説明

高純度ハフニウムの製造方法

【課題】効率的かつ安定した製造技術及びそれによって得られた高純度ハフニウム材料、同材料からなるターゲット及び薄膜を提供する。
【解決手段】ジルコニウムとガス成分を除き純度4N以上であって、酸素含有量が40wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜、ジルコニウムとガス成分を除き純度4N以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。ジルコニウムを低減させたハフニウムスポンジを原料として使用し、さらにハフニウム中に含まれる酸素、硫黄、リンの含有量を低減させた高純度ハフニウム材料、同材料からなるターゲット及び薄膜並びに高純度ハフニウムの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハフニウム中に含まれるジルコニウム、酸素、硫黄、リン等の不純物の含有量を低減させた高純度ハフニウム材料、同材料からなるターゲット及び薄膜並びに高純度ハフニウムの製造方法に関する。
【背景技術】
【0002】
従来、ハフニウムの製造に関する多数の文献があるが、ハフニウムはジルコニウムと原子構造及び化学的な性質が大きく類似しているため、下記に例示するように、ジルコニウムが含有されていても、またジルコニウムにハフニウムが含有されていても、特に問題視されることはなかった。
ハフニウム及びジルコニウムは耐熱性、耐食性に優れており、酸素や窒素などとの親和力が大きいという特性を持っている。そして、これらの酸化物あるいは窒化物は、さらに高温での安定性に優れているため、原子力用セラミックスあるいは鉄鋼や鋳物の製造分野での耐火材として利用されている。さらに、最近では電子又は光材料として利用されるようになってきた。
【0003】
金属ハフニウム又は金属ジルコニウムの製造法は、いずれも同一の製造方法として提案されている。その例を挙げると、フッ素含有ジルコニウム又はハフニウム化合物を不活性ガス、還元ガス又は真空中、400°C以上の温度で金属アルミニウム又はマグネシウムと反応させる方法(例えば、特許文献1参照)、塩化ジルコニウム、塩化ハフニウム又は塩化チタンを還元してそれぞれの金属を製造するという、シール金属に特徴のある製造方法(例えば、特許文献2参照)、マグネシウムで四塩化ジルコニウム又は四塩化ハフニウムをマグネシウム還元する際の反応容器の構造とその製造手法に特徴のあるハフニウム又はジルコニウムの製造法(例えば、特許文献3参照)、クロロ、ブロモ、ヨードのジルコニウム、ハフニウム、タンタル、バナジウム及びニオブ化合物蒸気をるつぼに導入して製造する方法(例えば、特許文献4参照)、ジルコニウム又はハフニウム塩化物又は酸塩化物水溶液を強塩基性陰イオン交換樹脂を用いて精製する方法(例えば、特許文献5参照)、溶媒抽出によるジルコニウムの回収方法(例えば、特許文献6参照)、給電部分に特徴を有するクリスタルバーハフニウムの製造装置(例えば、特許文献7参照)がある。
【特許文献1】特開昭60−17027号公報
【特許文献2】特開昭61−279641号公報
【特許文献3】特開昭62−103328号公報
【特許文献4】特表平3−501630号公報
【特許文献5】特開平10−204554号公報
【特許文献6】特開昭60−255621号公報
【特許文献7】特開昭61−242993号公報
【0004】
上記の文献に示すように、ジルコニウム及びハフニウムの精製方法又は抽出方法が多数あるが、これらはいずれもジルコニウムが含有されていても、またジルコニウムにハフニウムが含有されていても、特に問題視されることはなかったのである。
しかし、最近ハフニウムシリサイドを利用した電子部品への成膜が要求されるようになってきた。このような場合に、ジルコニウムと云えども不純物であり、必要とされるハフニウム原料の特性が不安定になるおそれがある。したがって、ジルコニウムを低減させた高純度ハフニウム材料、同材料からなるターゲット及び薄膜が要求されるようになった。
しかし、上記のようにハフニウムとジルコニウムを分離する発想がなかったので、効率的かつ安定した製造技術がないのが現状である。また、不純物としての酸素、硫黄、リンを効率良く除去することが難しいため、これも同様に高純度化することを怠ってきた理由の一つである。
特に、残留抵抗比の高い材料が要求されており、従来は高純度ハフニウム材料が得られていないことから、残留抵抗比が低く、電子部品材料としての要求に十分に応えることができなかった。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、ジルコニウムを低減させたハフニウムスポンジを原料として使用し、さらにハフニウム中に含まれる酸素、硫黄、リンの含有量を低減させた高純度ハフニウム材料、同材料からなるターゲット及び薄膜並びに高純度ハフニウムの製造方法に関し、効率的かつ安定した製造技術及びそれによって得られた高純度ハフニウム材料、同材料からなるターゲット及び薄膜を提供することを課題とする。
【課題を解決するための手段】
【0006】
上記の課題を解決するために、本発明者らは鋭意研究を行なった結果、本発明者らが先に開発したジルコニウムを低減させたハフニウムスポンジを原料として使用し、さらに電子ビーム溶解と溶融塩による脱酸により、酸素、硫黄、リンを効率良く分離し、必要に応じて、さらに電子ビーム溶解することにより目的とする高純度のハフニウムを製造できるとの知見を得た。
本発明は、この知見に基づき、
1)ジルコニウムとガス成分を除き純度4N以上であって、酸素含有量が40wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
2)ジルコニウムとガス成分を除き純度4N以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
3)ジルコニウムとガス成分を除き純度4N以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であることを特徴とする1記載の高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
4)ジルコニウムとガス成分を除き純度4N以上であって、該ジルコニウムの含有量が0.5wt%以下であることを特徴とする1〜3のいずれかに記載の高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
5)ハフニウムスポンジ原料を溶媒抽出後溶解し、さらに得られたハフニウムインゴットを溶融塩により脱酸することを特徴とする高純度ハフニウムの製造方法。
6)溶融塩による脱酸後、さらに電子ビーム溶解することを特徴とする5記載の高純度ハフニウムの製造方法。
を提供する。
【発明の効果】
【0007】
本発明はハフニウム中のジルコニウムを除去したハフニウムスポンジを原料として用い、さらにこのハフニウムスポンジを電子ビーム溶解と溶融塩による脱酸を行うことにより、高純度のハフニウムを安定して製造できるという優れた効果を有する。また、このようにして得られた高純度のハフニウムインゴットから、スパッタリングターゲットを製造し、このターゲットを用いてスパッタリングすることにより、高純度のハフニウムの薄膜を得ることができる効果を有する。そして、高純度ハフニウム材料から残留抵抗比の高い薄膜を得ることが可能となり、電子部品材料としての要求に十分に応えることができる効果を有する。
【発明を実施するための最良の形態】
【0008】
本発明は、ジルコニウムを除去したハフニウムスポンジを原料とする。ハフニウムからジルコニウムを除去する方法は、本発明者が先に発明した手法を採用することができるが、ジルコニウムを低減させたハフニウムであれば、他の原料を使用することもできる。
ジルコニウムを低減する方法として先の発明を、ここに紹介する。
原料として、四塩化ハフニウム(HfCl)を使用する。四塩化ハフニウムは、市販の材料を使用することができる。この市販の四塩化ハフニウムはジルコニウムを5wt%程度含有している。なお、原料としてハフニウム(Hf)メタル、酸化ハフニウム(HfO)を用いても良い。
これらの原料は、ジルコニウムを除き、純度3Nレベルのものであり、ジルコニウム以外の主な不純物として、鉄、クロム、ニッケルが含有されている。
【0009】
まず、この四塩化ハフニウム原料を純水に溶解する。次に、これを多段の有機溶媒抽出を行う。通常1〜10段の溶媒抽出を行う。有機溶媒としてはTBPを使用することができる。
これによってジルコニウムは、5000wtppm以下にすることができ、溶媒抽出を繰返すことにより、さらに1000wtppm以下にすることができる。また、その他の不純物の合計量を1000wtppm以下とすることができる。
次に、中和処理して酸化ハフニウム(HfO)を得る。この酸化ハフニウムを塩素化して高純度四塩化ハフニウム(HfCl)を得、これをさらにハフニウム及びジルコニウムよりも塩化力の強い、例えばマグネシウム金属等を使用して還元しハフニウムスポンジとする。還元性金属としては、マグネシウム以外にカルシウム、ナトリウム等が使用できる。
【0010】
本発明において、このようにして得られたハフニウムスポンジを、Cuるつぼの中で、一旦電子ビーム溶解する(ハース溶解)。その後、これに順次ハフニウムスポンジを投入する。プール上部よりあふれたハフニウム溶湯がインゴット上部に流れ込む。ここでも溶湯の状態であり、このようにハースとインゴット化時に、2度の溶解を一連の電子ビーム操作で行うことにより、純度を上げることができる。
この後、さらに得られたインゴットを溶融塩により脱酸を行う。この脱酸工程では、後述するように、炭素、硫黄、リン、その他の不純物も除去することができる。具体的には酸素を40wtppm以下、硫黄、リンをそれぞれ10wtppm以下とすることができる。ジルコニウムは前記工程において、5000wtppm以下、さらには1000wtppmとすることができる。
【0011】
このように炭素、酸素、窒素等のガス成分及びジルコニウムを除き、純度4N(99.99wt%)以上の高純度ハフニウムインゴットを得ることができる。
また、この高純度ハフニウムを使用して高純度ハフニウムターゲットを製造することができ、さらにこの高純度ターゲットを用いてスパッタリングすることにより高純度ハフニウムを基板上に成膜することができる。
また、このようにして得られた高純度ハフニウム材料から、後述する実施例に示すように、残留抵抗比の高い材料を得ることができ、電子部品材料としての要求に十分に応えることができる。
ターゲットの製造は、鍛造・圧延・切削・仕上げ加工(研磨)等の、通常の加工により製造することができる。特に、その製造工程に制限はなく、任意に選択することができる。
【実施例】
【0012】
次に、実施例について説明する。なお、この実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内における、他の実施例及び変形は、本発明に含まれるものである。
【0013】
(実施例1)
表1に示す、ジルコニウムを5000wtppm程度含有する純度3Nの、市販の四塩化ハフニウム(HfCl)100Kgを用い、これを1Lの純水に溶解させ、硝酸溶液とした。
このHfCl中の主な不純物としては、鉄、クロム、ニッケルがあり、それぞれ500wtppm、40wtppm、1000wtppm含有されていた。
次に、この硝酸溶液をTBPの有機溶媒を使用して、4段の有機溶媒抽出を行い、これを中和処理して酸化ハフニウム(HfO)を得た。
さらに、この酸化ハフニウムを塩素化して高純度四塩化ハフニウム(HfCl)を得、マグネシウム還元によりハフニウムスポンジとし原料とした。このハフニウムスポンジ中には、ジルコニウム300wtppm、その他の不純物の合計量が300wtppmと低減した。
【0014】
次に、このようにして得られたハフニウムスポンジを原料とし、さらに電子ビームによるハース溶解とインゴット溶解の2段溶解を行い、揮発性元素、ガス成分等を除去した。以上の工程によって、表1に示すように、ジルコニウムは300wtppmと変らないが、鉄、クロム、ニッケル等のその他の不純物が、70wtppmに減少し、さらにO:250wtppm、C:50wtppm、N:<10wtppm、S:<10wtppm、P:<10wtppmとなった。
次に、このようにして得たハフニウムをCaとCaClの溶融塩を使用して、1200°C、5時間の脱酸を行った。O:<10wtppmに、C:<10wtppmに低減し、その他の不純物も30wtppmに低減した。
以上により、ジルコニウムを除き、純度4N(99.99wt%)レベルの高純度ハフニウムインゴットを得ることができた。
このインゴットから得たスパッタリングターゲットは、同様に高純度を維持することができ、これをスパッタすることにより均一な特性の高純度ハフニウムの薄膜を基板上に形成することができた。
【0015】
【表1】

【0016】
(実施例2)
表2に示す、ハフニウムメタル原料(ジルコニウム含有量2wt%)100Kgを用い、弗硝酸で溶解した。前記原料中のその他の主な不純物としては、鉄、クロム、ニッケルがあり、それぞれ15000wtppm、8000wtppm、5000wtppmレベル含有されていた。
次に、このハフニウム原料をTBPの有機溶媒を使用し、10段の有機溶媒抽出を行い、これを中和処理して酸化ハフニウム(HfO)を得た。
さらに、この酸化ハフニウムを塩素化して高純度四塩化ハフニウム(HfCl)を得、カルシウム還元によりハフニウムスポンジとした。このハフニウムスポンジ中には、ジルコニウム1500wtppm、その他の不純物合計量1000wtppmまで低減した。
【0017】
次に、このようにして得られたハフニウムスポンジを原料とし、さらに電子ビームによるハース溶解とインゴット溶解の2段溶解を行い、揮発性元素、ガス成分等を除去した。以上の工程によって、表2に示すように、O:400wtppm、C:30wtppm、N:<10wtppm、S:10wtppm、P:10wtppmとなった。
次に、このようにして得たハフニウムをMgとMgClの溶融塩を使用して、1200°C、10時間の脱酸を行った。O:20wtppmに、C:10wtppmに低減し、その他の不純物も50wtppmに低減した。
このインゴットから得たスパッタリングターゲットは、実施例1と同様に均一な特性の高純度ハフニウムの薄膜を基板上に形成することができた。
【0018】
【表2】

【0019】
(実施例3)
表3に示す、酸化ハフニウム(HfO)原料(3Nレベル)100Kgを用い、弗硝酸で溶解した。前記原料中のその他の主な不純物としては、鉄、クロム、ニッケルがあり、それぞれ15000wtppm、8000wtppm、5000wtppmレベル含有されていた。
次に、この酸化ハフニウム原料を、塩素化し10段以上の蒸留で精製し、さらにナトリウム還元した。
次に、このようにして得られたハフニウムを原料とし、さらに電子ビームによるハース溶解とインゴット溶解の2段溶解を行い、揮発性元素、ガス成分等を除去した。以上の工程によって、表3に示すように、Zr:500wtppm、O:100wtppm、C:100wtppm、N:20wtppm、S:10wtppm、P:10wtppm、その他:30wtppmとなった。
【0020】
次に、このようにして得たハフニウムをCaとCaClの溶融塩を使用して、1250°C、アルゴン加圧下(4atm)で、10時間の脱酸を行った。これによって、O、C、N、S、P<10wtppmに低減し、その他の不純物も25wtppmに低減した。
このインゴットから得たスパッタリングターゲットは、実施例1と同様に均一な特性の高純度ハフニウムの薄膜を基板上に形成することができた。
【0021】
【表3】

【0022】
上記実施例1−3について、残留抵抗比を測定した結果を表4に示す。この結果、表4に示すように、実施例1、2、3のインゴット段階の残留抵抗比は、それぞれ38、22、45であったが、脱酸後はそれぞれ200、120、190といずれも高くなった。このように、超高純度化されたハフニウムから、高残留抵抗比のハフニウムを得ることができることが分かる。
【0023】
【表4】

【0024】
(比較例1)
前記表2に示す原料をプラズマアーク溶解してインゴットを製造した。インゴットの不純物量は、O:7,000wtppm、C:1,800wtppm、S:100wtppm、P:50wtppmZr:20,000wtppm、その他:1,600wtppmであった。このインゴットの残留抵抗比を同様に、表4に示す。
この表4から明らかなように、不純物含有量が多いために、残留抵抗比は低く、5であった。
【産業上の利用可能性】
【0025】
本発明はジルコニウムを除去したハフニウムスポンジを原料とし、このハフニウムスポンジを、さらに電子ビーム溶解と溶融塩による脱酸処理を行うことにより、酸素等のガス成分、その他の不純物元素を低減させた、純度の高いハフニウムを安定して製造できるので、耐熱性、耐食性材料として、あるいは電子材料又は光材料として利用できる。

【特許請求の範囲】
【請求項1】
ジルコニウムとガス成分を除き純度4N以上であって、酸素含有量が40wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
【請求項2】
ジルコニウムとガス成分を除き純度4N以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であることを特徴とする高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
【請求項3】
ジルコニウムとガス成分を除き純度4N以上であって、硫黄、リンの含有量がそれぞれ10wtppm以下であることを特徴とする請求項1記載の高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
【請求項4】
ジルコニウムとガス成分を除き純度4N以上であって、該ジルコニウムの含有量が0.5wt%以下であることを特徴とする請求項1〜3のいずれかに記載の高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜。
【請求項5】
ハフニウムスポンジ原料を溶媒抽出後溶解し、さらに得られたハフニウムインゴットを溶融塩により脱酸することを特徴とする高純度ハフニウムの製造方法。
【請求項6】
溶融塩による脱酸後、さらに電子ビーム溶解することを特徴とする請求項5記載の高純度ハフニウムの製造方法。

【公開番号】特開2010−196172(P2010−196172A)
【公開日】平成22年9月9日(2010.9.9)
【国際特許分類】
【出願番号】特願2010−86629(P2010−86629)
【出願日】平成22年4月5日(2010.4.5)
【分割の表示】特願2005−515564(P2005−515564)の分割
【原出願日】平成16年10月25日(2004.10.25)
【出願人】(591007860)日鉱金属株式会社 (545)
【Fターム(参考)】