可能性がある。当該システムが高精度かつ高整合のナビゲーションを求めて屋外で用いられる場合、より性能が高い慣性システムが必要とされる。
【0092】
特に、所与の任意の時点で視野に測距源が1つしか存在しない場合、コンピュータ554は、すべてのイリジウム測距測定値をまとめるよう機能する。「高精度」とは、センチメートルレベルでの位置エラーを意味する。「高整合」とは安全性関連の言葉であり、位置決めシステムにエラーが存在するかどうか判断するために過剰な衛星測距測定値の形で存在する冗長な情報が十分にあることを意味する。このような能力は、そのシステムがナビゲーションのために用いられるべきでない場合にシステムのオペレータに警告するのに用いることができる。高性能ナビゲーションは、LEO衛星の搬送波位相を用いて、センチメータレベルまで正確な未処理の範囲測定値を得る。
【0093】
当該システムは、しばしば、一度に1つの測距源しか測定しないので、正確な周波数標準を用いることが所望される。この目的のために2種類の周波数標準が利用可能である。すなわち、オーブン制御された(ovenized)水晶発振器と、原子ルビジウム周波数標準とである。600秒(10分)ほどのアラン分散では、オーブン制御された水晶振動子は10-11を超えない。これは、イリジウム信号に対する多重経路エラーを著しく下回る、イリジウムパスにわたる約2メートルの位置エラーに対応する。付加的な精度が必要とされる場合、コンパクトで耐久性が高められたルビジウム基準が用いられるべきである。対応するアラン分散は、10分間隔にわたる約2cmの位置エラーに対応する10-13である。
【0094】
イリジウム受信機534からデータバス550を介する未処理の位置解と、慣性測定ユニット536からデータバス552を介する加速度測定値とは、コンピュータ554に供給され、当該コンピュータ554がカルマンフィルタを実行して、測定値を最終解へと処理する。カルマンフィルタは、最小二乗法の有効な計算(帰納的)解を与える1組の数式である。フィルタは、いくつかの局面において非常に強力であり、過去、現在およびさらには将来の状態の推定をサポートし、モデリングされたシステムの正確な性質が未知の場合でもこのように行なうことができる。
【0095】
カルマンフィルタは、フィードバック制御の形を用いることによってプロセスを推定する。当該フィルタは、ある時点でのプロセス状態を推定し、(雑音のある)測定値の形でフィードバックを得る。したがって、カルマンフィルタについての式は、時間更新式と測定更新式との2つのグループに分けられる。時間更新式は、次回のステップについての先験的な推定値を得るために、現在の状態およびエラー共分散推定値を(時間に関して)前方に投影する役割を果たす。測定更新式は、フィードバックの役割を果たす、すなわち、改善された帰納的な推定値を得るために新しい測定値を先験的な推定値に組込む役割を果
たす。イリジウム受信機534からデータバス550を介する未処理の位置解と、慣性測定ユニット536からデータバス552を介する加速度測定値とは、コンピュータ554に入力されるが、同じ現象、すなわち空間での移動、の測定値であるので、当該測定値は、カルマンフィルタ657(図15)によってモデリングされるシステムにおいて関連付けられる。
【0096】
状況に応じて、(ヨー姿勢などの)すべての状態が必ずしも常に観測可能であるわけではない。しかしながら、イリジウムの軌道ジオメトリのせいで、システム設計により、出力の位置成分が常にイリジウム測距測定値の精度内で有効に観測可能になることが確実にされる。
【0097】
この発明の2つの基本的な動作モードが挙げられる。第1のモードはコード位相測定値に基づいている。建物の内部には多重経路の多くの源が存在するので、搬送波の使用は特に不可能となる。しかしながら、LEO衛星は、図14aおよび図14bに図示のとおり、物理的なバリアを貫通するのに有用な著しく高い同報通信出力とともに、豊富なジオメトリをもたらす。コード測距測定値は、さまざまな時間になされる測定を埋めるために慣性ナビゲーションユニットを用い、適度に正確な位置について解決するためにこのジオメトリを用いて組合され得る。
【0098】
第2の動作モードは搬送波位相測定値に基づいている。搬送波位相測定が屋外でなされた場合、LEO衛星に対して明瞭な視線を得ることが可能となり、これにより、センチメートルレベルの位置決め精度の実現が可能となる。図14aおよび図14bに図示のとおり、この豊富なジオメトリにより、これらの精密測定値を、ここでもさまざま時間になされる測定を埋めるよう慣性ナビゲーションユニットを用いて、高精度かつ高整合の位置解に組合せることが可能となる。
【0099】
図14aおよび図14bは、ユーザの基準点からの典型的なジオメトリパスを示す。イリジウム衛星は、数分の間隔にわたって円弧を描いて飛行する。多重経路は概して最大のエラー源となるだろう。イリジウム搬送波位相は、ユーザが空を明瞭に見ることができる場合、測距エラーを任意に小さく、場合によってはセンチメートルレベルに駆動するのに用いることができる。残念ながら、未処理の測距エラーは、屋内ではほぼ20〜30mの動作に増大する傾向がある。イリジウム衛星が大きな角度の円弧を描いて空を横断するので、この屋内の多重経路エラーの大部分の平均を下げるように空間の多様性を利用することが可能となるはずである。実験的なGPS性能と類似していることにより、パラメータをスケーリングすることによってどのようなイリジウム性能になり得るかを予測することができる。イリジウム測定間の相関時間は約10秒になると推定されるが、これは、10分のパスにわたって、受信機がほぼ60の「独立した」測定値を集め得ることを意味する。したがって、測距精度は、おそらく、(60の平方根で未処理の測距精度を分割して)ほぼ4メートルに改善され得る。
【0100】
図14aに図示のとおり、コールドスタート初期設定560は、第1のイリジウム衛星パスの軌道を用いて、ユーザ568の位置に対する頂点562を有するイリジウム軌道球体564の局所的部分を規定する。慣性測定ユニット536による慣性ナビゲーションは、ユーザ568の位置に対して図示される第1のパス566の後に位置の共分散をもたらす。LEO衛星軌道球体564におけるLEO衛星の軌道の急速に変化する角度は、その軌道球体564におけるLEO衛星によって許容可能な位置推定の迅速な収束を可能にする。
【0101】
システム構造は、密に連結されたGPS慣性ユニットに類似する。しかしながら、図15に図示のとおり、システム600は、カルマンフィルタ657を用いて一度にわずかに
1つの範囲測定値を処理するよう意図されている。動的な応用例については、MEMS慣性基準ユニット(IRU)602が当該システムに連結され、エラー前処理ユニット605においてエラー前処理を受ける。より要求の厳しい応用例においては、慣性グレードIRUが所望されるかもしれない。
【0102】
好適なIRU602についての一般的なモデルは、ストラップダウン式慣性ナビゲーションシステムを含む。ストラップダウン式慣性ナビゲーションシステムは、移動体に堅固に固定されている。したがって、ストラップダウン式慣性基準ユニットは、本体とともに移動し、それらのジャイロは、角速度に関して、移動している本体と同じ変化を経験しかつ測定する。ストラップダウン式慣性基準ユニットは、本体の固定軸の点から、線形速度の変化を測定する加速度計を含む。本体の固定軸は、一定の慣性基準系とは反対の、移動する基準系として機能する。ナビゲーションコンピュータは、ジャイロの角度情報と加速度計の線形情報とを用いて、慣性基準系に対する本体の3Dの動きを計算する。
【0103】
IRU602は、それが回転加速度として出力する慣性加速度を検知する。回転加速ベクトル情報は、エラープリプロセッサ605に供給される。慣性エラープリプロセッサ605は、スケール係数および整列エラーを含む予め較正されたパラメータを補正する。次いで、補正された測定値が、加速度計およびジャイロのバイアス状態の追加、ならびに位置、速度および姿勢のベクトルへのストラップダウン式IRU602測定値の積分を含めて、時間更新ブロック608および611を通過する。
【0104】
【数7】

【0105】
LEO(現在好ましい実施例の場合には、イリジウム)受信機632のLEO受信機側で、LEO衛星から搬送波信号を受信する。現在好ましい実施例においては、ユーザ装置の近傍にある基準地上局で受信された第2の搬送波信号はまた、任意のデータリンク635における地上局位置の正確な位置に関連付けて受信される。第2の搬送波信号は、LEO衛星からの搬送波信号の迅速な積分を確実にし、さらに、LEOエラープリプロセッサ638の動作を可能にする。
【0106】
慣性側と同様に、LEOエラープリプロセッサ638は、スケール係数および整列エラーを含む予め較正されたパラメータを補正する。加えて、LEOエラープリプロセッサ638は、任意のデータリンク635で受信された情報に基づいて、伝搬によって引起されたエラーを補正する。エラープロセッサ638は、大気/電離層の影響、時間タグ整列、およびコードと搬送波との混合などのために補正を適用する。
【0107】
バイアス状態時間更新ブロック641、644、647および651は、スカラー受信機クロックおよびクロックバイアス推定値を未処理の測定値に適用する。さらなるバイアスブロック654は、このようなLEO信号が利用可能である場合、プロセッサ626の
出力を用いて短期間のユーザの動きを減じ、LEO信号上での長い積分時間を可能にする。補正されたLEO位置は、カルマンフィルタ657に供給できる状態にある。現在好ましい実施例においては、コンピュータ554は17状態カルマンフィルタ推定器を実行して、
位置(3つの軸)
速度(3つの軸)
加速度計バイアス(3つの軸)
姿勢(3つの軸)
ジャイロバイアス(3つの軸)
クロックバイアス
クロックドリフト、について解決する。
【0108】
共分散時間更新器660は状態共分散推定値を伝搬する。プロセッサ626によって各々の所与のLEO衛星の視線に投影される推定された慣性位置は、LEO衛星までの測定された範囲と比較されて、カルマンフィルタ657への測定更新を形成する。
【0109】
図を参照すると、衛星ベースのナビゲーションシステムにおけるユーザ装置の正確な位置を測定するための方法700が提供される。ブロック701において、ユーザ装置は、1組のLEO衛星から伝送された搬送波信号を受信する。ブロック704において、ユーザ装置は、搬送波信号を処理して、当該1組のLEO衛星からの幾何学的に多様なユーザ搬送波位相情報を含むユーザ搬送波位相情報を得る。ブロック707において、ユーザ装置は慣性位置決定を再現する。ブロック710において、ユーザ装置の正確な位置は、慣性位置決定およびユーザ搬送波位相情報に基づいている。ブロック713において、ユーザ装置は、ユーザ搬送波位相情報における整数周期の不明確さを解決するために、慣性位置に基づいて当該1組のLEO衛星からユーザ搬送波情報を得る。
【0110】
好ましい実施例においては、当該方法700は、基準搬送波位相情報を得るために基準局において搬送波信号を追跡するステップを含む。基準搬送波位相情報は、当該1組のLEO衛星からの幾何学的に多様な基準搬送波位相情報を含む。当該方法700はまた、ブロック716において、基準局で受信された搬送波信号から第2の搬送波位相情報を導き出すステップを含み得る。ブロック719において、ユーザ装置は、基準搬送波位相情報に基づいて位置計算の精度を改善する。好ましい実施例においては、当該方法は、1組のナビゲーション衛星から受信したコード位相信号を用いて、近似するユーザ位置およびクロックオフセットを推定するステップをさらに含む。
【0111】
好ましくは、差動コード位相技術を用いて、慣性推定値の精度を向上させる。当該方法の好ましい実施例はまた、付加的な有利な技術を含んでおり、たとえば、ユーザにおける搬送波信号と基準受信機回路との間の周波数依存位相遅延差の補償、ユーザ受信機およびLEO信号源の予想される動きに応じて選択された所定の時間間隔内におけるナビゲーション搬送波情報およびLEO搬送波情報の読出、ナビゲーション衛星情報を用いたLEO発振器不安定性の較正、ベントパイプLEO通信アーキテクチャに起因する位相妨害の補償、ユーザおよび基準受信機における発振器の不安定性の補償、過去の基準搬送波位相情報に基づいた現在の基準搬送波位相情報の予測、ならびに、位置計算の整合性の監視などが含まれる。
【0112】
状況に応じて、(ヨー姿勢などの)すべての状態が必ずしも常に観測可能であるとは限らない。イリジウムの軌道ジオメトリ、特に、空中で大きな角度で高速に動くために、当該システムは、収束が起こると、出力の位置成分が常にイリジウム測距測定値の精度内で有効に観測可能になることを確実にする。
【0113】
この発明の実施例を例示および記載してきたが、上述のとおり、この発明の精神および範囲から逸脱することなく多くの変更がなされ得る。たとえば、高性能の搬送波測距が実行される場合、整数周期の不明確さを説明するために、任意のフロートバイアス状態が、図15に図示のとおりLEO衛星ごとに1つずつ追加される。LEO衛星を上述してきたが、いかなる幅広のフットプリント、視界外のデータチャネルも候補に挙げられる。したがって、この発明の範囲は上述の実施例の開示によっては限定されない。むしろ、この発明は、添付の特許請求の範囲を参照することによってその全体が決定されるべきである。
【図面の簡単な説明】
【0114】
【図1】GPS受信機を備え、干渉に晒される航空機の代表図である。
【図2】ユーザが受信した実時間のフィードフォワードGPS信号のタイミングを示す図である。
【図3】この発明に従ったシステムの代表図である。
【図4】LEOおよびGPS受信機のブロック図である。
【図5】好ましいGPSまたはLEO受信機のブロック図である。
【図6】GPS半チャネルに対する好ましい信号処理のブロック図である。
【図7】信号チャネルを処理するためのGPS受信機についてのブロック図である。
【図8】GPS搬送波追跡ループ推定器モデルのブロック図である。
【図9a】慣性ナビゲーションプロセッサのブロック図である。
【図9b】好ましい慣性ナビゲーションプロセッサのブロック図である。
【図10】この発明に従った好ましい方法のフロー図である。
【図11】この発明に従った好ましい方法のフロー図である。
【図12】LEO衛星を用いた屋内の位置決めシステムのブロック図である。
【図13】LEO衛星を用いた差動位置決めシステムの図である。
【図14a】第1のパス後のLEOおよびMEMS源からのシステム共分散を示す図である。
【図14b】次のパス後のLEOおよびMEMS源からのシステム共分散を示す図である。
【図15】密に連結されたLEO慣性積分器のブロック図である。
【図16】LEO信号および慣性位置決定に基づいて位置を導き出すためのプロセスを説明するフローチャートである。

【特許請求の範囲】
【請求項1】
GPS衛星信号を用いてユーザのための位置を決定するための方法であって、
GPS衛星から伝送された実時間GPSデータストリームを受信するステップと、
前記GPS衛星から生じるフィードフォワードGPSデータストリームをLEO衛星から受信するステップと、
少なくとも実時間データが損なわれた場合、フィードフォワード信号が実時間データを補うように、実時間およびフィードフォワード信号を処理するステップと、
前記処理された信号に基づいて前記ユーザのための位置を決定するステップとを含む、方法。
【請求項2】
前記実時間データが、ジャミング、RF干渉または構造上の干渉のうちの少なくとも1つの結果として損なわれる、請求項1に記載の方法。
【請求項3】
前記処理するステップは、蓄積および時間同期バッファリングを含む、請求項1に記載の方法。
【請求項4】
前記処理するステップは、前記フィードフォワードデータストリームの復調を含む、請求項1に記載の方法。
【請求項5】
位置を決定する前に慣性基準ユニットにアクセスするステップをさらに含む、請求項1に記載の方法。
【請求項6】
少なくとも1つの付加的な実時間GPSデータストリームを受信し、少なくとも1つの付加的なフィードフォワードGPSデータストリームを前記LEO衛星から受信するステップをさらに含む、請求項1に記載の方法。
【請求項7】
前記フィードフォワードGPSデータストリームは、前記LEO衛星に相互リンクされ、前記ユーザに同報通信される、請求項1に記載の方法。
【請求項8】
GPS信号に基づいてユーザのための位置を決定するための装置であって、
第1のGPS衛星から受信した第1の実時間GPS信号を処理するよう構成された第1の受信機と、
前記第1の受信機に連結された第2の受信機とを含み、前記第2の受信機は、LEO衛星から伝送された第1のLEO信号を処理するよう構成され、前記第1のLEO信号は、前記第1の実時間GPS信号に対応し、前記第1のGPS衛星から生じる第1のフィードフォワードGPS信号を含み、前記第2の受信機はさらに、GPS支援データを前記第1の受信機に送信するよう構成され、
前記第1の受信機は、前記第1の実時間GPS信号を前記第1のフィードフォワードGPS信号で補うことによって、より正確なGPS信号を獲得するよう構成される、装置。
【請求項9】
前記第1の受信機はさらに、前記第1の実時間GPS信号を前記第1のフィードフォワードGPS信号に同期させるよう構成される同期バッファを含む、請求項8に記載の装置。
【請求項10】
前記第1の受信機および前記第2の受信機に連結される共通のクロックをさらに含む、請求項9に記載の装置。
【請求項11】
前記第1のGPS衛星および前記第1のLEO衛星から伝送を受信するよう適合されたアンテナをさらに含む、請求項10に記載の装置。
【請求項12】
前記アンテナと信号通信するフィルタと、前記フィルタならびに前記第1および第2の受信機と信号通信するプリアンプとをさらに含む、請求項11に記載の装置。
【請求項13】
前記第1の受信機に連結される慣性基準ユニットをさらに含み、前記第1の受信機は、前記ユーザの位置を決定するために前記慣性基準ユニットからの慣性支援データを用いるよう構成される、請求項10に記載の装置。
【請求項14】
前記第1の受信機は、デジタル信号プロセッサと、前記デジタル信号プロセッサに連結されたメモリとをさらに含む、請求項13に記載の装置。
【請求項15】
GPS信号に基づいてユーザのための位置を決定するための装置であって、
第1のGPS衛星から受信した第1の実時間GPS信号を処理するための第1の手段と、
第1のGPS支援データを生成するためにLEO衛星から伝送された第1のLEO信号を処理するための第2の手段とを含み、前記第1のLEO信号は、前記第1の実時間GPS信号に対応し、前記第1のGPS衛星から生じる第1のフィードフォワードGPS信号を含み、前記装置はさらに、
前記第1の実時間GPS信号および前記GPS支援データの関数として前記ユーザの位置を決定するための手段を含む、装置。
【請求項16】
前記第1の処理手段は、前記第1の実時間GPS信号を前記第1のフィードフォワードGPS信号に同期させるよう構成された同期バッファを含む、請求項15に記載の装置。
【請求項17】
前記第1の処理手段と前記第2の処理手段とに連結される共通のクロックをさらに含む、請求項16に記載の装置。
【請求項18】
前記第1のGPS衛星および前記第1のLEO衛星から伝送を受信するよう適合されたアンテナをさらに含む、請求項17に記載の装置。
【請求項19】
前記アンテナと信号通信するフィルタと、前記フィルタならびに前記第1の処理手段および前記第2の処理手段と信号通信するプリアンプとをさらに含む、請求項18に記載の装置。
【請求項20】
前記第1の処理手段に連結された慣性基準ユニットをさらに含み、前記第1の処理手段は、前記ユーザの位置を決定するために前記慣性基準ユニットから慣性支援データを用いるよう構成される、請求項19に記載の装置。
【請求項21】
前記第1の処理手段はさらに、デジタル信号プロセッサと、前記デジタル信号プロセッサに連結されたメモリとをさらに含む、請求項13に記載の装置。
【請求項22】
GPS信号に基づいてユーザの位置を決定するためのシステムであって、
複数のGPS衛星を含み、前記複数のGPS衛星の各々は、実時間GPS信号を前記ユーザに伝送するよう構成され、前記システムはさらに、
地球から伝送された信号を受信し、複数の付加的なLEO衛星に前記信号を随意に相互リンクし、前記信号をユーザに同報通信するよう構成された第1のLEO衛星と、
前記複数のGPS衛星のうちの少なくとも1つから前記実時間GPS信号を受信し、前記実時間GPS信号に基づいてフィードフォワードGPS信号を前記第1のLEO衛星に伝送するよう構成された監視および制御局と、
前記第1のLEO衛星または前記複数の付加的なLEO衛星のうちの1つから前記実時
間GPS信号および前記フィードフォワードGPS信号を受信するよう構成されたユーザ受信機とを含み、前記ユーザ受信機は、前記ユーザの位置を決定するために、前記実時間GPS信号と前記フィードフォワードGPS信号とを用いる、システム。
【請求項23】
前記ユーザ受信機はさらに、
前記実時間GPS信号を処理するよう構成された第1の受信機と、
前記第1の受信機に連結された第2の受信機とを含み、前記第2の受信機は、前記LEOフィードフォワードGPS信号を処理し、前記第1の受信機にGPS支援データを送信するよう構成され、
前記第1の受信機は、前記第1の実時間GPS信号を前記第1のフィードフォワードGPS信号で補うことによって、より正確なGPS信号を獲得するよう構成される、請求項22に記載のシステム。
【請求項24】
前記第1の受信機はさらに、前記実時間GPS信号を前記フィードフォワードGPS信号に同期させるよう構成された同期バッファを含む、請求項23に記載のシステム。
【請求項25】
前記第1の受信機および前記第2の受信機に連結される共通のクロックをさらに含む、請求項24に記載のシステム。
【請求項26】
前記複数のGPS衛星のうちの少なくとも1つから、ならびに、前記第1のLEO衛星および前記複数の付加的なLEO衛星のうちの少なくとも1つから伝送を受信するよう適合されたアンテナをさらに含む、請求項25に記載のシステム。
【請求項27】
前記アンテナと信号通信するフィルタと、前記フィルタならびに前記第1および第2の受信機と信号通信するプリアンプとをさらに含む、請求項26に記載のシステム。
【請求項28】
前記第1の受信機に連結された慣性基準ユニットをさらに含み、前記第1の受信機は、前記ユーザの位置を決定するために、前記慣性基準ユニットからの慣性支援データを用いるよう構成される、請求項27に記載のシステム。
【請求項29】
前記第1の受信機は、デジタル信号プロセッサと、前記デジタル信号プロセッサに連結されたメモリとをさらに含む、請求項28に記載のシステム。
【請求項30】
前記第1のLEO衛星および前記複数の付加的なLEO衛星はイリジウム衛星を含む、請求項29に記載のシステム。
【請求項31】
低周回軌道(LEO)衛星からの信号からユーザ装置の正確な位置を推定するための方法であって、
ユーザ装置において少なくとも1つの搬送波信号を受信するステップを含み、各々の搬送波信号は別個のLEO衛星に伝送され、前記方法はさらに、
第1の搬送波位相情報を得るために前記搬送波信号を処理するステップと、
慣性基準ユニットで導き出された慣性位置決定を再現するステップと、
前記慣性位置決定および前記第1の搬送波位相情報に基づいて前記ユーザ装置の位置を導き出すステップとを含む、方法。
【請求項32】
前記ユーザ装置の位置を導き出すステップはさらに、
前記慣性位置に基づいて整数周期の不明確さを解決するために第1の搬送波位相情報を改善するステップを含む、請求項31に記載の方法。
【請求項33】
前記ユーザ装置の位置を導き出すステップはさらに、
第2の基準搬送波位相情報を得るために基準局において受信された前記搬送波信号を処理するステップを含む、請求項31に記載の方法。
【請求項34】
前記ユーザ装置の位置を導き出すステップはさらに、
前記第2の基準搬送波位相情報にさらに基づいて前記ユーザ装置の位置を改善するステップを含む、請求項33に記載の方法。
【請求項35】
1組のナビゲーション衛星から受信したコード位相信号を用いて、近似するユーザ位置およびクロックオフセットを推定するステップをさらに含む、請求項31に記載の方法。
【請求項36】
前記慣性位置決定は前記ユーザ位置に基づいて改善される、請求項35に記載の方法。
【請求項37】
前記慣性基準ユニットはMEMS慣性基準ユニットである、請求項31に記載の方法。
【請求項38】
前記慣性位置決定は、前記ユーザ装置の位置に基づいて改善される、請求項31に記載の方法。
【請求項39】
低周回軌道(LEO)衛星からの信号から前記ユーザ装置の正確な位置を推定するためのユーザ装置であって、前記方法は、
前記ユーザ装置において少なくとも1つの搬送波信号を受信するよう構成された受信機を含み、各々の搬送波信号は別個のLEO衛星に伝送され、前記ユーザ装置はさらに、
第1の搬送波位相情報を得るために、前記搬送波信号を処理するよう構成される第1のプロセッサと、
慣性基準ユニットにおいて導き出される慣性位置決定を再現するよう構成される慣性基準ユニットと、
前記慣性位置決定および前記第1の搬送波位相情報に基づいて前記ユーザ装置の位置を導き出すよう構成されたプロセッサとを含む、ユーザ装置。
【請求項40】
前記プロセッサはさらに、前記慣性位置に基づいて整数周期の不明確さを解決するよう構成される、請求項39に記載のユーザ装置。
【請求項41】
前記受信機はさらに、第2の基準搬送波位相情報を得るために、基準局において受信された前記搬送波信号を処理するよう構成される、請求項39に記載のユーザ装置。
【請求項42】
前記プロセッサはさらに、前記第2の基準搬送波位相情報に基づいて前記ユーザ装置の位置を改善するよう構成される、請求項41に記載のユーザ装置。
【請求項43】
前記プロセッサはさらに、1組のナビゲーション衛星から受信したコード位相信号を用いて、近似するユーザ位置およびクロックオフセットを推定するよう構成される、請求項39に記載のユーザ装置。
【請求項44】
前記慣性基準ユニットはさらに、前記ユーザ位置に基づいて前記慣性位置決定を改善するよう構成される、請求項43に記載のユーザ装置。
【請求項45】
前記干渉基準ユニットはMEMS干渉基準ユニットである、請求項39に記載のユーザ装置。
【請求項46】
前記慣性基準ユニットはさらに、前記ユーザ装置の位置に基づいて前記慣性位置決定を改善するよう構成される、請求項39に記載のユーザ装置。
【請求項47】
コンピュータ読取可能媒体に記憶されるコンピュータソフトウェアプログラムであって、前記コンピュータプログラムは、低周回軌道(LEO)衛星からの信号に基づいてユーザ装置の正確な位置を推定するよう構成され、前記方法は、
少なくとも1つの搬送波信号を受信するよう構成された第1のソフトウェア構成要素を含み、各々の搬送波信号は別個のLEO衛星に伝送され、前記コンピュータソフトウェアプログラムはさらに、
第1の搬送波位相情報を得るために前記搬送波信号を処理するよう構成された第2のソフトウェア構成要素と、
慣性基準ユニットにおいて導き出された慣性位置決定を再現するよう構成された第3のソフトウェア構成要素と、
前記慣性位置決定および前記第1の搬送波位相情報に基づいて前記ユーザ装置の位置を導き出すよう構成された第4のソフトウェア構成要素とを含む、コンピュータソフトウェアプログラム。
【請求項48】
前記第4のソフトウェア構成要素はさらに、前記慣性位置に基づいて整数周期の不明確さを解決するために、前記第1の搬送波位相情報を改善するよう構成される、請求項47に記載のソフトウェアプログラム。
【請求項49】
前記第4のソフトウェア構成要素はさらに、
第2の基準搬送波位相情報を得るために基準局において受信された前記搬送波信号を処理するよう構成される、請求項47に記載のソフトウェアプログラム。
【請求項50】
前記ユーザ装置の位置を導き出すステップはさらに、
前記第2の基準搬送波位相情報にさらに基づいて前記ユーザ装置の位置を改善するステップを含む、請求項49に記載のソフトウェアプログラム。
【請求項51】
1組のナビゲーション衛星から受信したコード位相信号を用いて、近似するユーザ位置およびクロックオフセットを推定するよう構成された第5のソフトウェア構成要素をさらに含む、請求項47に記載のソフトウェアプログラム。
【請求項52】
前記第3のソフトウェア構成要素はさらに、前記近似するユーザ位置に基づいて前記慣性位置決定を改善するよう構成される、請求項51に記載のソフトウェアプログラム。
【請求項53】
前記慣性基準ユニットはMEMS慣性基準ユニットである、請求項47に記載のソフトウェアプログラム。
【請求項54】
前記第3のソフトウェア構成要素はさらに、前記ユーザ装置の位置に基づいて前記慣性位置決定を改善するよう構成される、請求項47に記載のソフトウェアプログラム。
【請求項55】
低周回軌道(LEO)衛星からの信号からユーザ装置の正確な位置を推定するための装置であって、前記方法は、
ユーザ装置において少なくとも1つの搬送波信号を受信するための手段を含み、各々の搬送波信号は別個のLEO衛星に伝送され、前記装置はさらに、
第1の搬送波位相情報を得るために前記搬送波信号を処理するための手段と、
慣性基準ユニットで導き出された慣性位置決定を再現するための手段と、
前記慣性位置決定および前記第1の搬送波位相情報に基づいて前記ユーザ装置の位置を導き出すための手段とを含む、装置。
【請求項56】
前記ユーザ装置の位置を導き出すための手段はさらに、
前記慣性位置に基づいて整数周期の不明確さを解決するために第1の搬送波位相情報を
改善するための手段を含む、請求項55に記載の装置。
【請求項57】
前記ユーザ装置の位置を導き出すための手段はさらに、
第2の基準搬送波位相情報を得るために基準局において受信された前記搬送波信号を処理するための手段を含む、請求項55に記載の装置。
【請求項58】
前記ユーザ装置の位置を導き出すための手段はさらに、
前記第2の基準搬送波位相情報にさらに基づいて前記ユーザ装置の位置を改善するための手段を含む、請求項57に記載の装置。
【請求項59】
1組のナビゲーション衛星から受信したコード位相信号を用いて、近似するユーザ位置およびクロックオフセットを推定するための手段をさらに含む、請求項55に記載の装置。
【請求項60】
前記慣性位置決定は、前記ユーザ位置に基づいて改善される、請求項59に記載の装置。
【請求項61】
前記慣性基準ユニットはMEMS慣性基準ユニットである、請求項55に記載の装置。
【請求項62】
前記慣性位置決定は、前記ユーザ装置の位置に基づいて改善される、請求項55に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9a】
image rotate

【図9b】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15】
image rotate

【図16】
image rotate


【公表番号】特表2007−524089(P2007−524089A)
【公表日】平成19年8月23日(2007.8.23)
【国際特許分類】
【出願番号】特願2006−549570(P2006−549570)
【出願日】平成17年1月12日(2005.1.12)
【国際出願番号】PCT/US2005/000989
【国際公開番号】WO2005/081011
【国際公開日】平成17年9月1日(2005.9.1)
【出願人】(500520743)ザ・ボーイング・カンパニー (773)
【氏名又は名称原語表記】The Boeing Company
【Fターム(参考)】