説明

高絶縁性フィルム

【課題】耐熱性および電気絶縁性に優れた高絶縁性フィルムを提供すること。
【解決手段】主たる成分として熱可塑性ポリエーテルケトン樹脂を用いた厚み方向の屈折率が、1.640以下である二軸延伸フィルムと、その少なくとも片面に設けられた表面の水接触角が85°以上、120°以下である塗布層を有する高絶縁性フィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱可塑性ポリエーテルケトン樹脂を主たる成分とする高絶縁性フィルムに関する。
【背景技術】
【0002】
近年、電子機器の小型化が進み、それに伴いコンデンサーなどの電子部品の小型化が進んでいる。一方で、取り扱う電力の増大により、電子機器自体の発熱が大きくなり、またハイブリッド自動車や電気自動車等の進展もあり、高温環境下で使用することができる電子部品が求められている。そのため、コンデンサーに用いられるフィルムとしては、高い電気絶縁性や、高い耐熱性が必要とされてきている。
【0003】
電気絶縁性材料、とりわけコンデンサーの絶縁体として用いられる電気絶縁性フィルムとしては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等からなるフィルムがよく知られている。さらに近年においては、コンデンサーの耐熱性を高める等の目的で、他の樹脂を用いる検討や、これらの樹脂を改質する検討が行われている。例えば、特許文献1、2においては、耐熱性に優れた熱可塑性ポリエーテルケトンフィルムを、コンデンサーなどの電気絶縁用途に用いることが検討されている。
【0004】
しかし、熱可塑性ポリエーテルケトンフィルムは耐熱性には優れるものの、ポリプロピレンフィルムなどと比較してやや電気絶縁性に劣るという欠点を有している。また、ポリプロピレンフィルム等は、耐熱性が不十分であり、耐熱性と電気絶縁性とを高度に具備するフィルムが求められている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭57−137116号公報
【特許文献2】特開昭61−37419号公報
【特許文献3】特開平1−205511号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、上記従来技術の問題点を解決し、耐熱性および絶縁破壊電圧等の電気絶縁性に優れた高絶縁性フィルムを提供することにある。特に、高温環境下においても優れた絶縁破壊電圧特性を有する高絶縁性フィルムを提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、前記課題を解決するために鋭意検討した結果、主たる成分として熱可塑性ポリエーテルケトン樹脂を用いた二軸延伸フィルムにおいて、その少なくとも片面に、表面の水接触角が85°以上、120°以下である塗布層を設けることにより、耐熱性および電気絶縁性に優れ、高温環境下においても優れた絶縁破壊電圧特性を有する二軸延伸フィルムが得られることを見出し、本発明に到達した。
【0008】
すなわち本発明は、熱可塑性ポリエーテルケトン樹脂(A)を主たる構成成分とする厚み方向の屈折率が、1.640以下である二軸延伸フィルムと、その少なくとも片面に設けられた、表面の水接触角が85°以上、120°以下である塗布層とを有する高絶縁性フィルムが提供される。
【0009】
また、本発明の好ましい態様として、前記塗布層が、ワックス成分、シリコーン成分およびフッ素化合物からなる群より選ばれる少なくとも1種を、塗布層の質量を基準として、41質量%以上、94質量%以下の範囲で含有すること、二軸延伸フィルムが、熱可塑性ポリエーテルケトン樹脂(A)とガラス転移温度(Tg)が180℃以上である樹脂成分(B)との樹脂組成物からなり、樹脂成分(B)の含有量が、二軸延伸フィルムの質量を基準として、5〜48質量%の範囲であること、樹脂成分(B)が、ポリイミド系樹脂であること、二軸延伸フィルムが、1質量%減量温度が280℃以上である酸化防止剤(C)を、二軸延伸フィルムの質量を基準として、0.5質量%以上8質量%以下含有すること、温度150℃で30分間熱処理したときの、機械軸方向およびそれと直交する方向(横方向)の熱収縮率の絶対値がそれぞれ1.0%以下であること、機械軸方向およびそれと直交する方向(横方向)において、23℃における破断強度(破断強度23)がそれぞれ200MPa以上であり、140℃における破断強度(破断強度140)と23℃における破断強度との比(破断強度140/破断強度23)がそれぞれ0.7以上であること、140℃における絶縁破壊電圧(BDV140)と23℃における絶縁破壊電圧との比(BDV140/BDV23)が0.7以上であること、電気絶縁用、特にコンデンサー用であり、フィルム厚みが0.4μm以上6.5μm未満であることのうち、少なくともいずれか1つの態様をさらに具備することが好ましく、これらを包含するものである。
【発明の効果】
【0010】
本発明によれば、耐熱性および電気絶縁性に優れた高絶縁性フィルムを提供することができる。特に、高温環境下における絶縁破壊電圧特性に優れた高絶縁性フィルムを提供することができる。このような特性を有する本発明の高絶縁性フィルムは、高温環境下において用いられる電気絶縁用として好適に用いることができ、とりわけ移動体用、特に自動車移動体、例えばハイブリッド自動車、電気自動車などのコンデンサー用として好適に用いることができ、その工業的価値は極めて高い。
【発明を実施するための形態】
【0011】
以下、本発明を詳しく説明する。
[二軸延伸フィルム]
本発明における二軸延伸フィルムは、熱可塑性ポリエーテルケトン樹脂を主たる成分とするものである。ここで「主たる」とは、二軸延伸フィルムを基準として51質量%以上、好ましくは59質量%以上、より好ましくは65質量%以上、さらに好ましくは75質量%以上、特に好ましくは92質量%以上が熱可塑性ポリエーテルケトン樹脂であることを表わす。
【0012】
<熱可塑性ポリエーテルケトン樹脂(A)>
本発明における熱可塑性ポリエーテルケトン樹脂(A)は、構成単位
【化1】

または
【化2】

を単独で、あるいは該単位と他の構成単位からなるポリマーである。
【0013】
かかる他の構成単位としては、例えば
【化3】

等が挙げられる。上記構成単位において、Aは直接結合、酸素、−CO−、−SO−または二価の低級脂肪族炭化水素基であり、Q及びQ’は同一であっても相違してもよく、−CO−または−SO−であり、nは0または1である。これらポリマーは、特公昭60−32642号公報、特公昭61−10486号公報、特開昭57−137116号公報等に記載されている。
【0014】
本発明における熱可塑性ポリエーテルケトン樹脂(A)としては、上記式[化2]を含む態様が好ましく、その含有量は、熱可塑性ポリエーテルケトン樹脂(A)の質量を基準として、好ましくは60質量%以上、より好ましくは66質量%以上、さらに好ましくは75質量%以上、特に好ましくは80質量%以上であり、このような態様とすることによって耐熱性を維持したまま、電気絶縁性の向上効果を高くすることができ、高温環境下における絶縁破壊電圧特性をより優れたものとすることができる。
【0015】
熱可塑性ポリエーテルケトン樹脂(A)は、上述の通り、それ自体公知であり、且つそれ自体公知の方法で製造することができる。
また、本発明における熱可塑性ポリエーテルケトン樹脂(A)は、温度380℃、見かけの剪断速度1000sec−1の条件における見かけの溶融粘度が500〜10000ポイズ、さらには1000〜5000ポイズの範囲にあるものが、製膜性に優れるため好ましい。
【0016】
<酸化防止剤(C)>
本発明においては、前記熱可塑性ポリエーテルケトン樹脂(A)を主たる構成成分とする二軸延伸フィルムが特定の量の酸化防止剤(C)を含有することによって、電気的特性をより高いものとすることができる。
かかる酸化防止剤としては、生成したラジカルを捕捉して酸化を防止する一次酸化防止剤、あるいは生成したパーオキサイドを分解して酸化を防止する二次酸化防止剤のいずれであってもよく、一次酸化防止剤としてはフェノール系酸化防止剤、アミン系酸化防止剤があげられ、二次酸化防止剤としてはリン系酸化防止剤、硫黄系酸化防止剤があげられる。
【0017】
フェノール系酸化防止剤の具体例としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2−t−ブチル−4−メトキシフェノール、3−t−ブチル−4−メトキシフェノール、2,6−ジ−t−ブチル−4−〔4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ〕フェノール、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等のモノフェノール系酸化防止剤、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、N,N’−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン、N、N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオンアミド]、3,9−ビス〔1,1−ジメチル−2−〔β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕エチル〕2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン等のビスフェノール系酸化防止剤、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリトールテトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、ビス〔3,3’−ビス−(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド〕グリコールエステル、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−sec−トリアジン−2,4,6−(1H,3H,5H)トリオン、d−α−トコフェノール等の高分子型フェノール系酸化防止剤を挙げることができる。
【0018】
アミン系酸化防止剤の具体例としては、アルキル置換ジフェニルアミン等を挙げること
ができる。
【0019】
リン系酸化防止剤の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニルジトリデシル)ホスファイト、オクタデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト等を挙げることができる。
【0020】
硫黄系酸化防止剤の具体例としては、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、2−メルカプトベンズイミダゾール等を挙げることができる。
【0021】
本発明における酸化防止剤は、特に耐腐食性により優れ、絶縁破壊電圧の向上効果をより高めることができるという観点から、一次酸化防止剤が好ましく、フェノール系酸化防止剤がさらに好ましい。
【0022】
本発明における酸化防止剤(C)は、1質量%減量温度が280℃以上であることが好ましい。これにより、フィルムの厚み斑をより良好なものとすることができ、電気絶縁性の面内バラツキを抑制でき、単に酸化防止剤を添加するよりも電気絶縁性を優れたものとすることができ、すなわち絶縁破壊電圧を高くすることができる。1質量%減量温度が低すぎる場合は、溶融押出時に熱分解してしまう酸化防止剤の量が多くなり、かかる熱分解物によって工程を汚染する、ポリマーが黄色く着色する等の問題が生じやすくなる傾向にある。そして、このような劣化物がダイリップ部に付着、堆積しやすくなり、これによりフィルム上にスジ状の凹凸欠点が生じやすくなり、厚み斑が低くなる傾向にあり、それにより電気絶縁性に劣る傾向にある。また、延伸性も低下する傾向にある。このような観点から、酸化防止剤(C)の1質量%減量温度は、より好ましくは300℃以上、さらに好ましくは320℃以上、特に好ましくは340℃以上である。本発明における酸化防止剤は、1質量%減量温度が高い方が好ましいが、現実的には、その上限は500℃以下程度である。
【0023】
また、本発明における酸化防止剤(C)の融点は、90℃以上であることが好ましい。融点が低すぎる場合は、溶融押出時に酸化防止剤がポリマーより早く融解してしまい、押出機のスクリュー供給部分においてポリマーがスリップしてしまう傾向にある。それによって、ポリマーの供給が不安定となり、フィルムの厚み斑が悪くなる等の問題が生じる。このような観点から、酸化防止剤(C)の融点の下限は、より好ましくは100℃以上、さらに好ましくは110℃以上、特に好ましくは140℃以上である。他方、酸化防止剤(C)の融点が高すぎる場合は、溶融押出時に酸化防止剤(C)が融解しにくくなり、ポリマー内での分散が悪くなってしまう傾向にある。それにより、酸化防止剤(C)の添加効果が局所的にしか発現しない等の問題が生じる。このような観点から、酸化防止剤(C)の融点の上限は、好ましくは450℃以下、より好ましくは400℃以下、さらに好ましくは380℃以下、特に好ましくは360℃以下である。
【0024】
以上のような酸化防止剤(C)としては、市販品をそのまま用いることもできる。市販品としては、例えば、3,9−ビス[2−〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニロキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピリオ[5−5]ウンデカン(住友化学社製:商品名SUMILIZER GA−80)、ペンタエリスリトールテトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1010)、N,N’−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1024)、N,N’−ヘキサン−1,6−ジイルビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオンアミド〕(チバ・スペシャルティ・ケミカルズ社製:商品名IRGANOX1098)等が好ましく例示される。
【0025】
本発明における二軸延伸フィルムは、上記酸化防止剤(C)を、二軸延伸フィルムの質量を基準として0.5質量%以上8質量%以下含有することが好ましい。酸化防止剤(C)の含有量を上記数値範囲とすることによって、絶縁破壊電圧に優れる。酸化防止剤(C)の含有量が少なすぎる場合は、酸化防止剤の添加効果が十分でなく、絶縁破壊電圧の向上効果が低下する傾向にある。このような観点から、酸化防止剤(C)の含有量の下限は、0.7質量%以上が好ましく、1.0質量%以上がさらに好ましく、1.5質量%以上が特に好ましい。他方、含有量が多すぎる場合は、フィルム中において酸化防止剤が凝集しやすくなる傾向にあり、酸化防止剤に起因する欠点が増加する傾向にあり、絶縁破壊電圧の向上効果が乏しくなる。また、含有量が多すぎると、高温の溶融押出し時に押出しダイリップ部に酸化防止剤の劣化物が付着、堆積しやすくなり、この影響でフィルム上に筋状の凹凸欠点が発生し、厚み斑が悪くなり、それも絶縁破壊電圧の向上効果が乏しくなる要因となる。また、延伸性も低下する傾向にある。このような観点から、酸化防止剤(C)の含有量の上限は、7質量%以下が好ましく、5質量%以下がさらに好ましく、3質量%以下が特に好ましい。
【0026】
上記のような酸化防止剤(C)は、1種類を単独で用いてもよいし、2種以上を併用してもよい。2種類以上を併用する場合は、2種類以上の一次酸化防止剤を用いる態様でもよいし、2種類以上の二次酸化防止剤を用いる態様でもよいし、1種類以上の一次酸化防止剤と1種類以上の二次酸化防止剤を併用してもよい。例えば、一次酸化防止剤と二次酸化防止剤との2種類の酸化防止剤を併用することによって、一次酸化および二次酸化の両方の酸化を防止することが期待できる。本発明においては、中でも一次酸化防止剤を単独で用いる態様、あるいは2種類以上の一次酸化防止剤を用いる態様が、絶縁破壊電圧の向上効果をより高くすることができるという観点から好ましく、特にフェノール系酸化防止剤を単独で用いる態様、あるいは2種類以上のフェノール系酸化防止剤を用いる態様が好ましい。
【0027】
<不活性粒子>
本発明における二軸延伸フィルムは、高絶縁性フィルムでの取り扱い性を向上させるため、発明の効果を損なわない範囲で不活性粒子を含有することが好ましい。フィルムが不活性粒子を含有する態様とするためには、例えば熱可塑性ポリエーテルケトン樹脂にあらかじめ不活性粒子を含有することが挙げられ、好ましい。その他、熱可塑性ポリエーテルケトン樹脂を溶融押出する工程において不活性粒子を添加するなど、公知の方法を採用することができる。
【0028】
かかる不活性粒子としては、例えば、周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素(シリカ)など)や、架橋シリコーン樹脂、架橋ポリスチレン樹脂、架橋アクリル樹脂等のごとき耐熱性の高いポリマーよりなる有機粒子等を例示することができる。これらのうち、耐熱性が高い等の理由により無機粒子が好ましく、特にシリカ粒子が好ましい。
【0029】
かかる不活性粒子の平均粒径は、好ましくは0.01μm以上3μm以下、さらに好ましくは0.05μm以上2μm以下、特に好ましくは0.1μm以上1μm以下である。含有量は、二軸延伸フィルムの質量を基準として、好ましくは0.01質量%以上3.0質量%以下、さらに好ましくは0.03質量%以上2.0質量%以下、特に好ましくは0.05質量%以上1.0質量%以下である。上記のような平均粒径および含有量の態様とすることによって、取り扱い性をより効率的に向上させることができ、また二軸延伸フィルムの機械特性(破断強度、破断伸度、ヤング率等)や電気的特性(絶縁破壊電圧等)を低下させすぎることがない。
【0030】
また、本発明における不活性粒子は、その形状が球状であることが好ましく、不活性粒子の長径と短径との比(長径/短径)を粒径比としたときに、かかる粒径比は、好ましくは1.20以下、さらに好ましくは1.10以下、特に好ましくは1.05以下であり、取り扱い性をさらに優れたものとすることができる。
このような不活性粒子は、種類や平均粒径の異なるものを2種以上併用することができ、ハンドリング性向上の観点から好ましい。また、そのような態様とした方が取り扱い性と絶縁破壊電圧との両立が容易となる。
【0031】
<その他の添加剤>
本発明における熱可塑性ポリエーテルケトン樹脂には、流動性改良などの目的でポリアリーレンポリエーテル、ポリスルフォン、ポリアリレート、ポリエステル、ポリカーボネート等の樹脂をブレンドしても良い。また、耐熱性、他の特性向上などの目的で、後述するガラス転移温度(Tg)の高い樹脂成分、例えばポリイミド系樹脂、ポリアリレート系樹脂、ポリエーテルサルフォン系樹脂、ポリスルフォン系樹脂等をブレンドしても良い。また、安定剤、紫外線吸収剤等の如き添加剤を含有させても良い。
【0032】
(高Tg樹脂成分(B))
本発明においては、ガラス転移温度(Tg)の高い、好ましくはTgが180℃以上である樹脂成分(B)を含有することが好ましい。このような高Tg樹脂成分(B)を添加することによって、耐熱性および電気絶縁性の向上効果をより高くすることができる。また、高温環境下における絶縁破壊電圧の向上効果を高くすることができる。樹脂成分(B)のTgが180℃未満である場合は、電気絶縁性の向上効果が低くなる傾向にある。このような観点から、樹脂成分(B)のTgは、190℃以上であることが好ましく、200℃以上であることがより好ましく、210℃以上であることがさらに好ましい。また樹脂成分(B)のTgは、高くなりすぎると熱可塑性ポリエーテルケトン樹脂(A)のTgとの差が大きくなりすぎる傾向にあり、溶融時の相溶性・混錬性が悪くなる傾向にある。このような観点からは、樹脂成分(B)のTgは、300℃以下であることが好ましく、260℃以下であることがより好ましく、230℃以下であることがさらに好ましい。また、相溶性・混錬性の観点からは、かかる樹脂成分(B)は非結晶性であることが好ましい。
【0033】
樹脂成分(B)を構成する樹脂としては、ポリアリレート系樹脂、ポリイミド系樹脂、ポリエーテルサルフォン系樹脂、ポリスルフォン系樹脂などが挙げられるが、中でもより優れた耐熱性、電気絶縁性、相溶性・混練性が得られるという観点から、ポリイミド系樹脂が好ましい。
【0034】
かかるポリイミド系樹脂としては、環状イミド基を含有する溶融成形性のポリマーであり、本発明の目的に適合できるものであれば特に限定されないが、脂肪族、脂環族または芳香族系のエーテル単位と環状イミド基を繰り返し単位として含有するポリエーテルイミドが好ましい。例えば、米国特許第4141927号明細書、特許第2622678号、特許第2606912号、特許第2606914号、特許第2596565号、特許第2596566号、特許第2598478号各公報に記載のポリエーテルイミド、特許第2598536号、特許第2599171号各公報、特開平9−48852号公報、特許第2565556号、特許第2564636号、特許第2564637号、特許第2563548号、特許第2563547号、特許第2558341号、特許第2558339号、特許第2834580号各公報に記載のポリマー等が挙げられる。
【0035】
また、ポリイミドの主鎖に環状イミド、エーテル単位以外の構造単位、例えば、芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていても良い。
本発明において高Tgの樹脂成分として好ましく使用できるポリエーテルイミドの具体例としては、下記一般式で示されるポリマーを例示することができる。
【0036】
【化4】

(ただし、上記式中、Rは、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基であり、Rは、6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、及び2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
【0037】
上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
【化5】

【0038】
本発明では、熱可塑性ポリエーテルケトン樹脂(A)との相溶性・混練性、コスト、溶融成形性の観点から、ガラス転移温度(Tg)が好ましくは300℃以下、より好ましくは260℃以下、さらに好ましくは230℃以下のポリエーテルイミドが好ましく、下記式で示される構造単位を有する、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミンまたはp−フェニレンジアミンとの縮合物およびこれらの共重合体ならびに変性体が最も好ましい。このポリエーテルイミドは、例えば、ジーイープラスチックス社製であり、「“Ultem”1000、5000、および6000シリーズ」の商標名で知られているものを例示することができる。
【0039】
【化6】

または
【化7】

【0040】
このような樹脂成分(B)の含有量は、二軸延伸フィルムの質量を基準として、5〜48質量%であることが好ましい。含有率が上記数値範囲であると、耐熱性および電気絶縁性の向上効果を高くすることができ、高温環境下における絶縁破壊電圧の向上効果を高くすることができる。含有量が少なすぎると、耐熱性および電気絶縁性の向上効果が低くなる傾向にある。このような観点から、樹脂成分の含有量は、8質量%以上が好ましく、14質量%以上がさらに好ましい。また含有量が多すぎると、フィルム製膜時に破断が起り易くなり、製膜性(延伸性)が悪くなる傾向にある。このような観点からは、樹脂成分(B)の含有量は35質量%以下が好ましく、25質量%以下がさらに好ましい。
【0041】
<塗布層>
本発明の高絶縁性フィルムは、その少なくとも片面に、表面の水接触角が85°以上、120°以下である塗布層を有する。このような塗布層を有することにより、絶縁破壊電圧を高くすることができる。この理由は定かではないが、二軸延伸フィルムと電極の間に薄層の塗布層が存在することで、電荷集中を緩和でき、絶縁破壊電圧が向上するものと考えられる。また、さらに二軸延伸フィルムよりも表面エネルギーの小さい薄層である塗布層が存在すると、放電が発生しても、二軸延伸フィルムから塗布層が剥離し、誘電体である二軸延伸フィルムの破壊を防ぎ、結果的に絶縁破壊電圧が向上するものと考えられる。すなわち、本発明においては、塗布層表面の水接触角が上記数値範囲にあると、電圧印加して放電起こると同時に塗布層がフィルムから剥離し、かかる剥離した塗布層のみが破壊され、フィルムは破壊されず、結果的に絶縁破壊電圧が向上すると考えられる。
【0042】
そのため、塗布層の水接触角が低すぎると、放電が起こっても塗布層がフィルムから剥離し難く、剥離が不完全であるため塗布層の絶縁破壊に誘引されてフィルムの絶縁破壊が発生してしまい、塗布層による絶縁破壊電圧の向上効果が得られない。また、塗布層の水接触角が上記範囲にあることで、滑り性に優れて巻取性を向上させることができ、また、後述のせん断応力などで見た耐熱性を向上させることもできる。
【0043】
このような観点から、塗布層表面の水接触角は、86°以上が好ましく、88°以上がより好ましく、90°以上がさらに好ましく、95°以上が特に好ましい。他方、水接触角が高いと塗布層がフィルムから剥離しやすくなる傾向にあるため、放電が発生しても、容易に剥離した塗布層のみが破壊され、フィルムが絶縁破壊され難くなる。しかし、塗布層表面の水接触角が高くなりすぎると、コンデンサーとする際にその上に形成する金属層との接着性が低くなり、特に水接触角が120°を越えると金属層との接着性に劣り、コンデンサーとしての機能を発揮し難くなる傾向にある。このような観点から、塗布層表面の水接触角は、120°以下であることが必要であり、115°以下が好ましく、110°以下がより好ましく、105°以下がさらに好ましい。
【0044】
上記のような表面水接触角の値を達成するには、例えばワックス成分、シリコーン成分、フッ素成分等の、塗布層を形成後にその表面エネルギーを小さくすることができる成分を塗布層に含有すればよい。また、これらの含有量や、塗布層の厚みを調整することによっても、塗布層表面における水接触角は調整することができる。好ましくは、後述する成分を、後述する含有量で含有する態様である。なお、ワックス成分、シリコーン成分、フッ素成分の中では、ワックス成分とシリコーン成分が特に好ましい。
【0045】
本発明における塗布層は、上述した表面の水接触角が達成されれば特にその種類は限定されないが、ワックス成分、シリコーン成分およびフッ素成分からなる群より選ばれる少なくとも1種を、塗布層の質量に対して、41質量%以上、94質量%以下含有することが好ましい。ここでかかる含有量は、塗布層中におけるワックス成分、シリコーン成分およびフッ素成分の合計の含有量を示す。塗布層がこれら成分の少なくとも1種を上記含有量で含有することにより、塗布層の表面エネルギーを、フィルムの表面エネルギーよりも小さくすることが容易になり、上記の塗布層表面における水接触角の数値範囲をより容易に達成できるようになる。含有量が少なすぎる場合は、水接触角が高くなり難い傾向にある。このような観点から、上記成分の含有量は、51質量%以上がさらに好ましく、65質量%以上が特に好ましい。他方、含有量は、多いと接触角が高くなる傾向にあるため、塗布層の剥離という観点からは好ましい傾向にあるが、多すぎる場合は、均一な塗布層を形成することが困難となり、例えば塗布抜け等の塗布層の欠陥が生じやすくなったり、塗布層がフィルムから剥離しやすくなったりして、これらにより絶縁破壊電圧の向上効果が低くなる。また、コンデンサーを製造する際において、塗布層の離型性が高すぎて金属層が剥離しやすくなり、巻回などのコンデンサーへの加工時に容易に金属層が脱離してしまい、コンデンサーとして不良品が生じることがある。このような観点から、含有量は、90質量%以下がさらに好ましく、85質量%以下が特に好ましい。
【0046】
(ワックス成分)
ワックス成分として、ポリオレフィン系ワックス、エステル系ワックスなどの合成ワックスが挙げられ、また、カルナバワックス、キャンデリラワックス、ライスワックス等の天然ワックスが挙げられる。ポリオレフィン系ワックスとしては、ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。また、エステル系ワックスとしては、例えば炭素数8個以上の脂肪族モノカルボン酸および多価アルコールからなるエステル系ワックス等が挙げられ、具体的には、ソルビタントリステアレート、ペンタエリスリットトリペヘネート、グリセリントリパルミテート、ポリオキシエチレンジステアレートが例示される。かかるワックスの中でも、ポリオレフィン系ワックスを用いることが、本発明が規定する接触角を満足しやすく好ましい。特に好ましくは、ポリエチレンワックスである。
また、塗布層中で良好な分散性を示し、それにより絶縁破壊電圧の向上効果を高くできるという観点から、ワックスは水溶性または水分散性のものが好ましい。
【0047】
(シリコーン成分)
シリコーン成分としては、反応性基を有するシリコーン化合物から主に形成されてなるシリコーン組成物であることが好ましい。ここで「主に」とは、例えば、シリコーン成分中において70質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上のことを示す。このような態様とすることにより、絶縁破壊電圧の向上効果を高くすることができる。反応性基を有しないシリコーン化合物は、シリコーン成分中に含んでいてもよいが、その含有量が多すぎる場合(例えば、シリコーン成分中において30質量%以上の場合)には、蒸着層の形成が難しくコンデンサーとしての評価ができなくなる。そのため、反応性基を有しないシリコーン化合物は、シリコーン成分中に、好ましくは20質量%以下、さらに好ましくは10質量%以下である。
【0048】
上記、シリコーン化合物としては、好ましくは、メチル基が他のアルキル基やフェニル基等に置換されていてもよいポリジメチルシロキサンを挙げることができ、これを用いることにより絶縁破壊電圧の向上効果をより高くすることができる。また、好ましく有する反応性基としては、水素基、ビニル基(アリル基等のビニルアルキル基を含む。)、水酸基等が挙げられる。すなわち、反応性基を有するシリコーン化合物としては、これら反応性基を有するポリジメチルシロキサンが特に好ましい。かかる反応性基を有するポリジメチルシロキサンにおいては、反応性基は、分子中に2個以上有しており、ケイ素原子に直接結合しているのが通常である。そして、塗布層を形成する際にかかる熱等によって、好ましくは白金やパラジウム等の触媒を利用して、水素基とビニル基において付加反応が生じ、または水素基と水酸基において縮合反応が生じ、硬化反応が生じ、架橋構造を形成し、シリコーン組成物となる。
【0049】
シリコーン化合物は、種類の異なる反応性基を有するシリコーン化合物の混合体でもよい。かかるシリコーン化合物は分子量が1000〜500000であることが好ましい。1000未満であると塗膜凝集力が低下して塗布層の欠落が生じやすいことがあり、500000を超えると粘性が高くなりハンドリングしにくいことがある。
塗布層を形成するための塗液の取り扱い易さや、塗布層中で良好な分散性を示し、それにより絶縁破壊電圧の向上効果を高めるという観点から、シリコーン化合物、ポリジメチルシロキサンは、水溶性または水分散性であることが好ましい。
【0050】
また、本発明においては、上記シリコーン化合物は、シランカップリング剤を併用して用いられることが好ましい。かかるシランカップリング剤とは、ケイ素原子に直接結合した加水分解性基を有し、好ましくは後述する反応性基を有するシラン化合物である。反応性基を有するシラン化合物としては、ケイ素原子に直接結合した加水分解性基を有し、アミノ基を含む有機基、エポキシ基を含む有機基、カルボン酸基を含む有機基から選ばれる反応性基を1種以上含有するものを用いることが好ましい。加水分解性基としては、メトキシ基、エトキシ基のごとくアルコキシ基やハロゲン基のように、加水分解と反応によりシラノール基を生成する有機基である。
【0051】
例えば、かかるシラン化合物における反応性基の具体例としては、アミノ基を含む有機基としては、3−アミノプロピル基、3−アミノ−2−メチル−プロピル基、2−アミノエチル基といった1級アミノアルキル基、N−(2−アミノエチル)−3−アミノプロピル基、N−(2−アミノエチル)−2−アミノエチル基といった1級および2級アミノ基を有する有機基を例示することができる。エポキシ基を含む有機基としては、γ−グリシドキシプロピル基、β−グリシドキシエチル基、γ−グリシドキシ−β−メチル−プロピル基といったグリシドキシアルキル基、2−グリシドキシカルボニル−エチル基、2−グリシドキシカルボニル−プロピル基といったグリシドキシカルボニルアルキル基を例示することができる。加水分解によりシラノール基を生成する有機基としては、メトキシ基、エトキシ基、ブトキシ基、2−エチルヘキシロキシ基といったアルコキシ基、β−メトキシエトキシ基、β−エトキシエトキシ基、ブトキシ−β−エトキシ基といったアルコキシ−β−エトキシ基、アセトキシ基、プロポキシ基等のアシロキシ基、メチルアミノ基、エチルアミノ基、ブチルアミノ基といったN−アルキルアミノ基、ジメチルアミノ基、ジエチルアミノ基といったN,N−ジアルキルアミノ基、イミダゾール基、ピロール基といった窒素を含有する複素環基を例示することができる。
【0052】
本発明における好ましいシランカップリング剤としては、加水分解性基として3つのメトキシ基を有し、反応性基をしてγ−グリシドキシプロピル基を有するもの、加水分解性基として3つのエトキシ基が結合し、反応性基をしてγ−グリシドキシプロピル基を有するものが挙げられる。このようなシランカップリング剤添加することにより、シリコーン化合物薄膜の架橋密度を上げることができる。塗布膜剛性があがると放電によるフィルムへの破壊がさらに抑制でき絶縁破壊特性が向上する。
【0053】
(フッ素成分)
フッ素成分としては、フルオロエチレン系モノマーを用いた重合体、フッ化アルキル(メタ)アクリレート系モノマーを用いた重合体などが挙げられる。フルオロエチレン系モノマーを用いた(共)重合体として、テトラフルオロエチレン、トリフルオロエチレン、ジフルオロエチレン、モノフルオロエチレン、ジフルオロジクロロエチレン等の(共)重合体が挙げられる。
【0054】
(その他の添加剤)
塗布層は、その他、界面活性剤、架橋剤、滑剤などを含んでいてもよい。
界面活性剤は、フィルムへの、塗布層を形成するための塗液の濡れ性を高めたり、かかる塗液の安定性を向上させる目的で使用され、例えば、ポリオキシエチレン−脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、脂肪酸金属石鹸、アルキル硫酸塩、アルキルスルホン酸塩、アルキルスルホコハク酸塩等のアニオン型、ノニオン型界面活性剤を挙げることができる。界面活性剤は、塗布層の質量を基準として1〜60質量%含まれていることが好ましい。
【0055】
また、架橋剤を添加することにより、塗布層の凝集力を向上させることができ好ましい。架橋剤として、エポキシ化合物、オキサゾリン化合物、メラミン化合物、イソシアネート化合物を例示することができ、その他のカップリング剤を用いることもできる。架橋剤の添加量は、塗布層の質量を基準として5〜30質量%であることが好ましい。
【0056】
さらに、本発明の塗布層には、得られる高絶縁性フィルムの取り扱い性をさらに向上させたり、フィルム同士のブロッキングを防止したりする等の目的で、塗布層を形成する成分に対して不活性な微粒子を添加することができる。かかる微粒子は、有機または無機の不活性微粒子が好ましく、例えば炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、酸化珪素、酸化亜鉛、シリカ粒子、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等を例示することができる。
【0057】
塗布層の厚みは、乾燥後の厚みとして、好ましくは0.005〜0.5μm、より好ましくは0.005〜0.2μm、さらに好ましくは0.02〜0.1μmである。塗布層の厚みをこの範囲とすることによって、剥離して絶縁破壊される際に、より大きな電圧のエネルギーを消失されることができ、絶縁破壊電圧の向上効果を高めることができる。塗布層の厚みが下限値に満たない場合は、絶縁破壊電圧の向上効果が十分に発現しないことがある。また、塗布層の厚みが上限値を超える程度に厚くしても、さらなる絶縁破壊電圧の向上効果が得られないことがある。
【0058】
<金属層>
本発明の高絶縁性フィルムは、例えば少なくとも片面に金属層を積層することでコンデンサーとなる。金属層の材質については、特に制限はないが、例えばアルミニウム、亜鉛、ニッケル、クロム、錫、銅およびこれらの合金が挙げられる。さらにこれらの金属層は若干量酸化されていてもよい。また、金属層を簡便に形成できるため、金属層は蒸着法により形成された蒸着型金属層であることが好ましい。
【0059】
また、金属層を積層するにあたり、本発明の塗布層の面上にさらに金属層を設けることにより、基材層と金属層とが適度な接着力を有し、フィルムコンデンサー製造において巻回などの加工を施す場合には金属層の剥離がなく、コンデンサーとしての機能が発揮されるものとなる。さらに、同時に塗布層と金属層とが適度の接着性を有し、放電が起こっても、先に表面エネルギーの小さい塗布層がフィルムから剥離し、金属層と塗布層のみが破壊され、フィルムは破壊されず、それにより短絡状態にならず、絶縁破壊電圧の向上効果を高くすることができる。
【0060】
[高絶縁性フィルムの製造方法]
本発明の高絶縁性フィルムは、機械軸方向(以下、縦方向、長手方向またはMDと呼称する場合がある。)と、機械軸方向及び厚み方向に直交する方向(以下、横方向、幅方向またはTDと呼称する場合がある。)の二軸方向に延伸された二軸延伸フィルムに前述の塗布層を形成したものである。塗布層を形成するフィルムを、このように二軸延伸することにより機械特性(破断強度、破断伸度、ヤング率等)が向上し、また電気絶縁用、とりわけコンデンサー用の電気絶縁用としての高い耐熱性および電気絶縁性を発現することができ、高温環境下において高い絶縁破壊電圧を発現することができる。かかる二軸延伸は、同時二軸延伸、逐次二軸延伸の何れでも良いが、厚み斑をより良好にできるという観点から、逐次二軸延伸が好ましく、延伸の順序は、先に縦延伸を実施し、次いで横延伸を実施するのが、厚み斑をより良好にでき、また生産性の点からも好ましい。
以下、本発明における二軸延伸フィルムの製造方法について説明する。
【0061】
<押出工程>
熱可塑性ポリエーテルケトン樹脂(A)と必要に応じて樹脂(B)との混合のペレットを押出機に投入し、(Tm+20)℃以上(Tm+90)℃以下の温度で加熱溶融し、シート状に押し出した後、冷却ロールに接触させる等により冷却固化して未延伸フィルムを得る。ここでTmは、示差走査熱量計(DSC)により求められる熱可塑性ポリエーテルケトン樹脂(A)と必要に応じて混合される樹脂(B)との樹脂混合の組成物の融点(単位:℃)を表わす。
なお、フィルムが高Tg樹脂成分(B)、酸化防止剤(C)や他の添加剤を含有する態様とするためには、例えば、ペレットを押出機に投入する前に熱可塑性ポリエーテルケトン樹脂にあらかじめ高Tg樹脂成分(B)、酸化防止剤(C)や他の添加剤を含有させる方法が挙げられ、好ましい。その他、ペレットを押出機に投入した後に熱可塑性ポリエーテルケトン樹脂を溶融押出する工程において酸化防止剤他を添加するなど、公知の方法を採用することができる。
【0062】
<延伸工程>
次いで、得られた未延伸フィルムを縦方向および横方向の二軸に延伸する。
縦方向の延伸(以下、縦延伸と呼称する場合がある。)は、温度(Tg−10)℃以上(Tg+45)℃以下、倍率1.5倍以上5.0倍以下で延伸する。延伸温度は、好ましくは(Tg)℃以上(Tg+30)℃以下であり、延伸倍率は、好ましくは2.0倍以上4.0倍以下、さらに好ましくは2.4倍以上3.5倍以下である。
なお、本発明においては、後述のように、未延伸シート、かかる未延伸シートを、好ましくは縦方向に一軸延伸した一軸延伸フィルムに、塗布層を形成するための塗液を塗布することで、塗布層を形成することが好ましい。
【0063】
横方向の延伸(以下、横延伸と呼称する場合がある。)は、温度(Tg+10)℃以上(Tg+40)℃以下、倍率2.5倍以上5.0倍以下で延伸する。延伸温度は、好ましくは(Tg+15)℃以上(Tg+30)℃以下であり、延伸倍率は、好ましくは2.5倍以上3.5倍以下である。ここでTgは、DSCにより求められる熱可塑性ポリエーテルケトン樹脂(A)のガラス転移温度(単位:℃)を表わすが、熱可塑性ポリエーテルケトン樹脂(A)のほかに、樹脂成分(B)などが必要に応じて混合された樹脂組成物である場合は、樹脂組成物の融点(単位:℃)を表わす。
【0064】
縦方向および横方向の延伸条件(延伸温度および延伸倍率)を上記のような態様とすることによって、耐熱性および電気絶縁性の向上効果を高くすることができる。また、高温環境下における絶縁破壊電圧をより高くすることができきる。また、厚み斑をより良好な範囲とすることができる。延伸倍率を上げると、耐熱性および電気絶縁性が高くなる傾向にある。また、厚み斑が良化する傾向にある。また、同方向のヤング率、破断強度が上昇する傾向にある。延伸温度が低すぎるとフィルム破断が生じ易くなる傾向にあり、また厚み斑が悪くなる傾向にあり、他方、延伸温度が高すぎると、いわゆるフロー延伸する傾向にあり、厚み斑が悪くなる傾向にあり、電気絶縁性に劣る傾向にある。
【0065】
ここで本発明においては、電気絶縁性をより良好なものとするために、横延伸を複数の温度領域に分けて実施することが好ましく、この第1領域の温度と最終領域の温度とで、3℃以上60℃以下の温度差をつけることが好ましい。温度差は大きすぎても小さすぎても電気絶縁性の向上効果は低くなる傾向にある。かかる温度差が小さすぎると、例えば横延伸温度が中程度にある場合は、延伸開始部で延伸応力が低く、延伸終了部(最終領域)で延伸応力が高くなる傾向であり、延伸応力の差が大きくなりバラツキが出やすくなるためか、フィルムの厚み斑が悪くなる傾向にあり、電気絶縁性の向上効果が低くなる傾向にある。他方、温度差が大きすぎる場合は、近接している領域で温度が大きく変化している為か、局所的な温度斑や温度のバラツキが生じやすくなるようであり、厚み斑が悪くなる傾向にあり、電気絶縁性の向上効果が低くなる傾向にある。このような観点から、温度差の下限は、5℃以上がより好ましく、10℃以上がさらに好ましく、17℃以上が特に好ましく、温度差の上限は、50℃以下がより好ましく、40℃以下がさらに好ましく、30℃以下が特に好ましく、より好ましい電気絶縁性とすることができる。
【0066】
横延伸工程において、第1領域と最終領域との温度差をつけるには、1の延伸ゾーンの中でゾーンの入口(第1領域)と出口(最終領域)とで温度差をつけてもよいし、温度の異なる2以上の連続した延伸ゾーンを設けて最初の延伸ゾーン(第1領域)と最後の延伸ゾーン(最終領域)とで温度差をつけてもよい。ここでゾーンとは、テンター等においてシャッター等で区切られた1の領域を示す。いずれの場合も、第1領域と最終領域の間をさらに分割し、第1領域から最終領域に向かって温度を上昇させるのが好ましく、特にその勾配が直線的となるように上昇させると良い。例えば、温度の異なる2以上の連続した延伸ゾーンの場合は、最初の延伸ゾーンと最後の延伸ゾーンの間に、さらに1以上の延伸ゾーンを設けることが好ましく、1以上10以下の延伸ゾーンを設けることがさらに好ましい。延伸ゾーンの合計を13以上とすることは、設備コストの面から不利である。
【0067】
延伸倍率は、最終領域を出た直後のフィルム幅を、第1領域に入る直前のフィルム幅で除した値が目標の延伸倍率となるようにすればよく、段階的にフィルム幅を増加させることが好ましく、特にその勾配が直線的となるように増加させると良い。縦方向と横方向を同時に延伸する場合においても、同様に延伸の温度を複数段階に分け、この第1段階の温度と最終段階の温度とで温度差をつけるようにする。
【0068】
さらに本発明においては、上記のような延伸条件において、面積延伸倍率(縦延伸倍率×横延伸倍率)を5倍以上とすることが好ましく、6倍以上にすることがより好ましく、7倍以上とすることがさらに好ましく、厚み斑をさらに良好にすることができる。面積延伸倍率が高すぎるとフィルムが破断しやすくなる傾向にあり、その上限は、好ましくは25倍以下、さらに好ましくは20倍以下、特に好ましくは15倍以下である。
【0069】
<熱固定工程>
次いで、上記にて二軸延伸されたフィルムに熱処理を施し、熱固定する。かかる熱固定は、(Tg+27)℃以上(Tm)℃以下、好ましくは(Tg+60)℃以上(Tm−20)℃以下、さらに好ましくは(Tg+90)℃以上(Tm−30)℃以下の温度で、1秒〜10分、好ましくは2秒〜5分、好ましくは3〜120秒、さらに好ましくは5〜60秒の時間行う。熱固定は、二軸延伸フィルム製膜時の延伸工程の後に連続して行われる熱処理と、二軸延伸フィルム製膜後、別途に行われる熱処理とに分けるなど、2回以上に分離して実施してもよい。
熱固定条件(熱固定温度および熱固定時間)を上記のような態様とすることによって、耐熱性および電気絶縁性の向上効果を高くすることができる。また、厚み斑をより良好な範囲とすることができる。また、熱収縮率を本発明が好ましく規定する数値範囲とすることができる。熱固定温度が高すぎると耐熱性および電気絶縁性の向上効果が低くなる傾向にあり、また厚み斑が悪くなる傾向にあり、他方、低すぎると熱収縮率が高くなる傾向にある。
【0070】
<熱弛緩処理>
次いで、上記にて熱固定されたフィルムについて、熱収縮率を調整するために幅方向に熱弛緩処理を行うことが好ましく、具体的には温度180℃以上320℃以下で、弛緩率1%以上7%以下の熱弛緩処理を行うことが好ましい。弛緩率が高すぎると、熱収縮率は低くなる傾向にあるが、フィルムの平面性に劣る傾向にある。他方、低すぎると、熱収縮率が高くなる傾向にある。このような観点から、弛緩率は、さらに好ましくは2%以上6%以下である。
【0071】
<塗布層の塗設、乾燥>
本発明において塗布層は、前記した塗布層を構成する各成分を配合して得られた塗布層を形成するための塗液を、フィルムにおいて塗布層を形成したい表面に塗布し、乾燥し、必要に応じて硬化し、形成する。なお、かかる塗液は、適当な溶媒を用いて希釈し、濃度や粘度を調整することができる。かかる溶媒としては、水を用いることが、取り扱い易さの点で好ましいため、各成分は、水溶性または水分散性であることが好ましい。
【0072】
また、塗布層の形成は、フィルム製造中に形成するいわゆるインライン法であってもよいし、フィルム製造後に形成するいわゆるオフライン法であってもよい。生産性の観点、およびより強固な塗布層を得ることができるという観点から、インライン法を採用することが好ましい。インライン法においては、フィルム製造工程において、未延伸シートに塗布してもよいし、縦または横方向に一軸延伸した一軸延伸フィルムに塗布してもよいし、縦および横方向に二軸延伸した二軸延伸フィルム(配向結晶化が完了したものおよび完了していないものの両方を含む。)に塗布してもよいが、フィルムと塗布層の密着性の観点から、未延伸シートまたは一軸延伸フィルムに塗布することが好ましい。
【0073】
具体的には、同時二軸延伸の場合には、延伸前の未延伸シートへの塗液の塗布が好ましい。また、逐次二軸延伸の場合には、第一軸方向に延伸する前の段階において塗液を塗布してもよいし、第一軸方向の延伸の後であって、第二軸方向に延伸する前の段階において塗液を塗布してもよい。これらの内で、第一軸方向の延伸の後であって、第二軸方向に延伸する前の段階において塗液を塗布するのが、スクラッチ傷の発生を抑え易く、また延伸の後に結晶化を進める熱処理固定があり、塗布層の構造が安定化し易くなったりするため好ましい。
【0074】
また、塗液を塗布して得られた塗膜は、次の工程に入るまでの間にある程度乾燥されていることが好ましい。例えば、塗布後に延伸を行なう場合、塗膜の乾燥が不充分だと、延伸される際にフィルムに温度斑が起き易く、延伸に斑が出てしまいフィルムの厚み斑が悪くなり易くなる。
【0075】
塗膜の乾燥は、塗液の塗布後に独立して行ってもよいし、延伸工程の前段に乾燥工程を設けて、塗布工程から連続して行っても良く、また延伸工程における予熱工程を塗膜の乾燥工程として流用してもよい。乾燥温度は、下限は60℃以上、好ましくは70℃以上、さらに好ましくは80℃以上であり、上限は175℃以下が好ましく、155℃以下がより好ましく、135℃以下がさらに好ましく、乾燥時間は0.1分以上、10分以下が好ましい。乾燥温度が高すぎたり、乾燥時間が長すぎたりする場合には、延伸前にフィルムの結晶化が進んでしまい、延伸応力が高くなるなどして延伸性が低下し、延伸時の破断が多くなる傾向にあり、また乾燥温度が低すぎたり、乾燥時間が短すぎたりする場合には、塗液の乾燥が不充分となる傾向にあり、延伸工程においても、希釈溶媒が塗膜中に残存しており、その蒸発が生じ、延伸斑が起き易く、フィルム厚み斑が悪くなる傾向にある。
【0076】
これらについてさらに検討すると、乾燥時間よりも乾燥温度の方がより強く依存していることが判明し、結果、[乾燥温度(℃)×乾燥温度(℃)×乾燥時間(分)]の値が1000以上であることが好ましく、3000以上であることがより好ましく、8000以上であることがさらに好ましく、10万以下であることが好ましく、7万以下であることがより好ましく、3万以下であることがさらに好ましい事が判った。
【0077】
なお、ここで乾燥温度とは、塗膜の乾燥工程が延伸工程と離れて存在する場合には、乾燥工程における最初の温度と最後の温度との平均で表わし、延伸工程の前に、塗液の塗布と連続して乾燥工程がある場合には、乾燥工程の最初の温度と、乾燥工程の最後の部分の温度(延伸工程の最初の温度)との平均で表わすものとする。延伸工程前の予熱部分が乾燥工程となることもある。
かくして本発明の高絶縁性フィルムを得ることができる。
【0078】
[高絶縁性フィルムの特性]
<フィルム厚み>
本発明の高絶縁性フィルムの厚みは、好ましくは0.3μm以上250μm以下である。フィルム厚みが薄すぎる場合は、製膜時に破断が生じ易くなり生産効率が悪くなる傾向にある。他方、フィルム厚みが厚すぎる場合は、延伸応力が高くなる傾向にあり、延伸倍率を高くすることが困難となる傾向にあり、その結果厚み斑が悪くなる傾向にある。また、耐熱性および電気絶縁性の向上効果が低くなる傾向にある。このような観点から、高絶縁性フィルム厚みの下限は、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、特に好ましくは1.2μm以上である。他方、高絶縁性フィルム厚みの上限は、好ましくは128μm以下、より好ましくは50μm以下、さらに好ましくは13μm以下、特に好ましくは5.5μm以下である。また、コンデンサー用途に用いる場合は、0.4〜6.5μmが好ましく、0.5〜3.5μmが好ましく、良好な電気特性とすることができる。
【0079】
また、塗布層の厚みは、乾燥後の厚みとして、好ましくは0.005〜0.5μm、より好ましくは0.005〜0.2μm、さらに好ましくは0.02〜0.1μmである。塗布層の厚みをこの範囲とすることによって、剥離して絶縁破壊される際に、より大きな電圧のエネルギーを消失されることができ、絶縁破壊電圧の向上効果を高めることができる。塗布層の厚みが下限値に満たない場合は、絶縁破壊電圧の向上効果が十分に発現しないことがある。また、塗布層の厚みが上限値を超える程度に厚くしても、さらなる絶縁破壊電圧の向上効果が得られないことがある。
【0080】
<厚み斑>
本発明の高絶縁性フィルムは、厚み斑が10%以下であることが好ましく、電気絶縁性の向上効果を高くできる。厚み斑が悪くなると電気絶縁性の面内バラツキが大きくなる傾向にあり、結果的に電気絶縁性、絶縁破壊電圧特性の向上効果が低くなる傾向にある。このような観点から、厚み斑は、好ましくは9%以下、より好ましくは6%以下、さらに好ましくは3%以下である。厚み斑の下限は小さいほど好ましく、理想的には厚み斑が0%であるが、実際には0.1%以上程度である。
厚み斑を上記数値範囲とするためには、延伸条件を前述した態様とすれば良い。とりわけ横延伸条件を上記した態様、すなわち複数の温度領域に分けて実施することが重要である。
【0081】
また、高絶縁性フィルムの厚み斑を良好に保つためには、フィルム内の含有物が劣化しにくいことも好ましく挙げることができる。これは、酸化防止剤や他の添加剤などの含有物が高温で劣化し易かったり、質量減量し易かったりする場合には、これら含有物の劣化物が溶融押出の際に押出ダイリップで析出、付着しやすくなり、これの影響によりフィルム上に筋状の凹凸欠点が発生しやすくなるためである。同様に、酸化防止剤等や他の添加剤などの含有物の含有量が多すぎる場合にも、それらが凝集し易くなり、押出ダイリップで析出、付着しやすくなり、厚み斑が悪くなる傾向にある。よって、上記厚み斑を達成するためには、酸化防止剤(C)の1質量%減量温度や含有量を調整すること、高Tg樹脂成分(B)の種類、配合量を調整すること、延伸条件を調整することなどにより、本発明が規定する範囲とすればよい。
【0082】
<ガラス転移温度(Tg)>
本発明における二軸延伸フィルムは、ガラス転移温度(Tg)が135℃以上180℃未満であることが好ましい。Tgが上記数値範囲にあると、高温環境下においてもフィルムの剛性を維持することが容易となり、自動車用のコンデンサー用としてより好適に用いることができる。また、耐熱性の向上効果が高くなり、結果として高温環境下における絶縁破壊電圧を高くすることができる。このような観点から、Tgの下限は、より好ましくは145℃以上であり、さらに好ましくは150℃以上であり、また、Tgの上限は175℃以下がより好ましく、165℃以下がさらに好ましく、155℃以下が特に好ましい。特に前述の樹脂成分(B)を含有させる場合は、Tgの下限は、145℃以上、さらに150℃以上であることが好ましい。ガラス転移温度(Tg)は、ポリエーテルケトンや樹脂成分(B)の種類、配合量を調整することなどにより達成される。
【0083】
<絶縁破壊電圧>
本発明の高絶縁性フィルムは、23℃における絶縁破壊電圧(BDV23)が330kV/mm以上であることが好ましい。BDV23が上記数値範囲にあると、ハイブリッド型自動車のコンデンサー用として好適に用いることができる。BDV23が低い場合は、ハイブリッド型自動車のコンデンサー用として用いた場合において、大電流によりコンデンサー内における短絡が生じ、コンデンサーが破壊されるなどの問題が生じ易くなる。このような観点から、BDV23は、350kV/mm以上がより好ましく、380kV/mm以上がさらに好ましく、410kV/mm以上が特に好ましい。
【0084】
また、本発明の高絶縁性フィルムは、高温環境下における絶縁破壊電圧が高いことが好ましく、130℃における絶縁破壊電圧(BDV130)とBDV23との比(BDV130/BDV23)が0.7以上、さらに0.85以上であることが好ましい。かかる比が上記数値範囲にあると、高温環境下においても常温と同等の電気絶縁性を示すことを意味し、ハイブリッド型自動車のコンデンサー用として好適に用いることができる。かかる比が小さすぎる場合は、高温環境下においては電気絶縁性が低くなってしまうことを意味し、ハイブリッド自動車のコンデンサー用のごとく高温環境下で使用される用途への適用が困難となる。このような観点から、かかる比は、0.90以上であることがより好ましく、0.95以上であることがさらに好ましい。BDV130は、280kV/mm以上が好ましく、330kV/mm以上がより好ましく、390kV/mm以上がさらに好ましい。
【0085】
上記のようなBDV23およびBDV130は、熱可塑性ポリエーテルケトン樹脂(A)に、本発明に規定する塗布層を設ければよく、さらに前述の高Tg樹脂成分(B)を混合したり、酸化防止剤(C)を添加したり、さらに前述の特定条件において延伸することで、より高めることができる。
【0086】
<破断強度>
本発明の高絶縁性フィルムは、縦方向および横方向のそれぞれにおいて、23℃における破断強度(破断強度23)が200MPa以上であることが好ましい。破断強度23が上記数値範囲にあるとフィルムの腰が強くなり屈曲性が良くなり、コンデンサー用等の電気絶縁用としてより好適に用いることができる。このような観点から破断強度23は、220MPa以上がより好ましく、250MPa以上がさらに好ましく、270MPa以上が特に好ましい。
【0087】
また、本発明の高絶縁性フィルムは、縦方向および横方向のそれぞれにおいて、130℃における破断強度(破断強度130)と破断強度23との比(破断強度130/破断強度23)が0.7以上であることが好ましい。かかる比が0.7以上であるということは、高温環境下においても常温と同等の機械的特性を発現するということを意味し、とりわけ高温環境下において用いられるコンデンサー用等の電気絶縁用としてより好適に用いることができる。かかる比が0.7未満である、すなわち高温環境下になった際に破断強度が大きく低下するようでは、ハイブリッド自動車のコンデンサー用のごとく、高温で曝される用途に用いられた場合においては、高温環境下において破壊が生じやすくなる傾向にある。このような観点から、縦方向および横方向のそれぞれにおける、破断強度130/破断強度23の比は、0.8以上であることが好ましく、0.85以上であることがより好ましく、0.90以上であることがさらに好ましく、0.93以上であることが特に好ましい。破断強度130は、140MPa以上が好ましく、250MPa以上がより好ましく、300MPaがさらに好ましい。
【0088】
上記比を上記数値範囲とするためには、延伸条件(延伸倍率、延伸温度など)を調整することにより達成することができる。また破断強度130℃を高くするためには、熱可塑性ポリエーテルケトン樹脂(A)に、好ましくは高Tg樹脂成分を用いた上で、前述の延伸条件、熱固定条件他を樹脂組成に応じて調整することにより達成することができる。
【0089】
<熱収縮率>
本発明の高絶縁性フィルムは、温度150℃で30分間熱処理した後の縦方向および横方向の熱収縮率の絶対値がいずれも1.0%以下であることが好ましい。熱収縮率の絶対値は、さらに好ましくは0.7%以下、特に好ましくは0.5%以下である。すなわちかかる熱収縮率は、0に近い程好ましい。熱収縮率が上記数値範囲にあると、熱寸法安定性に優れ、加工時に反り、カールなどが起りにくいなど、加工性に優れ、また取り扱い性も良好となる。
熱収縮率を上記のような態様とするには、二軸延伸フィルムを構成する主たる成分として熱可塑性ポリエーテルケトン樹脂(A)を用い、前述した製造条件によりフィルムを製造すればよい。特に、延伸倍率を高くすると熱収縮率は高くなる傾向にあり、熱固定温度を高くすると熱収縮率は低くなる傾向にあり、弛緩率を高くすると熱収縮率は低くなる傾向にあり、これらを調整することが重要である。
【0090】
<屈折率>
本発明の高絶縁性フィルムは、二軸延伸フィルムの厚み方向の屈折率の上限が1.640以下である。また、屈折率の下限は1.570以上であることが好ましい。
屈折率が上記数値範囲にあると、絶縁性の向上効果を高くすることができる。厚み方向の屈折率は、低すぎるとフィルムの延伸性に劣る傾向にあり、他方高すぎると絶縁性の向上効果が低くなる傾向にある。このような観点から、厚み方向の屈折率の下限は、1.590以上がより好ましく、1.600以上がさらに好ましく、1.605以上が特に好ましく、厚み方向の屈折率の上限は、1.634以下がより好ましく、1.628以下がさらに好ましく、1.622以下が特に好ましい。厚み方向の屈折率は、樹脂成分(B)の種類・配合量や延伸条件等の製膜条件を調整することで達成することができる。
【0091】
(表面粗さ)
本発明の高絶縁性フィルムは、その少なくとも片面にある塗布層の表面の中心線平均表面粗さRaが7nm以上89nm以下であることが好ましい。中心線平均表面粗さRaを上記数値範囲とすることによって、巻き取り性の向上効果を高くすることができる。また、耐ブロッキング性が向上し、ロールの外観を良好なものとすることができる。中心線平均表面粗さRaが低すぎる場合は、滑り性が低くなりすぎる傾向にあり、巻き取り性の向上効果が低くなる。このような観点から、中心線平均表面粗さRaは、好ましくは10nm以上、さらに好ましくは15nm以上、特に好ましくは17nm以上である。他方、中心線平均表面粗さRaが高すぎる場合は、滑り性が高くなりすぎる傾向にあり、巻き取り時に端面ズレを起こしやすくなる等巻き取り性の向上効果が低くなる。このような観点から、中心線平均表面粗さRaは、より好ましくは79nm以下、さらに好ましくは69nm以下、特に好ましくは59nm以下、最も好ましくは29nm以下である。
【0092】
また、本発明の高絶縁性フィルムは、その少なくとも片面にある塗布層の表面の10点平均粗さRzが200nm以上以上3000nm以下であることが好ましい。10点平均粗さRzを上記数値範囲とすることによって、巻き取り性の向上効果を高くすることができる。10点平均粗さRzが低すぎる場合は、ロールとして巻き上げる際にエアー抜け性が低くなる傾向にあり、フィルムが横滑りしやすくなる等巻き取り性の向上効果が低くなる。特に、フィルム厚みが薄い場合は、フィルムの腰が無くなるため、エアー抜け性がさらに低くなる傾向にあり、巻き取り性の向上効果がさらに低くなる。このような観点から、10点平均粗さRzは、より好ましくは600nm以上、さらに好ましくは1000nm以上、特に好ましくは1250nm以上である。他方、10点平均粗さRzが高すぎる場合は、粗大突起が多くなる傾向にあり、絶縁破壊電圧の向上効果が低くなる。このような観点から、10点平均粗さRzは、より好ましくは2600nm以下、さらに好ましくは2250nm以下、特に好ましくは1950nm以下である。
上記のようなRaおよびRzは、本願が規定する不活性微粒子を採用することで達成することができる。
【0093】
[用途]
本発明の高絶縁性フィルムは、耐熱性および電気絶縁性に優れ、高温環境下においても優れた絶縁破壊電圧特性が要求される電気絶縁用として好適に用いることができる。特に移動体用、特にハイブリッド自動車用、電気自動車用、燃料自動車用等のコンデンサー用のごとく、より高い耐熱性および電気絶縁特性(絶縁破壊電圧)が要求される用途に好適に使用することができる。
【実施例】
【0094】
以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ質量部および質量%を意味する。
【0095】
(1)破断伸度、破断強度
フィルムを150mm長×10mm幅に切り出した試験片を用い、オリエンテック社製テンシロンUCT−100型を用いて、温度23℃、湿度60%RHに調節された室内において、チャック間100mm、引張速度20mm/分、チャート速度50mm/分で引張試験を実施し、破断時の伸度から23℃における破断伸度(破断伸度23)、破断時の応力から23℃における破断応力(破断応力23)を求めた。なお、縦方向の破断伸度および破断応力とはフィルムの縦方向(MD)を測定方向としたものであり、横方向の破断伸度および破断応力とはフィルムの横方向(TD)を測定方向としたものである。各破断伸度および破断応力はそれぞれ10回測定し、その平均値を用いた。
また、140℃の温度雰囲気下における破断伸度(破断伸度140)および破断応力(破断応力140)は、140℃の温度雰囲気に設定されたチャンバー内に試験片及びテンシロンのチャック部分をセットし、2分間静置後、上記の引張試験を行うことによって求めた。
【0096】
(2)ガラス転移温度(Tg)および融点(Tm)
樹脂サンプルにおいてはサンプル約10mgを、フィルムサンプルにおいてはサンプル約20mgを測定用のアルミニウム製パンに封入して示差熱量計(TA Instruments社製:商品名DSC2920 Modulated)に装着し、25℃から20℃/分の速度で370℃まで昇温させ、370℃で3分間保持した後取り出し、直ちに氷の上に移して急冷した。このパンを再度示差熱量計に装着し、25℃から20℃/分の速度で昇温させてガラス転移温度(単位:℃)と融点(単位:℃)を測定した。
【0097】
(3)熱収縮率
温度150℃に設定されたオーブン中に、フィルムの縦方向および横方向がマーキングされ、あらかじめ正確な長さを測定した長さ30cm四方のフィルムを無荷重で入れ、30分間保持処理した後取り出し、室温に戻してからその寸法の変化を読み取る。熱処理前の長さ(L)と熱処理による寸法変化量(ΔL)より、下記式(1)から縦方向および横方向の熱収縮率をそれぞれ求めた。
熱収縮率(%)=(ΔL/L)×100 ・・・(1)
【0098】
(4)絶縁破壊電圧(BDV)
JIS C 2151に示される方法に従って測定した。なお、サンプルはJIS C 2151に従ってアルミ蒸着によって作成した。23℃相対湿度50%の雰囲気にて、直流耐電圧試験機を用い、上部電極は直径25mmの真鍮製円柱、下部電極は直径75mmのアルミ製円柱を使用し、100V/秒の昇圧速度で昇圧し、フィルムが破壊し短絡した時の電圧を読み取った。得られた電圧をフィルム厚みで除して、23℃における絶縁破壊電圧(BDV23、単位:kV/mm)とした。
測定は41回実施し、大きい方の値10点、および小さい方の値10点を除き、21点の値の中央値を絶縁破壊電圧の測定値とした。
130℃における絶縁破壊電圧(BDV130)の測定は、熱風オーブンに電極、サンプルをセットし、耐熱コードで電源に接続し、130℃のオーブンにサンプルを投入後1分で昇圧を開始して、上記と同様にして測定した。
【0099】
(5)延伸性
高絶縁性フィルムを100万m製膜する間に破断の発生する回数により、以下の如く判断した。
延伸性◎ : 10万mの製膜当り 破断が1回未満
延伸性○ : 10万mの製膜当り 破断が1回〜2回未満
延伸性△ : 10万mの製膜当り 破断が2回〜4回未満
延伸性× : 10万mの製膜当り 破断が4回〜8回未満
延伸性××: 10万mの製膜当り 破断が8回以上
【0100】
(6)フィルム厚みおよび厚み斑
高絶縁性フィルムの厚みを、縦方向および横方向に電子マイクロメーターを用いて0.5mの区間をそれぞれ均等に10点を測定して、平均厚み(単位:μm)を算出した。また、かかる測定長のうち最高厚さ(単位:μm)と最低厚さ(単位:μm)との差の、平均厚み(単位:μm)に対する比(百分率)を求め、厚み斑(単位:%)として求めた。縦方向および横方向の厚み斑を、各々の測定値とした。
また、塗布層の厚さは、得られた高絶縁性フィルムの試料片を可視光硬化型樹脂に包埋し、室温で可視光にさらして硬化させ、得られた包埋ブロックから、ウルトラミクロトームを用いて70〜100μm程度の厚みの超薄切片を作製し、透過型電子顕微鏡を用いて、塗布層の断面を観察して測定した。
【0101】
(7)屈折率
ナトリウムD線(589nm)を光源としたアッベ屈折計を用いて23℃65%RHにて測定し、厚み方向の屈折率をnZとした。
【0102】
(8)1質量%減量温度
熱重量分析計を用いて、窒素ガス中、昇温20℃/分の条件で室温から600℃まで昇温し、質量減少量が1質量%に達した時の温度を、1質量%減量温度とした。
【0103】
(9)フィルムの表面粗さ(中心線平均表面粗さ(Ra))
非接触式三次元粗さ計(小坂研究所製、ET−30HK)を用いて波長780nmの半導体レーザー、ビーム径1.6μmの光触針で測定長(Lx)1mm、サンプリングピッチ2μm、カットオフ0.25mm、厚み方向拡大倍率1万倍、横方向拡大倍率200倍、走査線数100本(従って、Y方向の測定長Ly=0.2mm)の条件にて高絶縁性フィルムの塗布層の表面の突起プロファイルを測定する。その粗さ曲面をZ=f(x,y)で表わしたとき、次の式で得られる値をフィルムの中心線平均表面粗さ(Ra、単位:nm)とした。
【0104】
【数1】

【0105】
(10)水接触角
フィルムの塗布層表面において、(株)協和界面科学性接触角計(形式:CA−A)を用いて、5回測定を行い、その平均値をもって水接触角(°)とした。
なお、測定は、塗布層表面に5mmの高さから0.2mLの蒸留水をシリンジにてゆっくりと滴下し、30秒間放置後、その接触角(塗布層表面と液滴の接線が成す角)をCCDカメラで観察して測定した。そして、同様の操作を5回繰り返し、平均値を用いた。
【0106】
(11)巻き取り性
フィルムの製造工程において、フィルムを500mm幅で5000mのロール状に170m/分の速度で巻き上げ、得られたロールの巻き姿、およびロール端面における端面ズレを次のように格付けした。
[巻き姿]
A :ロールの表面にピンプルがなく、巻き姿が良好。
B :ロールの表面に1個以上4個未満のピンプル(突起状盛り上がり)があり、巻き姿はほぼ良好。
C :ロールの表面に4個以上10個未満のピンプル(突起状盛り上がり)があり、巻き姿はやや不良であるが、製品として使用できる。
D :ロールの表面に10個以上のピンプル(突起状盛り上がり)があり、巻き姿が悪く、製品として使用できない。
[端面ズレ]
◎ :ロール端面における端面ズレが0.5mm未満であり、良好。
○ :ロール端面における端面ズレが0.5mm以上1mm未満であり、ほぼ良好。
△ :ロール端面における端面ズレが1mm以上2mm未満であり、やや劣るものであるが製品として使用できる。
× :ロール端面における端面ズレが2mm以上であり、劣るものであり製品として使用できない。
××:ロール巻き上げ中に端面ズレが大きくなり、5000mのロールが作成できない。
【0107】
[参考例1](塗液1の調整)
塗液1の調整として、以下の離形成分、界面活性剤、および架橋剤を、表1に示す重量比で、固形成分の重量が5質量%となるように水に分散させ、エマルジョン水溶液を作成した。
・離型成分: ポリエチレンワックス(高松油脂株式会社製 商品名:U3、ポリエチレン系ワックスのエマルジョンであり、エマルジョン中のポリエチレン系ワックス量が、表1における離型成分の含有量となるように記載した。)
・界面活性剤: ポリオキシアルキレンアルキルエーテル(ライオン株式会社製 商品名L950)
・架橋剤: 炭酸ジルコニルアンモニウム
【0108】
[参考例2〜4](塗液2〜4の調整)
表1に示すとおり、ポリエチレンワックスの含有量を変更し、さらに下記組成のバインダー樹脂aを表1に示す含有量となるように変更したほかは、参考例1と同様な操作を繰り返した。
<バインダー樹脂a>:アクリル変性ポリエステル
・ポリエステル成分: テレフタル酸50モル%/イソフタル酸45モル%/5-ナトリウムスルホイソフタル酸5モル%//エチレングリコール75モル%/ジエチレングリコール25モル%
・アクリル成分: メチルメタクリレート90モル%/グリシジルメタクリレート10モル%
ポリエステル樹脂成分/アクリル樹脂成分の繰り返し単位のモル比=3/7
【0109】
[参考例5](塗液5の調整)
塗工液5の調整として、以下の離形成分、界面活性剤、および架橋剤を、固形成分の重量が5重量%となるように水に分散させ、エマルジョン水溶液を作成した。なお、シリコーン化合物については、予め界面活性剤と先に混合してから、塗工液に添加した。
・離型成分: カルボキシ変性シリコーン(信越化学工業株式会社製 商品名X22−3701E)
・界面活性剤: ポリオキシエチレン(n=8.5)ラウリルエーテル(三洋化成株式
会社製 商品名ナロアクティーN−85)
・架橋剤: オキサゾリン(株式会社日本触媒製 商品名エポクロスWS−300)
【0110】
【表1】

【0111】
表1中の塗液1〜5は、それぞれ参考例1〜5で作成したものであり、バインダー樹脂aは上記参考例2〜4のアクリル変性ポリエステルを意味する。
【0112】
[比較例1]
熱可塑性ポリエーテルケトン樹脂(A)としてのポリエーテルエーテルケトン樹脂(ビクトレックス社製:ポリエーテルエーテルケトン381G、Tg:142℃、Tm:343℃)に、不活性粒子として 不活性微粒子Aとして、平均粒径0.3μm、相対標準偏差0.16、粒径比1.09の球状シリカ粒子を0.4質量部(得られる二軸延伸フィルム100質量%中に0.4質量%となる)と、不活性微粒子Bとして、平均粒径1.2μm、相対標準偏差0.15、粒径比1.10の球状シリコーン樹脂粒子を0.1質量部(得られる二軸延伸フィルム100質量%中に0.1質量%となる)とを配合し、160℃で4時間乾燥した後、押出機により380℃で溶融押出し、80℃に保持したキャスティングドラム上へキャストして、未延伸フィルムを作成した。
次いで、次に示す条件で縦方向、次いで横方向に逐次二軸延伸を行い、更に熱固定および熱弛緩処理することにより、厚さ3μmの二軸延伸フィルムを得た。
すなわち未延伸フィルムを155℃で縦方向(機械軸方向)に2.6倍延伸し、続いてテンターに導いた後、予熱開始部分の温度95℃、予熱終了部分の温度(延伸開始部分の温度)145℃の工程で20秒間予熱し、続いて、横方向(機械軸方向と厚み方向とに垂直な方向)に2.7倍延伸した。その際横方向の延伸速度は5000%/分とした。また、横方向の延伸の温度は、第1段階の温度を145℃、第2段階の温度を150℃、第3段階(最終段階)の温度を160℃とした。その後245℃で25秒間熱固定をし、さらに180℃まで冷却する間に横方向に3%弛緩処理をして、厚み3.0μmの二軸延伸フィルムを得てロール状に巻き取った。
得られた二軸延伸フィルムの特性を表2に示す。
【0113】
[実施例1〜4、比較例2]
比較例1において、未延伸フィルムを縦方向(機械軸方向)に延伸した後に、縦延伸後フィルムの一方の面に表1に記載の成分を含有する塗液1〜5(5質量%水分散性塗液)を、最終的に得られる塗布層としての厚みが40nmとなるように塗布し、その後、テンターに導いた以外は、比較例1と同様にして、厚さ3μmの高絶縁性フィルムを得た。得られた高絶縁性フィルムの特性を表2に示す。
【0114】
【表2】

【0115】
[実施例5〜15、比較例3、4]
熱可塑性ポリエーテルケトン樹脂(A)を、表3に示すとおり、熱可塑性ポリエーテルケトンと、樹脂成分(B)と酸化防止剤との混合物に変更し、さらに表3に示すとおり、塗液や製膜条件を変更し得られたフィルムおよび塗膜層の厚みが、それぞれ3μmと40nmになるように押出量と塗布量を調整したほかは、実施例1と同様な操作を繰り返した。
【0116】
【表3】

【0117】
ここで、樹脂成分(B)として、表3中のPEIは、ポリエーテルイミド樹脂(ゼネラルエレクトリック社製、Ultem1010、Tg:217℃)を用い、また、酸化防止剤として、C1は3,9−ビス[2−〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニロキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピリオ[5−5]ウンデカン(住友化学社製:商品名SUMILIZER GA-80、1質量%減量温度348℃、融点120℃、下記式[化8]で表わされる化合物)、C2はヒンダードフェノール系酸化防止剤であるIRGANOX 1010(チバ・スペシャルティ・ケミカルズ社製、1質量%減量温度310℃、融点120℃、下記式[化9]で表わされる化合物)、C3は2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)(住友化学社製:商品名SUMILIZER MDP-S、1質量%減量温度205℃、融点128℃、下記式[化10]であらわされる化合物)を用いた(混合比率は表3中に示す)。
なお、比較例3は延伸をしていないものである。
得られたフィルムの特性を表3に示す。
【0118】
【化8】

【0119】
【化9】

【0120】
【化10】

【産業上の利用可能性】
【0121】
本発明の高絶縁性フィルムは、電気絶縁性に優れるとともに耐熱性にも優れ、高い絶縁破壊電圧を示し、移動体の電気絶縁用、特にハイブリッド自動車用のコンデンサー用フィルムとして好適に用いることができる。

【特許請求の範囲】
【請求項1】
熱可塑性ポリエーテルケトン樹脂(A)を主たる構成成分とする厚み方向の屈折率が、1.640以下である二軸延伸フィルムと、その少なくとも片面に設けられた、表面の水接触角が85°以上、120°以下である塗布層とを有する高絶縁性フィルム。
【請求項2】
前記塗布層が、ワックス成分、シリコーン成分およびフッ素化合物からなる群より選ばれる少なくとも1種を、塗布層の質量を基準として、41質量%以上、94質量%以下の範囲で含有する請求項1に記載の高絶縁性フィルム。
【請求項3】
二軸延伸フィルムが、熱可塑性ポリエーテルケトン樹脂(A)とガラス転移温度(Tg)が180℃以上である樹脂成分(B)との樹脂組成物からなり、樹脂成分(B)の含有量が、二軸延伸フィルムの質量を基準として、5〜48質量%の範囲でである請求項1または2のいずれか1項に記載の高絶縁性フィルム。
【請求項4】
樹脂成分(B)が、ポリイミド系樹脂である請求項3に記載の高絶縁性フィルム。
【請求項5】
二軸延伸フィルムが、1質量%減量温度が280℃以上である酸化防止剤(C)を、二軸延伸フィルムの質量を基準として、0.5質量%以上8質量%以下含有する請求項1〜4のいずれか1項に記載の高絶縁性フィルム。
【請求項6】
温度150℃で30分間熱処理したときの、機械軸方向およびそれと直交する方向(横方向)の熱収縮率の絶対値がそれぞれ1.0%以下である請求項1〜5のいずれか1項に記載の高絶縁性フィルム。
【請求項7】
機械軸方向およびそれと直交する方向(横方向)において、23℃における破断強度(破断強度23)がそれぞれ200MPa以上であり、140℃における破断強度(破断強度140)と23℃における破断強度との比(破断強度140/破断強度23)がそれぞれ0.7以上である請求項1〜6のいずれか1項に記載の高絶縁性フィルム。
【請求項8】
140℃における絶縁破壊電圧(BDV140)と23℃における絶縁破壊電圧(BDV23)との比(BDV140/BDV23)が0.7以上である請求項1〜7のいずれか1項に記載の高絶縁性フィルム。
【請求項9】
電気絶縁用として用いられる請求項1〜8のいずれか1項に記載の高絶縁性フィルム。
【請求項10】
電気絶縁用がコンデンサー用であり、フィルム厚みが0.4μm以上6.5μm未満である請求項9記載の高絶縁性フィルム。

【公開番号】特開2013−23590(P2013−23590A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−160011(P2011−160011)
【出願日】平成23年7月21日(2011.7.21)
【出願人】(000003001)帝人株式会社 (1,209)
【Fターム(参考)】