説明

2周波アンテナ

【課題】チョークコイルを必要とすることなく2周波で動作可能とする。
【解決手段】2周波で動作する2周波アンテナは、略平面上のグランド14と、絶縁性の基板10と、第1素子11と、給電部13と、スルーホール12と、第2素子21と、給電ライン21aとからなる。基板10は、グランド14上に立設される。第1素子11は、基板10の下端から上部に向けて面状に形成される。給電部13は、第1素子11の下端に給電するためのものである。スルーホール12は、第1素子11の下端近傍に配置される。第2素子21は、基板10の第1素子11と重ならない上部に形成される。給電ライン21aは、スルーホール12から導出され第2素子21に給電するためのものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、2周波で動作する小型の2周波アンテナに関するものである。
【背景技術】
【0002】
車載用無線通信に用いるアンテナとしてはその動作原理から、車室内の乗員に対する送信時の電磁波放射が懸念されており、このため、ルーフパネル等の車両の外側にアンテナが設置されることが多くされている。しかし、法規制等により車両の外側に突出するアンテナのアンテナ高には制限があるため、低姿勢で小型なアンテナが必要とされる。
従来、所望の2つの異なる周波数帯を受信および送信するアンテナが必要な場合は、アンテナ素子の間にチョークコイルを設けることにより2共振を得るようにしたり、独立した2つのアンテナを使用して2周波の2出力を得たり、2周波の2出力を合成して出力を得るようにしていた。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許公開公報第2006/0071858号明細書
【特許文献2】特開2004−282329号明細書
【特許文献3】米国特許公開公報第2006/0158383号明細書
【特許文献4】米国特許第6377227号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の2周波アンテナでは、1本のアンテナとする場合はチョークコイルが必要とされるが、チョークコイルを使用するとチョークコイルの影響により低域側共振帯域が狭くなると云う問題点があった。
そこで、本発明はチョークコイルを必要とすることなく2つの異なる周波数帯で動作可能な2周波アンテナを提供することを目的としている。
【課題を解決するための手段】
【0005】
上記目的を達成するために、本発明の2周波アンテナは、略平面上のグランドと、前記グランド上に立設される絶縁性の基板と、前記基板の下端から上部に向けて面状に形成される第1素子と、前記第1素子の下端に給電するための給電部と、前記第1素子の下端近傍に配置されるスルーホールと、前記基板の前記第1素子と重ならない上部に形成される第2素子と、前記スルーホールから導出され第2素子に給電するための給電ラインと、を具備するものである。
【発明の効果】
【0006】
本発明の2周波アンテナでは、第1素子が2つの異なる周波数帯の内の高域側で動作し、第2素子が低域側で動作するようになり、第2素子に給電する給電ラインがインダクタンスとして機能することから、チョークコイルを不要とすることができる。また、第1素子および第2素子をプリントパターンにより構成すると、プリントパターンの形状により整合を可能とすることができる。
【図面の簡単な説明】
【0007】
【図1】本発明の実施例にかかる2周波アンテナの構成を示す正面図である。
【図2】本発明の実施例にかかる2周波アンテナの構成を示す背面図である。
【図3】本発明にかかる2周波アンテナのインピーダンスの周波数特性を示すスミスチャートである。
【図4】本発明にかかる2周波アンテナのVSWRの周波数特性を示す図である。
【図5】本発明にかかる2周波アンテナの仰角を0°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。
【図6】本発明にかかる2周波アンテナの仰角を10°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。
【図7】本発明にかかる2周波アンテナの仰角を20°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。
【図8】本発明にかかる2周波アンテナの仰角を30°とした際のAMPS帯とPCS帯の各周波数の水平面内指向特性を示す図である。
【発明を実施するための形態】
【0008】
本発明の実施例にかかる2つの異なる周波数帯において動作する2周波アンテナ1の構成を図1および図2に示す。図1は2周波アンテナ1の構成を示す正面図であり、図2は2周波アンテナ1の構成を示す背面図である。
これらの図に示すように、2周波アンテナ1はガラスエポキシ基板等の絶縁性のプリント基板10の表面と裏面とにプリントパターンとして形成された第1素子11と第2素子21とを備えている。プリント基板10は、高さHおよび幅Wの細長い矩形状とされて平面状のグランド14上にほぼ垂直に立設されている。第1素子11はプリント基板10の表面の下端からほぼ幅Wで長さL1の面状のプリントパターンとして形成されており、第1素子11の下部はテーパ部11bが形成されて下端に向かって次第に幅が狭く形成されてインピーダンスが調整されている。また、第1素子11の上縁のほぼ中央から幅がSとされたスリット11aが下方へ向かって形成されている。第1素子11は下端から給電され、その下端には給電点13が設けられている。また、給電点13とされるプリント基板10の下端から高さL3の位置で、プリント基板10のほぼ中央に裏面に電気的に接続されるスルーホール12が設けられている。
【0009】
第2素子21は、プリント基板10の裏面の上端から幅Wで長さL2の面状のプリントパターンとして形成されており、第2素子21の両側は下方へ折り返された形状とされている。第2素子21は、プリント基板10の表面に形成されている第1素子11と重ならないプリント基板10の上部に形成されている。第2素子21のほぼ中央からは、狭くされた幅Dの給電ライン21aが引き出されており、第2素子21の折り返された両側の部位はトップローディングとして機能する。給電ライン21aはアンテナとしても機能しており、プリント基板10の下端から高さL3の位置までほぼ垂直に形成されて、給電ライン21aの下端はスルーホール12に電気的に接続されている。給電ライン21aは細長く形成されていることから、給電ライン21aに生じるインダクタンス成分により、2周波の内の低域側の信号成分に対する給電ライン21aのインピーダンスは高くなり、低域側の信号成分は給電ライン21a上において伝送されにくくなる。このように、給電ライン21aは等価的にチョークコイルとして作用することから、給電点13から第1素子11およびスルーホール12を介して給電ライン21aで伝送された低域側の信号成分が第2素子21に給電されるようになる。また、第2素子21の低域側の受信信号は給電ライン21aおよびスルーホール12を介して第1素子11の高域側の受信信号と合成され、給電点13から出力されるようになる。なお、第1素子11におけるスリット11aの幅Sは給電ライン21aの幅Dより広くされて、スリット11a内に給電ライン21aが位置するようにされており、スリット11aにより第1素子11と給電ライン21aとが電気的に結合することを極力防止している。
【0010】
2周波アンテナ1を、824〜894MHzのAMPS(Advanced Mobile Phone Service)帯および1850〜1990MHzのPCS(Personal Communication Services)帯の2つの異なる周波数帯、あるいは、880〜960MHzのGSM(登録商標、以下同じ)(Global System for Mobile Communications)900帯および1710〜1880MHzのGSM1800帯の2つの異なる周波数帯において動作させることができる。このようにした際の、2周波アンテナ1の寸法の一例を次に示す。まず、プリント基板10の幅Wは約15mm、高さHは約50mm、厚さは約1.6mmとされ、比誘電率εrは約4.6とされている。2周波の内の高域側(PCS/GMS1800)で動作する第1素子11の長さL1は約34.5mmとされ1850MHzの波長をλ1とすると約0.21λ1と表され、スリット11aの幅Sは約2mmとされる。2周波の内の低域側(AMPS/GMS900)で動作する第2素子21の長さL2は約15mmとされ824MHzの周波数の波長をλ2とすると約0.04λ2と表され、スルーホール12の高さL3は約10mmとされ約0.06λ1あるいは約0.03λ2と表される。
【0011】
次に、上記寸法とされた2周波アンテナ1のインピーダンスの周波数特性を示すスミスチャートを図3に示す。図3を参照すると、低域側の周波数824MHzにおいて抵抗分は約25.8Ω、リアクタンス分は約−21.5Ωとなり、周波数894MHzにおいて抵抗分は約48.9Ω、リアクタンス分は約41.4Ωとなる。また、高域側の周波数1850MHzにおいて抵抗分は約62.8Ω、リアクタンス分は約0.1Ωとなり、周波数1990MHzにおいて抵抗分は約74.2Ω、リアクタンス分は約−7.6Ωとなる。このように、高域側においてよりよいインピーダンス特性を示すようになる。
【0012】
次に、上記寸法とされた2周波アンテナ1の電圧定在波比(VSWR)の周波数特性を図4に示す。図4を参照すると、低域側の周波数824MHzにおいてVSWRとして約2.41が得られ、周波数894MHzにおいてVSWRとして約2.27が得られており、824〜894MHzの低域側の周波数帯域において最良のVSWRとして約1.5が得られている。また、高域側の周波数1850MHzにおいてVSWRとして約1.26が得られ、周波数1990MHzにおいてVSWRとして約1.51が得られており、1850〜1990MHzの高域側の周波数帯域において最良のVSWRとして1.26が得られている。このように、高域側においてよりよいVSWR特性を示すようになる。一般に、VSWRは約2.5以下とされていることが求められるが、図4に示す例ではAMPS帯における最大のVSWRは約2.4(840MHz)となり、PCS帯における最大のVSWRは約1.5(1990MHz)となっており、2周波において良好なVSWR特性が得られている。なお、整合回路を付加して給電点13に給電することによりVSWRをより良好な値とすることができる。
【0013】
次に、本発明にかかる2周波アンテナ1の各周波数における水平面内指向特性を図5ないし図8に示す。この場合、2周波アンテナ1の寸法は上記の通りとされると共に、直径約1mの円形とされたグランド14のほぼ中央に2周波アンテナ1は立設されて、偏波は垂直偏波とされている。
図5は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が0°とされた際の水平面内指向特性である。図5を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約−1.7dBi、最小利得が約−2.2dBiとされ、平均利得が約−2.0dBiでリップルが約0.6dBのほぼ無指向性の良好な指向特性とされている。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約−0.8dBi、最小利得が約−1.5dBiとされ、平均利得が約−1.2dBiでリップルが約0.7dBのほぼ無指向性の良好な指向特性とされ、利得が若干向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約−1.0dBi、最小利得が約−1.7dBiとされ、平均利得が約−1.4dBiでリップルが約0.8dBのほぼ無指向性の良好な指向特性とされている。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約−1.4dBi、最小利得が約−2.3dBiとされ、平均利得が−1.8dBiでリップルが約1.0dBのほぼ無指向性の良好な指向特性とされている。
【0014】
図5を参照すると、仰角が0°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約0.5dBi、最小利得が約−0.9dBiとされ、平均利得が約−0.2dBiでリップルが約1.4dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約1.0dBi、最小利得が約−0.5dBiとされ、平均利得が約0.2dBiでリップルが約1.5dBのほぼ無指向性の良好な指向特性とされ、より高利得が得られている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約1.2dBi、最小利得が約−0.3dBiとされ、平均利得が約0.5dBiでリップルが約1.5dBのほぼ無指向性の良好な指向特性とされ、さらに高利得が得られている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約0.3dBi、最小利得が約−1.0dBiとされ、平均利得が約−0.3dBiでリップルが約1.3dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。
【0015】
図6は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が10°とされた際の水平面内指向特性である。図6を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約0.2dBi、最小利得が約−0.4dBiとされ、平均利得が約−0.2dBiでリップルが約0.6dBのほぼ無指向性の良好な指向特性とされ、利得が向上している。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約1.0dBi、最小利得が約0.5dBiとされ、平均利得が約0.7dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約1.0dBi、最小利得が約0.4dBiとされ、平均利得が約0.8dBiでリップルが約0.6dBのほぼ無指向性の良好な指向特性とされている。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約1.0dBi、最小利得が約0.2dBiとされ、平均利得が0.7dBiでリップルが約0.7dBのほぼ無指向性の良好な指向特性とされている。
【0016】
図6を参照すると、仰角が10°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約4.5dBi、最小利得が約3.4dBiとされ、平均利得が約3.9dBiでリップルが約1.1dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約4.4dBi、最小利得が約3.4dBiとされ、平均利得が約3.9dBiでリップルが約1.1dBのほぼ無指向性の良好な指向特性とされ、高利得が維持されている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約4.6dBi、最小利得が約3.5dBiとされ、平均利得が約4.1dBiでリップルが約1.1dBのほぼ無指向性の良好な指向特性とされ、さらに高利得が得られている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約3.6dBi、最小利得が約2.6dBiとされ、平均利得が約3.1dBiでリップルが約1.0dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。
【0017】
図7は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が20°とされた際の水平面内指向特性である。図7を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約1.8dBi、最小利得が約1.4dBiとされ、平均利得が約1.7dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約2.6dBi、最小利得が約2.2dBiとされ、平均利得が約2.4dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約3.1dBi、最小利得が約2.7dBiとされ、平均利得が約2.9dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約3.0dBi、最小利得が約2.6dBiとされ、平均利得が2.8dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。
【0018】
図7を参照すると、仰角が20°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約6.6dBi、最小利得が約5.8dBiとされ、平均利得が約6.1dBiでリップルが約0.8dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約6.6dBi、最小利得が約5.7dBiとされ、平均利得が約6.2dBiでリップルが約0.9dBのほぼ無指向性の良好な指向特性とされ、高利得が維持されている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約6.7dBi、最小利得が約5.7dBiとされ、平均利得が約6.3dBiでリップルが約1.0dBのほぼ無指向性の良好な指向特性とされ、さらに高利得が得られている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約5.7dBi、最小利得が約5.0dBiとされ、平均利得が約5.4dBiでリップルが約0.7dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。
【0019】
図8は、本発明の2周波アンテナ1にかかるAMPS帯とPCS帯の各周波数において仰角が30°とされた際の水平面内指向特性である。図8を参照すると、AMPS帯における送信帯域の下限周波数である824MHzにおいては、最大利得が約2.9dBi、最小利得が約2.5dBiとされ、平均利得が約2.7dBiでリップルが約0.3dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。また、AMPS帯における送信帯域の上限周波数である849MHzにおいては、最大利得が約3.4dBi、最小利得が約3.0dBiとされ、平均利得が約3.2dBiでリップルが約0.4dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらに、AMPS帯における受信帯域の下限周波数である869MHzにおいては、最大利得が約4.0dBi、最小利得が約3.5dBiとされ、平均利得が約3.8dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、利得がさらに向上している。さらにまた、AMPS帯における受信帯域の上限周波数である894MHzにおいては、最大利得が約3.9dBi、最小利得が約3.5dBiとされ、平均利得が3.8dBiでリップルが約0.5dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。
【0020】
図8を参照すると、仰角が30°とされた際のPCS帯においては、送信帯域の下限周波数である1850MHzにおいて、最大利得が約5.1dBi、最小利得が約3.5dBiとされ、平均利得が約4.5dBiでリップルが約1.7dBのほぼ無指向性の良好な指向特性とされ、高利得とされている。また、PCS帯における送信帯域の上限周波数である1910MHzにおいては、最大利得が約5.5dBi、最小利得が約3.9dBiとされ、平均利得が約4.9dBiでリップルが約1.7dBのほぼ無指向性の良好な指向特性とされ、高利得が維持されている。さらに、PCS帯における受信帯域の下限周波数である1930MHzにおいては、最大利得が約5.7dBi、最小利得が約4.2dBiとされ、平均利得が約5.1dBiでリップルが約1.5dBのほぼ無指向性の良好な指向特性とされ、さらに高利得とされている。さらにまた、PCS帯における受信帯域の上限周波数である1990MHzにおいては、最大利得が約4.8dBi、最小利得が約3.5dBiとされ、平均利得が約4.3dBiでリップルが約1.3dBのほぼ無指向性の良好な指向特性とされ、高利得が得られている。
【0021】
このように、本発明の2周波アンテナ1では、AMPS帯およびPCS帯の2つの異なる周波数帯において動作し、仰角が0°〜30°とされてもほぼ無指向性の指向特性を得ることができるようになる。また、本発明にかかる2周波アンテナ1のAMPS帯およびPCS帯の2つの異なる周波数帯における利得は、高域のPCS帯の利得が高い傾向を示している。この場合、ダイポールアンテナの利得は2.15dBiであることから、仰角によっては2つの異なる周波数帯においてダイポールアンテナの利得を大きく超えた利得が得られている。また、2つの異なる周波数帯をGSM900/GSM1800帯としても、本発明の2周波アンテナ1は上記と同様の電気的特性を得ることができる。従って、本発明の2周波アンテナ1は2つの異なる周波数帯において十分動作することができるアンテナとすることができる。なお、動作させる2つの異なる周波数帯が900MHz帯あるいは1800MHz帯から異なる帯域とされた場合は、その帯域に応じて第1素子11あるいは第2素子21の寸法を変更することにより、所望の2つの異なる周波数帯において本発明の2周波アンテナ1を動作させることができる。また、本発明にかかる2周波アンテナ1は高さが約50mm、幅が約15mmの小型かつ低姿勢のアンテナとすることができると共に、プリント基板10のプリントパターンにより第1素子11および第2素子21を形成することで構成されるため、簡易な構成の安価な2周波アンテナとすることができる。
【産業上の利用可能性】
【0022】
以上説明した本発明にかかる2周波アンテナ1において、第2素子21へ給電する給電ライン21aをメアンダ形状として2周波アンテナ1のアンテナ高さをより低く抑えるようにしてもよい。また、本発明の2周波アンテナ1を車両に搭載する際には、車両へ取り付けられるアンテナベース上に2周波アンテナ1を固着し、アンテナベースに2周波アンテナ1を覆う樹脂カバーによるレドームを取り付けるのが好適とされる。
さらに、本発明の2周波アンテナ1においては、プリント基板10の表面に形成された第1素子11および裏面に形成された第2素子21のパターン形状により、2つの異なる周波数帯の整合を取ることができるため、2周波アンテナ1の小型化やローコスト化が可能となる。このため、AM/FM放送受信アンテナ、GPS信号受信アンテナ、地上波デジタル放送受信アンテナ、DAB(Digital Audio Broadcast)受信アンテナ、SDARS(Satellite Digital Audio Radio)受信アンテナ等との複合化を容易とすることができる。
【符号の説明】
【0023】
1 2周波アンテナ
10 プリント基板
11 第1素子
11a スリット
11b テーパ部
12 スルーホール
13 給電点
14 グランド
21 第2素子
21a 給電ライン

【特許請求の範囲】
【請求項1】
2周波で動作する2周波アンテナであって、該2周波アンテナは、
略平面上のグランドと、
前記グランド上に立設される絶縁性の基板と、
前記基板の下端から上部に向けて面状に形成される第1素子と、
前記第1素子の下端に給電するための給電部と、
前記第1素子の下端近傍に配置されるスルーホールと、
前記基板の前記第1素子と重ならない上部に形成される第2素子と、
前記スルーホールから導出され第2素子に給電するための給電ラインと、
を具備することを特徴とする2周波アンテナ。
【請求項2】
請求項1に記載の2周波アンテナにおいて、前記第1素子の中途から下端に向かってテーパ部が形成されていることを特徴とする2周波アンテナ。
【請求項3】
請求項1に記載の2周波アンテナにおいて、前記第2素子の両側が第2素子の給電ラインが導出される部位から下方へ折り返されている形状とされており、前記給電ラインが前記第2素子のほぼ中央から引き出されていることを特徴とする2周波アンテナ。
【請求項4】
請求項1に記載の2周波アンテナにおいて、前記第1素子および前記第2素子が、前記基板上に形成されたプリントパターンにより構成されていることを特徴とする2周波アンテナ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−85308(P2013−85308A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2013−25875(P2013−25875)
【出願日】平成25年2月13日(2013.2.13)
【分割の表示】特願2008−133922(P2008−133922)の分割
【原出願日】平成20年5月22日(2008.5.22)
【出願人】(000165848)原田工業株式会社 (78)
【Fターム(参考)】