説明

Al2O3−希土類酸化物−ZrO2/HfO2材料およびその製造方法ならびに使用方法

【課題】研磨粒子として有用なガラス粒子、ガラスセラミック粒子、セラミック粒子を提供する。
【解決手段】Alと希土類酸化物とZrO/HfOを含むセラミック(ガラス、結晶質セラミック、ガラス−セラミックを含む)およびその製造方法に関する。Alと希土類酸化物とZrO/HfOを溶融し、ガラスビーズ、ガラス粉末として、熱処理を行いガラスセラミックス粉体として、研磨粒子等に利用が可能である。また該粒子は断熱材、フィラー、または複合材料(セラミック複合材料、金属複合材料、ポリマーマトリクス複合材料など)中の強化材、摩耗を伴う用途での保護コーティング材として利用し得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、Al−希土類酸化物−ZrO/HfO(非晶質材料(ガラスを含む)、結晶質セラミック、ガラス−セラミックを含む)およびその製造方法に関する。
【背景技術】
【0002】
多数の非晶質(ガラスを含む)組成物ならびにガラス−セラミック組成物が周知である。酸化物ガラス系の大半には、ガラスの形成を助ける目的で、SiO、B、P、GeO、TeO、As、Vなどの周知のガラス形成剤が用いられている。これらのガラス形成剤を用いて製造されるガラス組成物の中には、熱処理を施してガラス−セラミックを生成できるものがある。このようなガラス形成剤から作られるガラスやガラス−セラミックの使用温度の上限は1200℃未満が普通であり、一般に約700〜800℃である。ガラス−セラミックの方が、その原料となるガラスよりも温度耐性が高いことが多い。
【0003】
また、周知のガラスおよびガラス−セラミックの多くの特性が、ガラス形成剤自体の持つ特性に制限されている。たとえば、SiO、B、P系のガラスならびにガラス−セラミックでは、このようなガラス形成剤によってヤング率、硬度、強度が制限される。このようなガラスやガラス−セラミックは、たとえばAlまたはZrOよりも機械的特性が劣っているのが普通である。機械的特性がAlまたはZrOの機械的特性に近いガラス−セラミックがあれば望ましいであろう。
【0004】
希土類酸化物−酸化アルミニウムを主成分とするガラスなど、従来のものではないガラス(2001年4月19日公開の特許文献1のPCT出願ならびに、2000年2月15日公開の特許文献2などを参照のこと)がいくつか知られているが、別の新規なガラスおよびガラス−セラミックや、周知のガラスおよびガラス−セラミックと新規なガラスおよびガラス−セラミックの両方の使用が望まれている。
【0005】
もうひとつの態様では、従来技術において周知のさまざまな研磨粒子(ダイヤモンド粒子、立方晶窒化ホウ素粒子、溶融研磨粒子、焼結セラミック研磨粒子(ゾル−ゲル研磨粒子を含む)など。いくつかの研磨用途では、研磨粒子をばらばらの状態で使用し、他の用途では粒子を研磨製品(被覆砥粒研磨製品、固定砥粒研磨製品、不織研磨製品、研磨ブラシなど)に組み入れて使用する。個々の研磨用途ごとに使用する研磨粒子を選択する際の基準には、研磨寿命、切削速度、支持体表面仕上げ、粉砕効率、製品コストがある。
【0006】
約1900年から約1980年代半ばまで、被覆砥粒研磨製品や固定砥粒研磨製品を利用したものなどの研磨用途向け研磨粒子の主流となっていたのは一般に溶融研磨粒子であった。溶融研磨粒子には大きく分けて次の2つのタイプがある。(1)溶融αアルミナ研磨粒子(特許文献3(コールター(Coulter))、特許文献4(トーン(Tone))、特許文献5(ソーンダズ(Saunders)ら)、特許文献6(アレン(Allen))、特許文献7(バウマン(Baumann)ら)などを参照のこと)、(2)溶融(「共融」と呼ばれることもある)アルミナ−ジルコニア研磨粒子(特許文献8(ロウズ(Rowse)ら)、特許文献9(ペット(Pett)ら)、特許文献10(キーナン(Quinan)ら)、特許文献11(ワトソン(Watson))、特許文献12(プーン(Poon)ら)、特許文献13(ギブソン(Gibson)ら)などを参照のこと)(また、特定の溶融酸窒化研磨粒子について記載した特許文献14(デュボッツ(Dubots)ら)および特許文献15(デュボッツ(Dubots)ら)も参照のこと)。溶融アルミナ研磨粒子は一般に、アルミニウム鉱石またはボーキサイトなどのアルミナ原料と他の所望の添加剤とを炉に装入し、これらの材料をその融点よりも高い温度で加熱し、溶湯を冷却して凝固塊を生成し、凝固塊を破砕して粒子にした後、粒子を篩い分けて分級し、所望の研磨粒度分布を得る形で製造される。溶融アルミナ−ジルコニア研磨粒子は一般に、アルミナ原料とジルコニア原料の両方を炉に装入し、溶融アルミナ研磨粒子の製造に用いられる溶湯よりもさらに短時間で溶湯を冷却すること以外は、同じような方法で製造される。溶融アルミナ−ジルコニア研磨粒子の場合、アルミナ原料の量は一般に約50〜80重量パーセントであり、ジルコニアの量はジルコニアが50〜20重量パーセントである。溶融アルミナおよび溶融アルミナ研磨粒子の製造過程には、冷却工程の前に溶湯から不純物を除去する工程を含むようにしてもよい。
【0007】
研磨の用途(被覆砥粒研磨製品および固定砥粒研磨製品を利用したものを含むでは溶融αアルミナ研磨粒子および溶融アルミナ−ジルコニア研磨粒子が依然として広く用いられてはいるが、1980年代半ば頃から多くの研磨用途で主流となっている研磨粒子にゾル−ゲル法によるαアルミナ粒子(特許文献16(レイセイサー(Leitheiser)ら)、特許文献17(レイセイサー(Leitheiser)ら)、特許文献18(コットリンガー(Cottringer)ら)、特許文献19(シュワベル(Schwabel))、特許文献20(モンロウ(Monroe)ら)、特許文献21(ウッド(Wood)ら)、特許文献22(ペロー(Pellow)ら)、特許文献23(ウッド(Wood))、特許文献24(ベルグ(Berg)ら)、特許文献25(ローウェンホースト(Rowenhorst)ら)、特許文献26(ラーミー(Larmie))、特許文献27(コンウェル(Conwell)ら)、特許文献28(ラーミー(Larmie))、特許文献29(ラーミー(Larmie))、特許文献30(ガーグ(Garg)ら)などを参照のこと)がある。
【0008】
ゾル−ゲル法によるαアルミナ研磨粒子は、添加する第2の相の存在下または非存在下で、極めて細かいαアルミナ晶子で構成されるマイクロ構造を持つ場合がある。ゾル−ゲル法による研磨粒子の金属上での粉砕性能を、たとえばこの研磨粒子を使って作製した研磨製品の寿命で判断したところ、従来の溶融アルミナ研磨粒子で作製した製品よりも劇的に長くなっていた。
【0009】
一般に、ゾル−ゲル研磨粒子の生成過程は従来の溶融研磨粒子を生成する工程よりも複雑で費用を要するものである。概して、ゾル−ゲル研磨粒子の生成には、水および一水化アルミナ(ベーム石)と任意に解膠剤(硝酸などの酸など)とを含む分散液またはゾルを調製し、この分散液をゲル化させ、ゲル化した分散液を乾燥させ、乾燥させた分散液を破砕して粒子にし、これらの粒子を篩い分けて所望のサイズの粒子を得て、この粒子を焼成して揮発分を除去し、焼成粒子をアルミナの融点未満の温度で焼結処理し、粒子を篩い分けて分級し、所望の研磨粒度分布を得るのが一般的である。焼結研磨粒子の物性および/またはマイクロ構造を変化あるいは調整する目的で金属酸化物調整剤を焼結研磨粒子に混入させることが頻繁に行われている。
【0010】
従来技術において周知のさまざまな研磨製品(「研磨物品」とも呼ばれる)がある。一般に、研磨製品には、バインダーと、バインダーによって研磨製品内に固定された研磨粒子とが含まれる。研磨製品の例には、被覆砥粒研磨製品、固定砥粒研磨製品、不織研磨製品、研磨ブラシがある。
【特許文献1】国際公開第01/27046 A1号パンフレット
【特許文献2】特開2000−045129号公報
【特許文献3】米国特許第1,161,620号公報
【特許文献4】米国特許第1,192,709号公報
【特許文献5】米国特許第1,247,337号公報
【特許文献6】米国特許第1,268,533号公報
【特許文献7】米国特許第2,424,645号公報
【特許文献8】米国特許第3,891,408号公報
【特許文献9】米国特許第3,781,172号公報
【特許文献10】米国特許第3,893,826号公報
【特許文献11】米国特許第4,126,429号公報
【特許文献12】米国特許第4,457,767号公報
【特許文献13】米国特許第5,143,522号公報
【特許文献14】米国特許第5,023,212号公報
【特許文献15】米国特許第5,336,280号公報
【特許文献16】米国特許第4,314,827号公報
【特許文献17】米国特許第4,518,397号公報
【特許文献18】米国特許第4,623,364号公報
【特許文献19】米国特許第4,744,802号公報
【特許文献20】米国特許第4,770,671号公報
【特許文献21】米国特許第4,881,951号公報
【特許文献22】米国特許第4,960,441号公報
【特許文献23】米国特許第5,139,978号公報
【特許文献24】米国特許第5,201,916号公報
【特許文献25】米国特許第5,366,523号公報
【特許文献26】米国特許第5,429,647号公報
【特許文献27】米国特許第5,547,479号公報
【特許文献28】米国特許第5,498,269号公報
【特許文献29】米国特許第5,551,963号公報
【特許文献30】米国特許第5,725,162号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
固定砥粒研磨製品の例には、研削砥石、カットオフホイール、ホーニング砥石がある。固定砥粒研磨製品の製造に用いられる主なタイプの結合系は、レジノイド、磁器質、金属である。レジノイド結合研磨材では、研磨粒子同士を結合して成形塊を作るのに有機バインダー系(フェノールバインダー系など)が用いられている(米国特許第4,741,743号(ナラヤナン(Narayanan)ら)、同第4,800,685号(ヘインズ(Haynes)ら)、同第5,037,453号(ナラヤナン(Narayanan)ら)、同第5,110,332号(ナラヤナン(Narayanan)ら)などを参照のこと)。もうひとつの主要なタイプが、ガラスバインダー系を使って研磨粒子同士を結合塊にしているビトリファイド砥石である(米国特許第4,543,107号(ルー(Rue))、同第4,898,587号(ヘイ(Hay)ら)、同第4,997,461号(マークホフ・マセニイ(Markhoff−Matheny)ら)、同第5,863,308号(クィ(Qi)ら)などを参照のこと)。これらのガラスの結合は、900℃から1300℃の温度で養生されるのが普通である。昨今、ビトリファイド砥石には溶融アルミナ研磨粒子とゾル−ゲル研磨粒子の両方が用いられている。しかしながら、ひとつにはアルミナ−ジルコニアの熱安定性が原因で、溶融アルミナ−ジルコニアがビトリファイド砥石に取り入れられることはないのが普通である。ガラスの結合を養生させる際の高い温度では、アルミナ−ジルコニアの物性が低下し、その研磨性能が大幅に落ちてしまう結果につながるのである。金属の固定砥粒研磨製品では一般に、焼結金属またはメッキを施した金属を利用して研磨粒子同士を結合している。
【0012】
研磨材業界では、従来の研磨粒子および製品よりも簡単に製造でき、製造費用が安くすむ、および/または性能上の利点が得られる研磨粒子および研磨製品が変わることなく必要とされ続けている。
【課題を解決するための手段】
【0013】
本発明は、ガラス、結晶質セラミック(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)、ガラス−セラミック材料をはじめとして、(理論酸化物基準で、反応生成物(CeAl1118など)として存在し得る)、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方を含むセラミックであって、Tを持たない非晶質材料では、特定の好ましい実施形態に互いに垂直なx方向、y方向、z方向があり、このx方向、y方向、z方向の各々が少なくとも5mm(いくつかの実施形態では少なくとも10mm)であり、x方向、y方向、z方向が少なくとも30マイクロメートル、35マイクロメートル、40マイクロメートル、45マイクロメートル、50マイクロメートル、75マイクロメートル、100マイクロメートル、150マイクロメートル、200マイクロメートル、250マイクロメートル、500マイクロメートル、1000マイクロメートル、2000マイクロメートル、2500マイクロメートル、1mm、5mm、あるいは実に少なくとも10mmであるセラミックを提供するものである。材料のx方向、y方向、z方向については、その寸法の大きさに応じて、目視または顕微鏡を使って判断する。表記のz方向は、たとえば、球の直径、コーティングの厚さ、あるいは角形の最長辺の長さである。
【0014】
本発明によるセラミック材料のいくつかの実施形態は、たとえば、SiO、As、B、P、GeO、TeO、Vおよび/またはこれらの組み合わせなどの従来のガラス形成剤を、セラミックの総重量に対して、40重量パーセント未満(35、30、25、20、15、10、5、3、2、1重量パーセント未満、あるいは実に0重量パーセント)含むものであってもよい。本発明によるセラミックには、たとえば、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95容量パーセント、あるいは実に100容量パーセントの非晶質材料を含み得る。本発明によるセラミックのいくつかの実施形態には、セラミックの全容量に対してたとえば、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99容量パーセント、あるいは実に100容量パーセントの結晶質セラミックを含み得る。
【0015】
一般に、本発明によるセラミックは、セラミックの総重量に対して、Alを少なくとも30重量パーセント含む。より一般的には、本発明によるセラミックは、セラミックの総重量に対して、Alを少なくとも30(望ましくは、約30から約60の範囲で)重量パーセントと、REOを少なくとも20(約20から約65)重量パーセントと、ZrOおよび/またはHfOを少なくとも5(約5から約30)重量パーセントとを含む。ZrO:HfOの重量比は、1:0(すなわち全体がZrOでHfOを含まない)から0:1ならびに、たとえば、ZrOを少なくとも約99、98、97、96、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、20、15、10、5部(重量比)と、これに対応する量のHfO(ZrOが少なくとも約99部(重量比)とHfOが約1部以下など)の範囲、さらに、HfOが少なくとも約99、98、97、96、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、20、15、10、5部と、これに対応する量のZrOの範囲とすることが可能である。任意に、本発明によるセラミックはさらにYを含む。
【0016】
結晶質セラミックを含む本発明によるセラミックについてみると、いくつかの実施形態は、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たない(すなわち、コロニーおよび薄層構造を持たない)か、非多孔性マイクロ構造を持たないかの少なくとも一方であるものを含む。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0017】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む非晶質材料であって、非晶質材料の総重量に対して、非晶質材料の少なくとも80(85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される非晶質材料がある。
【0018】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む非晶質材料であって、この非晶質材料の総重量に対して、非晶質材料の少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOで構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がBで構成される非晶質材料がある。
【0019】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む非晶質材料であって、非晶質材料の総重量に対して、非晶質材料の少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、40重量パーセント未満(好ましくは、35、30、25、20、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOと、Bと、Pとを合わせて構成される非晶質材料がある。
【0020】
本発明の実施形態のなかには、非晶質材料を含む(少なくとも5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが非晶質材料であるなど)セラミックであって、非晶質材料が、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、非晶質材料の総重量に対して、非晶質材料の少なくとも80(85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成されるセラミックがある。
【0021】
本発明の実施形態のなかには、非晶質材料を含む(少なくとも5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントがガラスであるなど)セラミックであって、非晶質材料が、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、非晶質材料の総重量に対して、非晶質材料の少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、20重量パーセント未満、好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOで構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がBで構成されるセラミックがある。このセラミックはさらに、結晶質セラミックを含む(少なくとも95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが結晶質セラミックであるなど)ものであってもよい。
【0022】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む非晶質材料を含む(少なくとも5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントがガラスであるなど)セラミックであって、非晶質材料の総重量に対して、ガラスの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、40重量パーセント未満(好ましくは、35、30、25、20、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOと、Bと、Pとを合わせて構成されるセラミックがある。このセラミックはさらに、結晶質セラミックを含む(少なくとも95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが結晶質セラミックであるなど)ものであってもよい。
【0023】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、このガラス−セラミックの総重量に対して、ガラス−セラミックの少なくとも80(85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成されるガラス−セラミックがある。このガラス−セラミックは、たとえば、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90または95容量パーセントがガラスで構成されるものであってもよい。このガラス−セラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10または5容量パーセントが結晶質セラミックで構成されるものであってもよい。
【0024】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、このガラス−セラミックの総重量に対して、ガラス−セラミックの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOで構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がBで構成されるガラス−セラミックがある。このガラス−セラミックは、たとえば、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90または95容量パーセントがガラスで構成されるものであってもよい。このガラス−セラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10または5容量パーセントが結晶質セラミックで構成されるものであってもよい。
【0025】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、このガラス−セラミックの総重量に対して、ガラス−セラミックの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、40重量パーセント未満(好ましくは、35、30、25、20、15、10、5重量パーセント未満、あるいは実に0重量パーセント)が、SiOと、Bと、Pとを合わせて構成されるガラス−セラミックがある。このガラス−セラミックは、たとえば、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95容量パーセントが非晶質材料で構成されるものであってもよい。このガラス−セラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10または5容量パーセントが結晶質セラミックで構成されるものであってもよい。
【0026】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないガラス−セラミックがある。本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すガラス−セラミックがある。このガラス−セラミックは、たとえば、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95容量パーセントが非晶質材料で構成されるものであってもよい。このガラス−セラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10または5容量パーセントが結晶質セラミックで構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0027】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、結晶質セラミックが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、結晶質セラミックの総重量に対して、結晶質セラミックの少なくとも80(85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成されるセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。もうひとつの態様において、望ましい実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントがガラスで構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0028】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、結晶質セラミックが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、結晶質セラミックの総重量に対して、結晶質セラミックの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOで構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がBで構成されるセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。本発明の実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが非晶質材料で構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0029】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、結晶質セラミックが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、結晶質セラミックの総重量に対して、結晶質セラミックの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、40重量パーセント未満(好ましくは、35、30、25、20、15、10、5重量パーセント未満、あるいは実に0重量パーセント)が、SiOと、Bと、Pとを合わせて構成されるセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。本発明の実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが非晶質材料で構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0030】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。本発明の実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが非晶質材料で構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0031】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、セラミックが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックの総重量に対して、セラミックの少なくとも80(85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成されるセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。本発明の実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが非晶質材料で構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0032】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、セラミックが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックの総重量に対して、セラミックの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がSiOで構成され、20重量パーセント未満(好ましくは、15、10、5重量パーセント未満、あるいは実に0重量パーセント)がBで構成されるセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。本発明の実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al ・REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントがガラスで構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0033】
本発明の実施形態のなかには、結晶質セラミックを含む(少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセントが結晶質セラミックであるなど)セラミックであって、セラミックが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックの総重量に対して、セラミックの少なくとも60(65、70、75、80、85、90、95、97、98、99、あるいは実に100)重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、40重量パーセント未満(好ましくは、35、30、25、20、15、10、5重量パーセント未満、あるいは実に0重量パーセント)が、SiOと、Bと、Pとを合わせて構成されるセラミックがある。望ましいいくつかの実施形態の中には、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものがある。本発明の実施形態のなかには、セラミックが、(a)平均晶子サイズが1マイクロメートル未満(一般に、500ナノメートル未満、300、200または150ナノメートル未満ですら可能であり、いくつかの実施形態では、100、75、50、25または20ナノメートル未満)の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含む非多孔性マイクロ構造を示すものがある。このセラミックは、たとえば、少なくとも99、98、97、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5、3、2または1容量パーセントが非晶質材料で構成されるものであってもよい。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0034】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、(a)平均晶子サイズが200ナノメートル(150ナノメートル、100ナノメートル、75ナノメートル、あるいは実に50ナノメートル)未満の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるガラス−セラミックがある。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0035】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、(a)複数の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含み、該晶子のいずれもサイズが200ナノメートル(150ナノメートル、100ナノメートル、75ナノメートル、さらには50ナノメートル)を超えないマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5、あるいは100%)であるガラス−セラミックがある。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の晶子サイズ値の少なくとも1つの結晶相と、特定の晶子サイズ値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0036】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、(a)複数の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含み、晶子のうちの少なくとも一部のサイズが150ナノメートル(100ナノメートル、75ナノメートル、さらには50ナノメートル)以下であるマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるガラス−セラミックがある。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の晶子値の少なくとも1つの結晶相と、特定の晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0037】
本発明の実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む完全結晶化ガラス−セラミックであって、ガラス−セラミックが、(a)平均晶子サイズが1マイクロメートル(500ナノメートル、300ナノメートル、200ナノメートル、150ナノメートル、100ナノメートル、75ナノメートル、さらには50ナノメートル)以下のサイズである晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるガラス−セラミックがある。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の晶子値の少なくとも1つの結晶相と、特定の晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0038】
結晶質セラミックを含む本発明によるセラミックについてみると、実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックが、(a)平均晶子サイズが200ナノメートル(150ナノメートル、100ナノメートル、75ナノメートル、あるいは実に50ナノメートル)未満の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるものを含む。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の平均晶子値の少なくとも1つの結晶相と、特定の平均晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0039】
結晶質セラミックを含む本発明によるセラミックについてみると、実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックが、(a)複数の晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含み、該晶子のいずれもサイズが200ナノメートル(150ナノメートル、100ナノメートル、75ナノメートル、さらには50ナノメートル)を超えないマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるものを含む。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の晶子値の少なくとも1つの結晶相と、特定の晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0040】
結晶質セラミックを含む本発明によるセラミックについてみると、実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックが、(a)複数の晶子(複合金属酸化物(複合Al・REOなど)および/またはZrOの晶子など)を含み、晶子のうちの少なくとも一部のサイズが150ナノメートル(100ナノメートル、75ナノメートル、さらには50ナノメートル)以下であるマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるものを含む。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の晶子値の少なくとも1つの結晶相と、特定の晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0041】
結晶質セラミックを含む本発明によるセラミックについてみると、実施形態のなかには、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、セラミックが、(a)平均晶子サイズが1マイクロメートル(500ナノメートル、300ナノメートル、200ナノメートル、150ナノメートル、100ナノメートル、75ナノメートル、さらには50ナノメートル)以下のサイズである晶子(複合金属酸化物(複合Al REOなど)および/またはZrOの晶子など)を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%(95%、96%、97%、98%、99%、99.5%、あるいは100%)であるものを含む。いくつかの実施形態については、共晶マイクロ構造の特徴または非多孔性マイクロ構造のうちの少なくとも一方を持たないものとすることが可能である。いくつかの実施形態では、特定の晶子値の少なくとも1つの結晶相と、特定の晶子値から外れる少なくとも1つの(異なる)結晶相とを有することも本発明の範囲内である。
【0042】
本発明の実施形態のなかには、αAlと、結晶質ZrOと、第1の複合Al・REOとを含み、αAl、結晶質ZrOまたは第1の複合Al・REOのうちの少なくとも1つの平均結晶サイズが150ナノメートル以下であり、研磨粒子の密度が理論密度の少なくとも90(いくつかの実施形態では、少なくとも95、96、97、98、99、99.5、あるいは実に100)パーセントである、ガラス−セラミックがある。いくつかの実施形態では、数値にして結晶サイズの好ましくは少なくとも75(80、85、90、95、97、あるいは実に少なくとも99)パーセントが200ナノメートル以下である。いくつかの実施形態では、ガラス−セラミックがさらに、異なる第2の複合Al・REOを含むものであると好ましい。いくつかの実施形態では、いくつかの実施形態では、ガラス−セラミックがさらに、複合Al・Yを含むものであると好ましい。
【0043】
本発明の実施形態のなかには、第1の複合Al・REOと、これとは異なる第2の複合Al・REOと、結晶質ZrOと、を含み、第1の複合Al・REO、第2の複合Al・REOまたは結晶質ZrOのうちの少なくとも1つについて、その結晶サイズの少なくとも90(いくつかの実施形態では、好ましくは95、あるいは実に100)数量パーセントが200ナノメートル以下であり、研磨粒子の密度が理論密度の少なくとも90(いくつかの実施形態では、少なくとも95、96、97、98、99、99.5、あるいは実に100)パーセントである、ガラス−セラミックがある。いくつかの実施形態では、ガラス−セラミックがさらに、複合Al・Yを含むものであると好ましい。
【0044】
本発明の実施形態のなかには、第1の複合Al・REOと、これとは異なる第2の複合Al・REOと、結晶質ZrOとを含み、第1の複合Al・REO、これとは異なる第2の複合Al・REOまたは結晶質ZrOのうちの少なくとも1つの平均結晶サイズが150ナノメートル以下であり、研磨粒子の密度が理論密度の少なくとも90(いくつかの実施形態では、少なくとも95、96、97、98、99、99.5、あるいは実に100)パーセントである、ガラス−セラミックがある。いくつかの実施形態では、結晶サイズの好ましくは少なくとも75(80、85、90、95、97、あるいは実に少なくとも99)数量パーセントが200ナノメートル以下である。いくつかの実施形態では、ガラス−セラミックがさらに、異なる第2の複合Al・REOを含むものであると好ましい。いくつかの実施形態では、ガラス−セラミックがさらに、複合Al・Yを含むものであると好ましい。
【0045】
本発明の実施形態のなかには、ガラス−セラミックを含む研磨粒子であって、第1の複合Al・REOと、これとは異なる第2の複合Al・REOと、結晶質ZrOと、を含み、第1の複合Al・REO、異なる第2の複合Al・REOまたは結晶質ZrOのうちの少なくとも1つについて、その結晶サイズの少なくとも90(いくつかの実施形態では、好ましくは95、あるいは実に100)数量パーセントが200ナノメートル以下であり、研磨粒子の密度が理論密度の少なくとも90(いくつかの実施形態では、少なくとも95、96、97、98、99、99.5、あるいは実に100)パーセントである研磨粒子がある。いくつかの実施形態では、ガラス−セラミックがさらに、複合Al・Yを含むものであると好ましい。
【0046】
もうひとつの態様において、本発明は、本発明によるセラミックの製造方法を提供するものである。たとえば、本発明は、非晶質材料(ガラス、あるいはガラス−セラミックを含む結晶質セラミックおよびガラスなど)を含む本発明によるセラミックの製造方法であって、
少なくともAlと、REOと、ZrOまたはHfOのうちの少なくとも一方と、のソースを溶融して溶湯を提供し、
この溶湯を冷却して非晶質材料を含むセラミックを提供することを含む製造方法を提供するものである。
【0047】
本願明細書に記載の特定の非晶質材料または非晶質材料を含むセラミックから結晶質セラミックを含むセラミック(ガラス−セラミックも入る)までを、熱処理(すなわち非晶質材料の少なくとも一部分がガラス−セラミックに変換されるように)することも本発明の範囲内である。
【0048】
本件出願において、
「非晶質材料」とは、X線回折で測定した場合に長距離結晶秩序を持たないおよび/または本願明細書の「示差熱分析」の項で説明する試験で求められるようなDTA(示差熱分析)で測定した場合に非晶質材料の結晶化に対応する発熱ピークのある、溶湯および/または気相から得られる材料を示し、
「セラミック」には、非晶質材料、ガラス、結晶質セラミック、ガラス−セラミック、これらの組み合わせを含み、
「複合金属酸化物」とは、2種類以上の金属元素と酸素とを含む金属酸化物(CeAl1118、DyAl12、MgAl、YAl12など)を示し、
「複合Al・金属酸化物」とは、理論酸化物基準でAlとAl以外の1以上の金属元素とを含む複合金属酸化物(CeAl1118、DyAl12、MgAl、YAl12など)を示し、
「複合Al・Y」とは、理論酸化物基準でAlとYとを含む複合金属酸化物(YAl12など)を示し、
「複合Al・REO」とは、理論酸化物基準でAlと希土類酸化物とを含む複合金属酸化物(CeAl1118およびDyAl12など)を示し、
「ガラス」とは、ガラス転移点を持つ非晶質材料を示し、
「ガラス−セラミック」とは、非晶質材料の熱処理によって形成される結晶を含むセラミックを示し、
「T」とは、本願明細書の「示差熱分析」の項で説明する試験で求められるようなガラス転移点を示し、
「T」とは、本願明細書の「示差熱分析」の項で説明する試験で求められるような結晶化温度を示し、
「希土類酸化物」とは、酸化セリウム(CeOなど)、酸化ジスプロシウム(Dyなど)、酸化エルビウム(Erなど)、酸化ユーロピウム(Euなど)、ガドリニウム(Gdなど)、酸化ホルミウム(Hoなど)、酸化ランタン(Laなど)、酸化ルテチウム(Luなど)、酸化ネオジム(Ndなど)、酸化プラセオジム(Pr11など)、酸化サマリウム(Smなど)、テルビウム(Tbなど)、酸化トリウム(Thなど)、ツリウム(Tmなど)、酸化イッテルビウム(Ybなど)、これらの組み合わせを示し、
「REO」とは、希土類酸化物を示す。
【0049】
さらに、本願明細書では、たとえばガラス−セラミックで金属酸化物(Al、複合Al・金属酸化物など)が結晶質である旨を特に明記しない限り、該当する金属酸化物は非晶質であっても結晶質であってもよく、非晶質の部分と結晶質の部分とからなるものであってもよいものとする。たとえば、AlとZrOとを含むガラス−セラミックの場合、AlおよびZrOは各々非晶質状態であっても結晶状態であってもよく、非晶質状態の部分と結晶状態の部分とがあってもよく、さらには別の金属酸化物との反応生成物としての形(たとえば、Alが結晶質AlまたはAlの特定の結晶相(αAlなど)として存在する旨を特に明記しない限り、これを結晶質Alとしておよび/または1以上の結晶質複合Al・金属酸化物とすることができるであってもよい。
【0050】
さらに、Tを持たない非晶質材料の加熱によって形成されるガラス−セラミックには、実際にガラスが含まれていなくてもよく、結晶とTを持たない非晶質材料とを含むものであってもよいものとする。
【0051】
本発明によるセラミックス物品は、ガラスビーズ(直径が少なくとも1マイクロメートル、5マイクロメートル、10マイクロメートル、25マイクロメートル、50マイクロメートル、100マイクロメートル、150マイクロメートル、250マイクロメートル、500マイクロメートル、750マイクロメートル、1mm、5mm、あるいは実に少なくとも10mmのビーズなど)、物品(皿など)、繊維、粒子、コーティング(薄層コーティングなど)に製造したり、これらの物として作製したり、あるいはこれらの物に変換可能なものである。このガラスビーズは、たとえば、再帰反射シート、英数字板、路面標示などの反射デバイスにおいて役立つ可能性がある。この粒子および繊維は、たとえば、断熱材、フィラー、複合材料(セラミック複合材料、金属複合材料、ポリマーマトリクス複合材料など)中の強化材として有用である。薄層コーティングは、たとえば摩耗を伴う用途での保護コーティングならびに温度管理用として有用なものとなり得る。本発明による物品の一例として、台所用品(皿を含む)、歯科用ブラケット、強化繊維、切削工具用インサート、研磨材材料、ガスエンジンの構造用部品(バルブやベアリングなど)があげられる。他の物品としては、本体または他の支持体の外面にセラミックの保護コーティングを有するものがあげられる。本発明による特定のセラミック粒子は研磨粒子として特に有用なものとなり得る。これらの研磨粒子については、研磨物品に組み入れてもよいし、ばらばらの状態で使用することもできる。
【0052】
本発明による研磨物品はバインダーと複数の研磨粒子とを含み、研磨粒子の少なくとも一部分が本発明による研磨粒子である。代表的な研磨製品としては、被覆砥粒研磨物品、固定砥粒研磨物品(ホイールなど)、不織研磨物品、研磨ブラシがあげられる。被覆砥粒研磨物品は一般に、第1の主面と、これに対向する第2の主面とを有する裏材を含み、バインダーと複数の研磨粒子とが第1の主面の少なくとも一部分上に研磨材層を形成する。
【0053】
いくつかの実施形態では、研磨物品中の研磨粒子の総重量に対して、研磨物品中の研磨粒子の好ましくは少なくとも5、10、15、20、25、30、35、40、45、50 55、60、65、70、75、80、85、90、95、あるいは実に100重量パーセントが本発明による研磨粒子である。
【0054】
研磨粒子は、使用前に特定の粒度分布が得られるように分級されるのが普通である。このような分布は一般に、粒度の範囲で粗い粒子細かい粒子からおよぶ。研磨材の技術分野では、この範囲が「粗粒」分、「粒調(control)」分および「細粒」分と呼ばれることもある。業界で受け入れられている分級標準に従って分級される研磨粒子は、公称グレードごとの粒度分布を限界値内で指定する。このような業界で受け入れられている分級標準(すなわち規定公称グレード)には、米国規格協会(ANSI:American National Standard Institute)の標準、欧州研磨製品連盟(FEPA:Federation of European Producers of Abrasive Products)の標準、日本工業規格(JIS)の標準として知られているものが含まれる。一態様において、本発明は、規定公称グレードを有する複数の研磨粒子であって、複数の研磨粒子の少なくとも一部分が本発明による研磨粒子である、研磨粒子を提供するものである。いくつかの実施形態では、複数の研磨粒子の総重量に対して複数の研磨粒子の好ましくは少なくとも5、10、15、20、25、30、35、40、45、50 55、60、65、70、75、80、85、90、95、あるいは実に100重量パーセントが本発明による研磨粒子である。
【0055】
また、本発明は、本発明による研磨粒子をワークピースの表面に接触させ、
本発明による研磨粒子または被接触表面のうちの少なくとも一方を移動させ、本発明による研磨粒子のうちの少なくとも1つで表面の少なくとも一部分を研磨することを含む、表面の研磨方法を提供するものである。
【発明を実施するための最良の形態】
【0056】
通常、本発明によるセラミックは、しかるべき金属酸化物源を加熱(火炎中を含む)して溶湯、望ましくは均質な溶湯を生成した後、この溶湯を急冷して非晶質材料または非晶質材料を含むセラミックを得ることによって製造することが可能である。本発明による非晶質材料ならびに非晶質材料を含むセラミックを、たとえば、しかるべき金属酸化物源を加熱(火炎中を含む)して溶湯、望ましくは均質な溶湯を生成した後、この溶湯を急冷して非晶質材料を得ることによって製造することが可能である。非晶質材料のいくつかの実施形態については、たとえば、金属酸化物源を好適な炉(誘導加熱炉、ガス燃焼炉または電気炉など)内、あるいはたとえばプラズマ内で溶融して製造することが可能である。このようにして得られる溶湯を冷却する(溶湯を冷却媒体(空気の高速ジェット流、液体、金属板(冷却された金属板を含む)、金属ロール(冷却された金属ロールを含む)、金属ボール(冷却された金属ボールを含む)などの中に放出する)など)。
【0057】
ひとつの方法において、本発明による非晶質材料ならびに非晶質材料を含むセラミックを、たとえば米国特許第6,254,981号(キャッスル(Castle))に開示されているような火炎溶融法を利用して製造することが可能である。この方法では、金属酸化物源材料を(「フィード粒子」とも呼ばれることがある粒子の形態などで)直接バーナー(メタン−空気バーナー、アセチレン−酸素バーナー、水素−酸素バーナーなど)に供給した後、たとえば、水、冷却油、空気などの中で急冷する。フィード粒子については、たとえば、金属酸化物源を粉砕、凝集(噴霧乾燥など)、溶融、あるいは焼結することによって製造可能である。火炎中に送られるフィード粒子の粒度次第で、粒子を含む形で得られる非晶質材料のサイズが変わってくるのが普通である。
【0058】
非晶質材料のいくつかの実施形態については、自由落下による冷却を併用したレーザスピンメルト(laser spin melt)、テイラー(Taylor)ワイヤ法、プラズマトロン法、ハンマーアンビル法、遠心急冷、空気銃によるスプラット冷却、単ローラ急冷および双ローラ急冷、ローラプレート急冷、液滴(pendant drop)の溶湯吸上げ(Rapid Solidification of Ceramics、ブロックウェイ(Brockway)ら、メタルズアンドセラミックスインフォメーションセンター(Metals And Ceramics Information Center)、デパートメントオブデフェンスインフォメーションアナリシスセンター(A Department of Defense Information Analysis Center)、オハイオ州コロンブス(Columbus)、1月、1984などを参照のことなどの他の手法で得ることも可能である。また、非晶質材料のいくつかの実施形態を、好適な前駆体の熱(火炎またはレーザまたはプラズマを利用したものを含む)による熱分解、金属前駆体の物理的気相合成(physical vapor synthesis)(PVS)、機械化学的処理などの他の手法で得るようにしてもよい。
【0059】
有用なAl−REO−ZrO/HfOの組成としては、共晶組成物(三元共晶組成物など)またはその近辺のものがあげられる。当業者であれば、本願開示の内容を精査の後、本願明細書に開示のAl−REO−ZrO/HfOの組成物だけでなく、四元共晶組成物およびさらに高次の共晶組成物をはじめとする他の組成物についても分かるであろう。
【0060】
(理論酸化物基準で)Alの商業ソースをはじめとするソースには、ボーキサイト(天然産のボーキサイトと合成製造されるボーキサイトの両方を含む)、焼成ボーキサイト、水和アルミナ(ベーム石およびギブス石など)、アルミニウム、バイヤー法で製造されるアルミナ、アルミニウム鉱石、γアルミナ、αアルミナ、アルミニウム塩、硝酸アルミニウム、これらの組み合わせがある。Alのソースは、Alを含有するものであってもよいし、これを提供するだけのものであってもよい。あるいは、Alのソースは、AlならびにAl以外の1以上の金属酸化物(複合Al・金属酸化物の材料またはこれを含有する材料(DyAl12、YAl12、CeAl1118など)を含む)を含有するものであってもよいし、これを提供するものであってもよい。
【0061】
希土類酸化物の商業ソースをはじめとするソースには、希土類酸化物粉末、希土類金属、希土類含有鉱石(バストネス石およびモナズ石など)、希土類塩、希土類硝酸塩、希土類炭酸塩がある。希土類酸化物のソースは、希土類酸化物を含有するものであってもよいし、これを提供するだけのものであってもよい。あるいは、希土類酸化物のソースは、希土類酸化物ならびに希土類酸化物以外の1以上の金属酸化物(複合希土類酸化物・他の金属酸化物の材料またはこれを含有する材料(DyAl12、CeAl1118など)を含む)を含有するものであってもよいし、これを提供するものであってもよい。
【0062】
(理論酸化物基準で)ZrOの商業ソースをはじめとするソースには、酸化ジルコニウム粉末、ジルコンサンド、ジルコニウム、ジルコニウム含有鉱石、ジルコニウム塩(炭酸ジルコニウム、酢酸ジルコニウム、硝酸ジルコニウム、塩化ジルコニウム、水酸化ジルコニウム、これらの組み合わせなど)がある。上記に加え、あるいはその代わりに、ZrOのソースは、ZrOならびにハフニアなどの他の金属酸化物を含有するものであってもよいし、これを提供するものであってもよい。(理論酸化物基準で)HfOの商業ソースをはじめとするソースには、酸化ハフニウム粉末、ハフニウム、ハフニウム含有鉱石、ハフニウム塩がある。上記に加え、あるいはその代わりに、HfOのソースは、HfOならびにZrOなどの他の金属酸化物を含有するものであってもよいし、これを提供するものであってもよい。
【0063】
任意に、本発明によるセラミックはさらに、他の酸化物金属酸化物(すなわち、Al、希土類酸化物、ZrO/HfO以外の金属酸化物)を含むものであってもよい。他の有用な金属酸化物としては、理論酸化物基準で、BaO、CaO、Cr、CoO、Fe、GeO、LiO、MgO、MnO、NiO、NaO、Sc、SrO、TiO、ZnO、これらの組み合わせがあげられる。商業ソースをはじめとするソースには、酸化物自体、複合酸化物、鉱石、炭酸塩、酢酸塩、硝酸塩、塩化物、水酸化物などがある。これらの金属酸化物を加えて得られるセラミックの物性を変化させるおよび/または処理を改善する。これらの金属酸化物については、一般に0から50重量%のどこで添加してももよく、いくつかの実施形態では、所望の特性などに応じてセラミック材料の好ましくは0から25重量%、一層好ましくは0から50重量%の量で添加する。
【0064】
いくつかの実施形態では、酸化物形成のエンタルピーが負である金属(Al、Ca、Cu、Cr、Fe、Li、Mg、Ni、Ag、Ti、Zr、これらの組み合わせ)Mまたはその合金のうちの少なくとも1種を含む微粒子状の金属材料を溶湯に加えることで、金属酸化物源の少なくとも一部分(いくつかの実施形態では、好ましくは10 15、20、25、30、35、40、45、あるいは実に50重量パーセント)を得るか、そうでなければこれらに他の原料で金属を付けるようにすると都合がよいことがある。理論に拘泥されるつもりはないが、金属の酸化に伴う発熱反応で生じる熱が、均質な溶湯ならびにこれによって得られる非晶質材料の生成に有利な形で作用すると考えられる。たとえば、酸化反応によって原料内にさらに熱が生成されると、不十分な熱の移動がなくなるか低減されるため、特にx方向、y方向、z方向が150マイクロメートルを超える非晶質粒子の形成時に溶湯の形成と均質化が容易になる。また、こうして生成された熱を利用できると、さまざまな化学反応や物理的プロセス(高密度化や球状化など)を促進して完了させやすくなると考えられる。さらに、実施形態によっては、酸化反応によって生成される熱を利用することで、こうした熱がなければ困難であるか、そうでなければ材料の融点が高く非現実的であった溶湯の生成を実現することが可能になると考えられる。さらに、酸化反応によって生成される熱を利用することで、こうした熱がなければ製造が不可能であるか、あるいは所望のサイズ範囲での製造が不可能であった非晶質材料の製造を実現することができる。本発明のもうひとつの利点として、非晶質材料の製造時、溶融、高密度化、球状化などの物理的プロセスおよび化学的プロセスの多くを短時間で行うことができるため、極めて高い急冷速度を実現できることがあげられる。さらに詳しい説明については、本願と同日出願の、同時係属中の米国特許出願第_________号(代理人整理番号56931US007)(その開示内容を本願明細書に援用する)を参照のこと。
【0065】
特定の金属酸化物を加えることで、本発明によるセラミックの特性および/または結晶構造またはマイクロ構造ならびに、セラミック製造時の原料および中間体の処理が変わる場合がある。たとえば、MgO、CaO、LiO、NaOなどの酸化物を添加すると、ガラスのTとT(Tは結晶化温度である)の両方が変化することが観察されている。理論に拘泥されるつもりはないが、このような添加によってガラスの生成に影響がおよぶものと考えられる。さらに、たとえば、このような酸化物を添加することで、系全体の溶融温度が下がり(すなわち系がより低めの温度で溶融する共晶になり)、ガラスの生成が容易になる場合もある。多成分系(四元など)の複合共晶ではガラス生成能が高まることがある。また、Al、希土類酸化物およびZrO/HfO以外の金属酸化物(MgO、CaO、LiO、NaOなど)を添加すると、「動作」範囲での溶湯液(liquid melt)の粘度とガラスの粘度に影響がおよぶこともある。
【0066】
一般に、本発明による非晶質材料およびガラス−セラミックには、互いに垂直なx方向、y方向、z方向があり、このx方向、y方向、z方向が各々少なくとも10マイクロメートルである。いくつかの実施形態では、x方向、y方向、z方向は、少なくとも30マイクロメートル、35マイクロメートル、40マイクロメートル、45マイクロメートル、50マイクロメートル、75マイクロメートル、100マイクロメートル、150マイクロメートル、200マイクロメートル、250マイクロメートル、500マイクロメートル、1000マイクロメートル、2000マイクロメートル、2500マイクロメートル、1mm、5mm、あるいは実に少なくとも10mmである。材料のx方向、y方向、z方向については、その寸法の大きさに応じて、目視または顕微鏡を使って判断する。表記のz方向は、たとえば、球の直径、コーティングの厚さ、あるいは角形の最長辺の長さである。
【0067】
ガラス−セラミックを形成するための非晶質材料ならびに非晶質材料を含むセラミックの結晶化には、材料の添加が影響する場合もある。たとえば、特定の金属、金属酸化物(チタン酸塩およびジルコン酸塩など)、フッ化物などが、核生成剤として作用し、好都合に不均一な結晶核生成が得られる場合がある。また、酸化物を添加することで、再加熱時にガラスから失透する準安定相の性質が変わる場合もある。もうひとつの態様では、結晶質ZrOを含む本発明によるセラミックについて、ZrOの正方晶/立方晶の形態を安定させることが知られている金属酸化物(Y、TiO、CaO、MgOなど)を加えると望ましいことがある。
【0068】
本発明によるセラミックを製造するための金属酸化物源および他の添加剤にそれぞれ何を選択するかについては、得られる結晶含有セラミックの所望の組成物およびマイクロ構造、所望の結晶度、該当する場合、得られるセラミックの所望の物性(硬度または靭性など)、望ましくない不純物の混入を回避または最小限に抑えること、得られるセラミックの所望の特徴および/またはセラミックの調製に使用する個々のプロセス(融解および/または固化の前および/または間の設備および原料の精製)を考慮して決められるのが一般的である。
【0069】
場合によっては、NaO、P、SiO、TeO、Vおよびこれらの組み合わせからなる群から選択される金属酸化物を限られた量で取り入れると好ましいことがある。商業ソースをはじめとするソースには、酸化物自体、複合酸化物、鉱石、炭酸塩、酢酸塩、硝酸塩、塩化物、水酸化物などがある。これらの金属酸化物は、たとえば、得られる研磨粒子の物性を変化させるおよび/または処理を改善する目的で添加できるものである。これらの金属酸化物を使用する場合、たとえば所望の特性などに応じて、ガラス−セラミックの0から20重量%を上回る量、好ましくは0から5重量%を上回る量、一層好ましくは0から2重量%を上回る量で添加されるのが普通である。
【0070】
金属酸化物源および他の添加剤は、本発明によるセラミックの製造に使用するプロセスおよび設備に適していれば、どのような形態のものであってもよい。原料については、酸化物ガラスおよび非晶質金属の製造技術分野において周知の手法と設備とを利用して溶融および急冷することができる。望ましい冷却速度としては、50K/s以上があげられる。従来技術において周知の冷却の手法として、ロールチルがある。ロールチルは、たとえば、金属酸化物源を一般に融点よりも20〜200℃高い温度で溶融し、溶湯を高圧(空気、アルゴン、窒素などのガスを使用するなど)下で高速回転ロールに噴霧して冷却/急冷する形で実施できる。一般に、これらのロールは金属製であり、水を使った冷却が行われる。溶湯の冷却/急冷には、金属のブックモールドが役立つこともある。
【0071】
溶湯を生成する、溶湯を冷却/急冷するおよび/または上記以外であればガラスを形成するための他の手法として、気相急冷、プラズマスプレー、溶湯吸上げ、ガスアトマイズまたは遠心アトマイズがあげられる。気相急冷は、たとえば、金属合金または金属酸化物源をスパッタリングターゲットに形成してこれを使用するスパッタリングによって実施可能である。この場合、スパッタリング装置内のあらかじめ定めた位置にターゲットを固定し、被覆対象となる支持体をターゲットと向かい合わせに配置する。酸素ガスおよびArガス10−3トールの一般的な圧力、ターゲットと支持体との間に放電が生じ、Arイオンまたは酸素イオンがターゲットに衝突して反応スパッタリングが開始されるため、この組成物が支持体上に成膜される。プラズマスプレーに関するさらに詳しい説明については、たとえば、本願と同日出願の、同時係属中の米国特許出願第_______(代理人整理番号57980US002)(その開示内容を本願明細書に援用する)を参照のこと。
【0072】
ガスアトマイズでは、フィード粒子を溶融してこれを溶湯に変える必要がある。このような溶湯を粉砕用の空気のジェット流と接触させて溶湯流を噴霧化する(すなわち溶湯流を飛散させて細かい液滴にする)。このようにして得られる、実質的に独立した、通常は楕円形であるガラス粒子(ビーズなど)を回収する。ビーズサイズの一例として、直径が約5マイクロメートルから約3mmの範囲のものがあげられる。溶湯吸上げについては、たとえば、米国特許第5,605,870号(ストロム−オルセン(Strom−Olsen)ら)に記載されているようにして実施できる。たとえば2001年4月4日に国際公開第01/27046 A1号で公開されたPCT出願に開示されているようなレーザ光加熱を利用したガラスの無容器製造法が、本発明によるガラスの製造に役立つこともある。
【0073】
冷却速度は急冷後の非晶質材料の特性に影響すると思われる。たとえば、ガラス転移点、密度ならびにガラスの持つ他の特性は一般に、冷却速度次第で変化する。
【0074】
冷却時に所望の酸化状態などを維持するおよび/またはこれに影響をおよぼすための還元環境、中性環境、あるいは酸化環境などの制御された雰囲気下で急速な冷却を行うこともできる。この雰囲気は、過冷却液体からの結晶化動力学に影響をおよぼすことでガラスの形成に影響し得るものである。たとえば、空気中での場合に比してアルゴン雰囲気中での方が結晶化せずにAl溶湯の過冷却が大きくなることが報告されている。
【0075】
材料のマイクロ構造または相組成(ガラス質/非晶質/結晶質)を判断するには、数多くの方法を利用することが可能である。光学顕微鏡法、電子顕微鏡法、示差熱分析(DTA)法、X線回折(XRD)法などを利用して、さまざまな情報を取得することができる。
【0076】
光学顕微鏡法を用いると、非晶質材料は一般に結晶境界などの光散乱中心が存在しないため大部分が透明であるのに対し、結晶材料には結晶構造が認められ、光散乱効果によって不透明になる。
【0077】
メッシュサイズが−100+120の画分(すなわち篩の目開きサイズ150マイクロメートルから目開きサイズ125マイクロメートルで回収される画分)を使用して、ビーズで非晶質の生成率を算出することができる。測定については以下のようにして行う。ビーズの単層をスライドガラスに塗り広げる。光学顕微鏡でこれらのビーズを観察する。光学顕微鏡の接眼レンズの十字線をガイドとして使用し、直線上にあるビーズをその光学的透明度に応じて非晶質または結晶質のいずれかにカウントする。合計500個のビーズをカウントし、非晶質ビーズの量をカウントしたビーズの総数で割って非晶質の生成率を求める。
【0078】
DTAを使用して、材料の対応するDTAのトレース記録に発熱を伴う結晶化イベント(T)がある場合に、その材料を非晶質に分類する。同じトレース記録にTよりも低い温度で発熱を伴う他のイベント(T)がある場合、これをガラス相からなるものであるとみなす。材料のDTAのトレース記録にこのようなイベントが全く含まれなければ、結晶相を含有するものであるとみなす。
【0079】
示差熱分析(DTA)については以下の方法で実施できる。メッシュサイズが−140+170の画分(すなわち篩の目開きサイズ105マイクロメートルから目開きサイズ90マイクロメートルで回収される画分)を使用して、(ドイツのゼルブ(Selb)にあるネッツシュ・インスツルメンツ(Netzsch Instruments)から商品名「ネッツシュ・エスティエー(NETZSCH STA) 409 DTA/TGA」で入手できるものなどの機器で)DTAを行うことができる。篩い分けた試料をそれぞれ一定量(一般に約400ミリグラム(mg))で100マイクロリットルのAlサンプルホルダに取り付ける。各試料を静空気中にて10℃/分の速度で室温(約25℃)から1100℃まで加熱する。
【0080】
粉末X線回折すなわちXRDを使用して、(ニュージャージー州マーワー(Mahwah)にあるフィリップス(Phillips)から商品名「フィリップスエックスアールジー(PHILLIPS XRG)3100」で入手できるものなどのx線回折装置で、1.54050オングストロームの銅のKα1線を用いて)結晶化材料のXRDトレース記録に現れるピークを国際回折データセンター(International Center for Diffraction Data)が公開しているJCPDS(粉末回折標準委員会(Joint Committee on Powder Diffraction Standards))のデータベースに収録された結晶相のXRDパターンと比較することで、材料中の相を求めることができる。さらに、XRDを定性的に使用すれば相のタイプを求めることもできる。強度のピークが広く拡散している場合、その材料は非晶質の性質を持つと考えられる。広いピークと明確に定まるピークの両方がある場合は、非晶質のマトリクス中に結晶質の物質が混入しているものと考えられる。最初に形成される非晶質材料またはセラミック(結晶化前のガラスを含む)のサイズが所望のサイズよりも大きいことがある。こうした非晶質材料またはセラミックを、ロールクラッシャーでの破砕、カナリアミル粉砕(canary milling)、ジョークラッシャーでの破砕、ハンマーミル粉砕、ボールミル粉砕、ジェットミル粉砕、インパクトクラッシャーでの破砕をはじめとする、従来技術において周知の破砕法および/または細砕法で、小さな細片にすることが可能である。場合によっては、破砕ステップを2段階以上にすると望ましい。たとえば、セラミックを形成した(凝固させた)後では、必要以上に大きな形になる場合がある。第1の破砕ステップでは、これらの比較的大きな塊状物すなわち「チャンク」を破砕して小さな細片にする必要がある。このようなチャンクを破砕するには、ハンマーミル、インパクトクラッシャー、あるいはジョークラッシャーを使用すればよい。その後、これらの小さくした細片を、所望の粒度分布が得られるようにさらに破砕しても構わない。所望の粒度分布(グリットサイズまたはグレードと呼ばれることもある)を得るには、複数の破砕ステップを経なければならないこともある。通常、破砕条件を最適化して所望の粒子形状や粒度分布が得られるようにしている。こうして得られる所望サイズの粒子が大きすぎる場合はこれを再破砕すればよいし、小さすぎる場合は「再利用」して再溶融用の原料として活用することができる。
【0081】
粒子の形状は、セラミックの組成および/またはマイクロ構造、セラミック冷却時の幾何学的形状、セラミックの破砕方法(すなわち使用する破砕法)などに左右されることがある。通常、「ごつごつした」形状が好ましい場合は、この形状を得るにはより大きなエネルギーが必要になるであろう。逆に、「鋭利な」形状が好ましい場合、この形状を得るにはより小さなエネルギーしか必要としないであろう。あるいは、破砕法を変更して異なる所望の形状を実現してもよい。いくつかの粒子については、一般に平均アスペクト比が1:1から5:1になると望ましく、いくつかの実施形態では、1.25:1から3:1、あるいは実に1.5:1から2.5:1であると望ましい。
【0082】
たとえば所望の形状で物品を直接形成することも本発明の範囲内である。たとえば、溶湯を金型に注ぐまたは金型内で成形して所望の物品を形成(成形を含む)することができる。
【0083】
驚くべきことに、本発明のセラミックは寸法の制限なく得られることが明らかになった。これが可能なのは、ガラス転移点よりも高い温度で実施する融合ステップによるものであることが分かった。この融合ステップは基本的に2以上の小さな粒子からこれよりも大きなサイズの物体を形成するものである。たとえば、図7から明らかなように、放熱(T)よりも低い温度で吸熱(T)が出現していることから、本発明のガラスには有意な結晶化が起こる(T)前にガラス転移(T)が生じる。たとえば、非晶質材料および/または繊維などを含む粒子を、粒子などが融合して形状体となるようにTより高い温度で加熱し、融合した形状体を冷却するなどの方法でセラミック(結晶化前のガラスを含む)を得るようにしてもよい。融合に使用する温度および圧力は、たとえば、非晶質材料の組成や得られる材料の所望の密度などに左右されることがある。ガラスの場合、温度がガラス転移点よりも高くなければならない。特定の実施形態では、約850℃から約1100℃(いくつかの実施形態では、好ましくは900℃から1000℃)の範囲内の少なくとも一温度で加熱を行う。一般に、融合時に非晶質材料を加圧下(0より高く1GPaまたはこれ以上まで)におき、非晶質材料の融合を促進する。一実施形態では、装入量の粒子などをダイに装入し、ガラスの粘性流動によって融合が比較的大きな部分で起こるガラス転移よりも高い温度でホットプレスを行う。典型的な融合法の一例として、ホットプレス、熱間等方圧加圧、熱間押出などがあげられる。たとえば(破砕などによって得られる)粒子(ビーズおよびマイクロスフェアを含む)、繊維などを含む非晶質材料を、これよりも大きな粒度で成形することができる。一般に、得られた融合体にさらに熱処理を施す前にこれを冷却すると好ましいのが普通である。熱処理が必要な場合にその熱処理後、融合体を破砕して粒度を小さくしたり、あるいは所望の粒度分布が得られるようにしてもよい。
【0084】
別途熱処理を行って材料の所望の特性をさらに改善することも本発明の範囲内である。たとえば、(約900℃から約1400℃の温度で)熱間等方圧加圧を実施して残っている多孔性(residual porosity)をなくし、材料の密度を高めることができる。任意に、こうして得られる融合物品を熱処理し、ガラス−セラミック、結晶質セラミック、あるいは結晶質セラミックを含むセラミックを得ることも可能である。
【0085】
また、非晶質材料および/またはガラス−セラミック(粒子など)の融合はさまざまな方法で実現することができ、その一例として、無加圧または加圧焼結(焼結、プラズマ焼結、ホットプレス、HIP処理、熱間鍛造、熱間押出など)があげられる。
【0086】
熱処理については、ガラスを熱処理してガラス−セラミックを得るための従来技術において周知の方法をはじめとする多様な方法のうち、どれを用いて実現することも可能である。たとえば、抵抗加熱炉、誘導加熱炉またはガス加熱炉などを用いてバッチで熱処理を施すことが可能である。あるいは、たとえば回転炉などを用いて連続的に熱処理を施すことも可能である。回転炉の場合、高温で稼動させた炉に材料を直接供給する。高温での時間については、数秒(いくつかの実施形態では5秒未満)から数分ないしは数時間の範囲とすることができる。温度は900℃から1600℃のどの範囲でもよく、一般に1200℃から1500℃である。熱処理の一部(核生成ステップなど)をバッチで行い、残り(結晶成長ステップ、さらには所望の密度を達成するときなど)を連続的に行うことも本発明の範囲内である。核生成ステップでは、温度は一般に約900℃から約1100℃の範囲であり、いくつかの実施形態では、好ましくは約925℃から約1050℃の範囲である。同様に、密度ステップでは、温度は一般に約1100℃から約1600℃の範囲であり、いくつかの実施形態では、好ましくは約1200℃から約1500℃の範囲である。この熱処理は、たとえば、高温で炉に材料を直接供給して行い得るものである。あるいは、たとえばずっと低い温度(室温など)で炉に材料を供給した後、これをあらかじめ定められた加熱速度で所望の温度まで加熱してもよい。空気以外の雰囲気中で熱処理を施すことは本発明の範囲内である。場合によっては、減圧雰囲気下で熱処理を行うと望ましいことすらあろう。また、たとえば熱間等方圧加圧やガス加圧炉の場合のようにガス加圧下で熱処理を行うと望ましいことがある。得られる物品または熱処理物品を変換(破砕など)して粒子(研磨粒子など)を得ることは本発明の範囲内である。
【0087】
非晶質材料を熱処理し、非晶質材料を少なくとも部分的に結晶化させてガラス−セラミックを得る。特定のガラスを熱処理してガラス−セラミックを形成することは従来技術において周知である。ガラス−セラミックでの核生成と結晶成長のための加熱条件が、さまざまなガラスについて周知である。あるいは、当業者であれば従来技術において周知の手法を使用してガラスの時間温度変態図(TTT)を検討してしかるべき条件を求めることができる。当業者は、本発明の開示内容を読めば、本発明によるガラスのTTT曲線を描き、しかるべき核生成条件および/または結晶成長条件を求めて本発明によるガラス−セラミックを得ることができよう。
【0088】
一般に、ガラス−セラミックはその原料となる非晶質材料よりも強い。このため、たとえば非晶質材料を結晶質セラミック相に変換する度合いなどによって材料の強度を調節してもよい。上記の代わりに、あるいは上記に加えて、作り出す核生成サイトの数によって材料の強度を変え、これを利用して結晶相をなす結晶の数、さらにはサイズを変えることもできる。ガラス−セラミックに関するさらに詳しい説明については、たとえばGlass−Ceramics、ピー・ダブリュ・マクミラン(P.W.McMillan)著、アカデミック・プレス・インコーポレイテッド(Academic Press,Inc.)、第2版、1979年を参照のこと。
【0089】
たとえば、本発明によるガラス−セラミックを製造するために代表的ないくつかの非晶質材料を熱処理した際、約900℃を超える温度で、LaZrなどの相やZrOが存在する場合は立方晶/正方晶ZrO、場合によっては単斜晶ZrOなどの相の形成が観察された。理論に拘泥されるつもりはないが、ジルコニア関連の相が非晶質材料から核生成される最初の相ではないかと思われる。Al、ReAlO(式中、Reは少なくとも1つの希土類カチオンである)、ReAl1118、ReAl12、YAl12などの相の形成は、約925℃を上回る温度で起こるのが普通であると思われる。一般に、この核生成ステップでの晶子のサイズはナノメートル台である。たとえば、10〜15ナノメートルと小さい結晶が観察されている。少なくともいくつかの実施形態については、完全な結晶化状態を得るには約1300℃にて約1時間の熱処理を行う。通常、核生成ステップと結晶成長ステップのそれぞれでの熱処理時間については、数秒(いくつかの実施形態では5秒未満)から数分ないしは1時間以上の範囲とすることができる。
【0090】
本発明によるセラミックに含有させることのできる結晶相の一例として、複合Al 金属酸化物(複合Al・REO(ReAlO(GdAlO LaAlOなど)、ReAl1118(LaAl1118など)、ReAl12(DyAl12など)など)、複合Al・Y(YAl12など)、複合ZrO・REO(LaZrなど))、Al(α−Alなど)、ZrO(立方晶ZrOおよび正方晶ZrOなど)などがあげられる。
【0091】
また、複合Al・金属酸化物(複合Al・Y(ガーネットの結晶構造を示すアルミン酸イットリウムなど)など)中のイットリウムおよび/またはアルミニウムカチオンの一部を他のカチオンで置換することも本発明の範囲内である。たとえば、複合Al・Y中のAlカチオンの一部を、Crと、Tiと、Scと、Feと、Mgと、Caと、Siと、Coと、これらの組み合わせと、からなる群から選択される元素の少なくとも1つのカチオンで置換することができる。たとえば、複合Al・Y中のYカチオンの一部であれば、Ceと、Dyと、Erと、Euと、Gdと、Hoと、Laと、Luと、Ndと、Prと、Smと、Thと、Tmと、Ybと、Feと、Tiと、Mnと、Vと、Crと、Coと、Niと、Cuと、Mgと、Caと、Srと、これらの組み合わせと、からなる群から選択される元素の少なくとも1つのカチオンで置換することができる。同様に、アルミナ中のアルミニウムカチオンの一部を置換することも本発明の範囲内である。たとえば、アルミナ中のアルミニウムを、Cr、Ti、Sc、Fe、Mg、Ca、Si、Coで置換することが可能である。上述したようなカチオンの置換によって、融解させた材料の特性(硬度、靭性、強度、熱伝導率など)を変えることができる。
【0092】
複合Al・金属酸化物(複合Al・REOなど)中の希土類および/またはアルミニウムカチオンの一部を他のカチオンで置換することも本発明の範囲内である。たとえば、複合Al・REO中のAlカチオンの一部を、Crと、Tiと、Scと、Feと、Mgと、Caと、Siと、Coと、これらの組み合わせと、からなる群から選択される元素の少なくとも1つのカチオンで置換することができる。たとえば、複合Al・REO中のYカチオンの一部であれば、Yと、Feと、Tiと、Mnと、Vと、Crと、Coと、Niと、Cuと、Mgと、Caと、Srと、これらの組み合わせと、からなる群から選択される元素の少なくとも1つのカチオンで置換することができる。同様に、アルミナ中のアルミニウムカチオンの一部を置換することも本発明の範囲内である。たとえば、アルミナ中のアルミニウムを、Cr、Ti、Sc、Fe、Mg、Ca、Si、Coで置換することが可能である。上述したようなカチオンの置換によって、融解させた材料の特性(硬度、靭性、強度、熱伝導率など)を変えることができる。
【0093】
ASTM標準E 112−96「Standard Test Methods for Determining Average Grain Size(平均結晶粒度を求めるための標準的な試験方法)」に従ってラインインターセプト法を使用し、平均結晶サイズを求めることができる。一般には直径約2.5cm、高さ約1.9cmの樹脂シリンダで、取り付け用樹脂(mounting resin)(イリノイ州レーク・ブラフ(Lake Bluff)のビューラー(Buehler)から商品名「トランスオプティック・パウダー(TRANSOPTIC POWDER)」で入手できるものなど)に試料を取り付ける。ポリッシャ(イリノイ州レーク・ブラフ(Lake Bluff)のビューラー(Buehler)から商品名「エコメット(ECOMET) 3」で入手できるものなど)を使用する従来の研磨法で、取り付け部分の準備をする。ダイヤモンド砥石を使って試料を約3分間ポリッシュした後、45、30、15、9、3、1マイクロメートルのスラリーをそれぞれ使って5分間ポリッシュを行う。取り付けてポリッシュした試料を金−パラジウムの薄層でスパッタし、走査型電子顕微鏡法(JEOL SEMモデルJSM 840Aなど)で観察する。試料に見られるマイクロ構造の一般的な後方散乱電子(BSE)顕微鏡写真を利用して、以下のようにして平均結晶サイズを求める。顕微鏡写真に引いた無作為な直線の単位長(N)あたりの交差結晶数をカウントする。この数から以下の式を使って平均結晶サイズを求める。
【数1】

(式中、Nは単位長あたりの交差結晶数、Mは顕微鏡写真の倍率である。)
【0094】
もうひとつの態様では、本発明によるセラミック(ガラス−セラミックも入る)は、平均サイズが1マイクロメートル未満である晶子を、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセント含み得る。もうひとつの態様では、本発明によるセラミック(ガラス−セラミックも入る)は、平均サイズが0.5マイクロメートル未満である晶子を、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセント含み得る。もうひとつの態様では、本発明によるセラミック(ガラス−セラミックも入る)は、平均サイズが0.3マイクロメートル未満の晶子を、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセント含み得る。もうひとつの態様では、本発明によるセラミック(ガラス−セラミックも入る)は、平均サイズが0.15マイクロメートル未満の晶子を、少なくとも1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、97、98、99、あるいは実に100容量パーセント含み得る。
【0095】
本発明によるセラミックに含有させることのできる結晶相としては、アルミナ(αアルミナおよび遷移アルミナなど)、REO、HfO ZrOならびに、たとえば、BaO、CaO、Cr、CoO、Fe、GeO、LiO、MgO、MnO、NiO、NaO、P、Sc、SiO、SrO、TeO、TiO、V、Y、ZnOなどの1以上の他の金属酸化物、「複合金属酸化物」(「複合Al・金属酸化物(複合Al・REOなど)を含む)ならびにこれらの組み合わせがあげられる。
【0096】
Alと、Yと、ZrOまたはHfOのうちの少なくとも一方とを含むセラミックに関する詳しい説明については、その製造、用途、特性を含めて、2001年8月2日出願の米国特許出願第09/922,526号、同第09/922,528号、同第09/922,530号ならびに本願と同日に出願された米国特許出願第__________号(代理人整理番号56931US005、56931US006、56931US007、56931US008、56931US009、56931US010、57980US002、57981US002の出願(これらの開示内容を本願明細書に援用する)に記載がある。
【0097】
本発明によるガラス−セラミックの実施形態を得る目的で、非晶質を熱処理して形成される結晶は、たとえば、針状等軸晶、柱状晶、あるいは薄い平板状のものであってもよい。
【0098】
本発明による非晶質材料やガラス−セラミックなどはバルク材の形態であってもよいが、本発明による非晶質材料、ガラス−セラミックなどを含む複合材料を得ることも本発明の範囲内である。このような複合材料には、たとえば、本発明による非晶質材料やガラス−セラミックなどに分散された相または繊維(連続または不連続)または粒子(ヒゲ状結晶を含む)(金属酸化物粒子、ホウ化物粒子、炭化物粒子、窒化物粒子、ダイヤモンド粒子、金属粒子、ガラス粒子、これらの組み合わせなど)、発明または層複合構造(ガラス−セラミックの製造に用いる非晶質材料および/またはガラス−セラミックの異なる組成の層に対するガラス−セラミックの勾配など)を含み得る。
【0099】
本発明による特定のガラスは、たとえば、Tを約750℃から約860℃の範囲にし得るものである。本発明による特定のガラスは、たとえば、ヤング率を約110GPaから少なくとも約150GPaの範囲にし得るものであり、本発明による結晶質セラミックでは約200GPaから少なくとも約300GPa、本発明によるガラス−セラミックまたはガラスを含む本発明によるセラミックならびに結晶質セラミックでは、約110GPaから約250GPaの範囲にすることができる。本発明による特定のガラスは、たとえば、平均靭性(すなわち破壊に対する耐性)を約1MPa*m1/2から約3MPa*m1/2の範囲にし得るものであり、本発明による結晶質セラミックでは約3MPa*m1/2から約5MPa*m1/2、本発明によるガラス−セラミックまたはガラスを含む本発明によるセラミックならびに結晶質セラミックでは約1MPa*m1/2から約5MPa*m1/2の範囲にすることができる。
【0100】
本発明の材料の平均硬度については以下のようにして求めることが可能である。一般には直径約2.5cm、高さ約1.9cmの樹脂シリンダで、取り付け用樹脂(mounting resin)(イリノイ州レーク・ブラフ(Lake Bluff)のビューラー(Buehler)から商品名「トランスオプティック・パウダー(TRANSOPTIC POWDER)」で入手できるものなど)に材料の切片を取り付ける。ポリッシャ(イリノイ州レーク・ブラフ(Lake Bluff)のビューラー(Buehler)から商品名「エコメット(ECOMET) 3」で入手できるものなど)を使用する従来の研磨法で、取り付け部分の準備をする。ダイヤモンド砥石を使って試料を約3分間ポリッシュした後、45、30、15、9、3、1マイクロメートルのスラリーをそれぞれ使って5分間ポリッシュを行う。次に、ビッカース圧子を取り付けた従来の微小硬度計(日本の東京にある株式会社ミツトヨから商品名「MITUTOYO MVK−VL」で入手できるものなど)を使用し、圧入荷重を100グラムとして微小硬度を測定する。この微小硬度の測定は、ASTM試験方法E384 Test Methods for Microhardness of Materials(材料の微小硬度試験方法)(1991)に記載の指針に従って行う。
【0101】
本発明による特定のガラスは、たとえば平均硬度が少なくとも5GPa(より望ましくは、少なくとも6GPa、7GPa、8GPaまたは9GPa、一般に約5GPaから約10GPaの範囲)であればよく、本発明による結晶質セラミックでは、少なくとも5GPa(より望ましくは、少なくとも6GPa、7GPa、8GPa、9GPa、10GPa、11GPa、12GPa、13GPa、14GPa、15GPa、16GPa、17GPaまたは18GPa、一般に約5GPaから約18GPaの範囲)、本発明によるガラス−セラミックあるいは、ガラスと結晶質セラミックとを含む本発明によるセラミックでは、少なくとも5GPa(より望ましくは、少なくとも6GPa、7GPa、8GPa、9GPa、10GPa、11GPa、12GPa、13GPa、14GPa、15GPa、16GPa、17GPaまたは18GPa(またはそれ以上)、一般に約5GPaから約18GPaの範囲)であればよい。本発明による研磨粒子の平均硬度は少なくとも15GPaであり、いくつかの実施形態では、少なくとも16GPa、少なくとも17GPa、あるいは実に少なくとも18GPaである。
【0102】
本発明による特定のガラスは、たとえば、少なくとも25℃から約900℃にわたる温度範囲での熱膨張係数を約5×10−6/Kから約11×10−6/Kの範囲にし得るものである。
【0103】
一般に、および望ましくは、本発明によるセラミックの比重とも呼ばれることがある(真)密度は一般に、理論密度の少なくとも70%である。より望ましくは、本発明によるセラミックの(真)密度は、理論密度の少なくとも75%、80%、85%、90%、95%、96%、97%、98%、99%、99.5%、あるいは実に100%である。本発明による研磨粒子は、密度が理論密度の少なくとも85%、90%、92%、95%、96%、97%、98%、99%、99.5%、あるいは実に100%である。
【0104】
フィラー、強化材および/またはマトリクス材料などの物品を、本発明によるセラミックを利用して作製することができる。たとえば、本発明によるセラミックを、複合材料(セラミック、金属またはポリマー(熱硬化性または熱可塑性)などの強化材として使用するのに適した粒子および/または繊維の形にすることが可能である。この粒子および/または繊維を用いることで、たとえば、マトリクス材料のモジュラス、耐熱性、耐摩耗性および/または強度を高められることがある。複合材料の作製に使用する粒子および/または繊維のサイズ、形状および量については、たとえば個々のマトリクス材料ならびに複合材料の用途に応じて変わることがあるとはいえ、強化用粒子のサイズは一般に約0.1から1500マイクロメートル、より一般には1から500マイクロメートル、望ましくは2から100マイクロメートルの範囲である。ポリマーの用途での粒子の量は一般に約0.5重量パーセントから約75重量パーセント、より一般には約1から約50重量パーセントである。熱硬化性ポリマーの一例には、フェノール、メラミン、ユリアホルムアルデヒド、アクリレート、エポキシ、ウレタンポリマーなどがある。熱可塑性ポリマーの例には、ナイロン、ポリエチレン、ポリプロピレン、ポリウレタン、ポリエステル、ポリアミドなどがある。
【0105】
強化ポリマー材料(すなわち、ポリマー中に分散された本発明による強化用粒子)の用途の一例として、たとえば、コンクリート、家具、床、道路、木材、木材様材料、セラミックなどの保護コーティングならびに、アンチスキッドコーティングおよび射出成形プラスチックパーツならびに部品があげられる。
【0106】
さらに、たとえば、本発明によるセラミックをマトリクス材料として利用することができる。たとえば、本発明によるセラミックを、ダイヤモンド、立方晶BN、Al、ZrO、Si、SiCといったセラミック材料などに用いるバインダーとして利用することができる。このような材料を含む有用な物品の一例として、複合材料支持体コーティング、切削工具用インサート研磨凝集体、ビトリファイド砥石などの固定砥粒研磨物品があげられる。本発明によるセラミックの用途は、バインダーとして使用でき、たとえば、複合材料物品のモジュラス、耐熱性、耐摩耗性および/または強度を高められることがある。
【0107】
本発明による研磨粒子は主に、結晶質セラミック(少なくとも75、80、85、90、91、92、93、94、95、96、97、98、99、99.5、あるいは実に100容量パーセントなど)結晶質セラミックを含む。もうひとつの態様では、本発明は、粒度分布が細粒から粗粒にまでおよぶ複数の粒子であって、少なくとも一部が本発明による研磨粒子である複数の粒子を提供するものである。もうひとつの態様において、本発明による研磨粒子の実施形態は主に、(少なくとも75、80、85、90、91、92、93、94、95、96、97、98、99、99.5、あるいは実に100容量パーセントなどの)本発明によるガラス−セラミックを含む。
【0108】
本発明による研磨粒子は、ANSI(American National Standard Institute(米国規格協会))、FEPA(Federation Europeenne des Fabricants de Products Abrasifs(欧州研磨製品連盟))、JIS(日本工業規格)などの業界で認識されている分級標準を使用するなどの従来技術において周知の手法によって、篩い分けおよび分級が可能なものである。本発明による研磨粒子は広範囲にわたる粒度で使用することができ、その粒度範囲は一般に、約0.1から約5000マイクロメートル、より一般には約1から約2000マイクロメートル、望ましくは約5から約1500マイクロメートル、さらに望ましくは約100から約1500マイクロメートルである。
【0109】
特定の粒度分布では、粗い粒子細かい粒子からおよぶ粒度の範囲がある。研磨材の技術分野では、この範囲が「粗粒」分、「粒調(control)」分および「細粒」分と呼ばれることもある。業界で受け入れられている分級標準に従って分級される研磨粒子は、公称グレードごとの粒度分布を限界値内で指定する。このような業界で受け入れられている分級標準には、米国規格協会(ANSI:American National Standard Institute)の標準、欧州研磨製品連盟(FEPA:Federation of European Producers of Abrasive Products)の標準、日本工業規格(JIS)の標準として知られているものが含まれる。ANSIグレード表示(すなわち規定公称グレード)には、ANSI 4、ANSI 6、ANSI 8、ANSI 16、ANSI 24、ANSI 36、ANSI 40、ANSI 50、ANSI 60、ANSI 80、ANSI 100、ANSI 120、ANSI 150、ANSI 180、ANSI 220、ANSI 240、ANSI 280、ANSI 320、ANSI 360、ANSI 400、ANSI 600がある。本発明による研磨粒子を含む好ましいANSIグレードは、ANSI 8〜220である。FEPAグレード表示には、P8、P12、P16、P24、P36、P40、P50、P60、P80、P100、P120、P150、P180、P220、P320、P400、P500、P600、P800、P1000、P1200がある。本発明による研磨粒子を含む好ましいFEPAグレードはP12〜P220である。JISグレード表示には、JIS8、JIS12、JIS16、JIS24、JIS36、JIS46、JIS54、JIS60、JIS80、JIS100、JIS150、JIS180、JIS220、JIS240、JIS280、JIS320、JIS360、JIS400、JIS400、JIS600、JIS800、JIS1000、JIS1500、JIS2500、JIS4000、JIS6000、JIS8000、JIS10,000がある。本発明による研磨粒子を含む好ましいJISグレードはJIS8〜220である。
【0110】
破砕と篩い分けの後は、多様な研磨粒度分布またはグレードが生じるのが一般的である。このようにグレードが多いと、特定の時点で製造業者または供給元の必需に合わないことがある。商品構成を最小限にする目的で、需要に合わないグレードを再利用して溶湯に戻し、ガラスを生成することが可能である。この再利用は、破砕ステップ後、特定の分布に篩い分けられなかった大きなチャンクまたは小さめの細片(「微粉」と呼ばれることもある)状態の粒子がある場合に実施すればよい。
【0111】
もうひとつの態様では、本発明は、本発明によるガラス粒子またはガラス含有粒子を熱処理し、本発明によるガラス−セラミックを含む研磨粒子を提供することを含む、研磨粒子の製造方法を提供するものである。あるいは、たとえば、本発明は、本発明によるガラスを熱処理し、得られた熱処理材料を破砕して本発明によるガラス−セラミックを含む研磨粒子を提供することを含む、研磨粒子の製造方法を提供するものである。破砕時、ガラスではかなり結晶化されたガラス−セラミックまたは結晶材料を破砕するよりも鋭利な粒子が生じることが多い。
【0112】
もうひとつの態様では、本発明は、バインダーによって互いに結合された本発明による複数の研磨粒子をそれぞれが含む凝集研磨材粒を提供するものである。もうひとつの態様では、本発明は、バインダーと複数の研磨粒子とを含む研磨物品(被覆砥粒研磨物品、固定砥粒研磨物品(磁器質結合剤、レジノイド結合剤、金属結合剤で結合された研削砥石、カットオフホイール、マウンテッドポイント、ホーニング砥石を含む)、不織研磨物品、研磨ブラシなど)であって、研磨粒子の少なくとも一部分が本発明による研磨粒子(研磨粒子が凝集している場合を含む)である研磨物品を提供するものである。このような研磨物品の製造方法および研磨物品の使用方法は当業者には公知である。さらに、本発明による研磨粒子は、研磨用コンパウンド(ポリッシングコンパウンドなど)、微粉砕メディア、ショットブラストメディア、振動ミル用メディア(vibratory mill media)など、研磨粒子を使用する研磨用途にも使用することができる。
【0113】
通常、被覆砥粒研磨物品は、裏材と、研磨粒子と、研磨粒子を裏材上に保持するための少なくとも1種のバインダーとを含む。裏材には、布帛、ポリマーフィルム、繊維、不織ウェブ、紙、これらの組合せならびにこれらを処理したものなどの好適な材料を用いることができる。バインダーには、無機バインダーまたは有機バインダー(熱硬化性樹脂や放射線硬化性樹脂を含む)をはじめとする好適なバインダーを用いることができる。研磨粒子は、被覆砥粒研磨物品の一層または二層に存在させ得るものである。
【0114】
被覆砥粒研磨物品の一例を図9に示す。同図を参照すると、被覆砥粒研磨物品1は、裏材(支持体)2と研磨材層3とを有する。研磨材層3には、メイクコート5とサイズコート6とによって裏材2の主面に固定された本発明による研磨粒子4が含まれる。場合によっては、スーパーサイズコート(図示せず)が用いられる。
【0115】
通常、固定砥粒研磨物品は、有機バインダー、金属結合剤あるいは磁器質結合剤によって一緒に保持された研磨粒子の成形塊(shaped mass)を含む。このような成形塊については、たとえば、研削砥石またはカットオフホイールなどのホイールの形にすることが可能である。研削砥石の直径は一般に約1cmから1メートルを超え、カットオフホイールの直径は約1cmから80cmを超える(より一般には3cmから約50cmである)。カットオフホイールの厚さは一般に約0.5mmから約5cmであり、より一般には約0.5mmから約2cmである。また、上記の成形塊を、ホーニング砥石、セグメント、マウンテッドポイント、ディスク(ダブルディスクグラインダなど)または他の従来の固定砥粒研磨材状などの形にすることも可能である。固定砥粒研磨物品には一般に、固定砥粒研磨物品の容量全体を基準にして、結合材料を約3〜50容量%と、研磨粒子(または研磨粒子ブレンド)を約30〜90容量%と、添加剤(研削助剤を含む)を最大50容量%と、気孔を最大70容量%とが含まれる。
【0116】
好ましい形態のひとつに研削砥石がある。図10を参照すると、研削砥石10が示されている。この研削砥石は、ホイールに成形されたハブ12に取り付けられた本発明による研磨粒子11を含む。
【0117】
不織研磨物品には開放気孔のある嵩高なポリマーフィラメント構造が含まれ、その構造全体に本発明による研磨粒子が分散されて有機バインダーで構造内に接着結合されているのが普通である。フィラメントの一例として、ポリエステル繊維、ポリアミド繊維、ポリアラミド繊維があげられる。典型的な不織研磨物品を約100倍に拡大した概略図を図11に示す。このような不織研磨物品は、繊維マット50を支持体として含み、その表面に本発明による研磨粒子52がバインダー54で接着されている。
【0118】
有用な研磨ブラシとしては、複数本のブリッスルが裏材と一体に形成されたものがあげられる(たとえば、米国特許第5,427,595号(ピル(Pihl)ら)、同第5,443,906号(ピル(Pihl)ら)、同第5,679,067号(ジョンソン(Johnson)ら)、同第5,903,951号(アイオンタ(Ionta)ら)を参照のこと。望ましくは、このようなブラシはポリマーと研磨粒子との混合物を射出成形して製造される。
【0119】
研磨物品を製造するのに適した有機バインダーとしては、熱硬化性有機ポリマーがあげられる。好適な熱硬化性有機ポリマーの例としては、フェノール樹脂、尿素−ホルムアルデヒド樹脂、メラミン−ホルムアルデヒド樹脂、ウレタン樹脂、アクリレート樹脂、ポリエステル樹脂、ペンダントα,β−不飽和カルボニル基を有するアミノプラスト樹脂、エポキシ樹脂、アクリル化ウレタン、アクリル化エポキシ、これらの組み合わせがあげられる。バインダーおよび/または研磨物品は、繊維、潤滑剤、湿潤剤、揺変性材料、界面活性剤、顔料、染料、帯電防止剤(カーボンブラック、酸化バナジウム、グラファイトなど)、カップリング剤(シラン、チタン酸塩、ジルコアルミン酸塩など)、可塑剤、懸濁剤などの添加剤も含むことができる。これらの任意の添加剤の量は、所望の特性が得られるように選択される。カップリング剤は、研磨粒子および/またはフィラーに対する接着性を向上させることができる。バインダー化合物に対しては、熱硬化、放射線硬化、あるいはこれらを組み合わせた処理を施すことができる。バインダー化学のさらに詳しい説明については、米国特許第4,588,419号(コール(Caul)ら)、同第4,751,138号(タミー(Tumey)ら)、同第5,436,063号(フォレット(Follett)ら)に記載されている。
【0120】
磁器質固定砥粒研磨材についてさらに具体的に説明すると、非晶質構造を示し、一般に硬質であるガラス質結合材料が従来技術において周知である。場合によっては、ガラス質結合材料に結晶相が含まれる。本発明による磁器質固定砥粒研磨物品は、ホイール(カットオフホイールを含む)、ホーニング砥石、マウンテッドポイントまたは他の従来の固定砥粒研磨材の形状などをとり得る。本発明による好ましい磁器質結合剤で固定した研磨物品のひとつに研削ホイールがある。
【0121】
ガラス質結合材料の製造に用いられる金属酸化物の一例として、シリカ、ケイ酸塩、アルミナ、ソーダ、カルシア、ポタシア、チタニア、酸化鉄、酸化亜鉛、酸化リチウム、マグネシア、ボリア、ケイ酸アルミニウム、ホウケイ酸ガラス、ケイ酸リチウムアルミニウム、これらの組み合わせなどがあげられる。一般に、ガラス質結合材料は、10から100%のガラスフリットを含む組成物から製造可能であるが、より一般的にはこの組成物には20%から80%のガラスフリット、あるいは30%から70%のガラスフリットが含まれる。ガラス質結合材料の残りの部分は非フリット材料とすることができる。あるいは、ガラス質結合が非フリット含有組成物から誘導される場合もある。ガラス質結合材料は一般に、約700℃から約1500℃の範囲の温度で養生され、通常は約800℃から約1300℃の範囲、ときには約900℃から約1200℃の温度、あるいは実に約950℃から約1100℃の範囲の温度で養生が行われる。結合が養生される実際の温度は、たとえば個々の結合化学などによって変動する。
【0122】
好ましい磁器質結合材料としては、シリカ、アルミナ(望ましくはアルミナを少なくとも10重量パーセント)、ボリア(望ましくはボリアを少なくとも10重量パーセント)を含むものがあげられる。ほとんどの場合、磁器質結合材料にはさらに、アルカリ金属酸化物(NaOおよびKOなど)(場合によってはアルカリ金属酸化物を少なくとも10重量パーセント)が含まれる。
【0123】
バインダー材料には、一般に微粒子材料の形であるフィラー材料または研削助剤を含有し得る。一般に、微粒子材料は無機材料である。本発明の有用なフィラーの一例として、金属炭酸塩(炭酸カルシウム(チョーク、方解石、マール、トラバーチン、大理石、石灰石など)、炭酸カルシウムマグネシウム、炭酸ナトリウム、炭酸マグネシウムなど)、シリカ(石英、ガラスビーズ、ガラスバブル、ガラス繊維など)ケイ酸塩(タルク、クレー、(モンモリロナイト)長石、マイカ、ケイ酸カルシウム、メタケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸ナトリウムなど)金属硫酸塩(硫酸カルシウム、硫酸バリウム、硫酸ナトリウム、硫酸ナトリウムアルミニウム、硫酸アルミニウムなど)、石膏、バーミキュライト、木粉、アルミニウム三水和物、カーボンブラック、金属酸化物(酸化カルシウム(石灰)、酸化アルミニウム、二酸化チタンなど)、金属亜硫酸塩(亜硫酸カルシウムなど)があげられる。
【0124】
通常、研削助剤を添加すると研磨物品の耐用寿命が長くなる。研削助剤は、研磨の化学的プロセスおよび物理的プロセスに大きく影響し、それによって性能を向上させる材料である。理論に拘泥されるつもりはないが、研削助剤は、(a)研磨粒子と研磨対象となるワークピースとの間の摩擦を低減する、(b)研磨粒子の「キャッピング」を防止する(すなわち、研磨粒子の上に金属粒子が溶着するのを防止する)か、あるいは研磨粒子のキャッピングの傾向を少なくとも軽減する、(c)研磨粒子とワークピースとの間の界面温度を下げる、および/または(d)研削力を小さくすると考えられる。
【0125】
研削助剤は多種多様な材料を包含し、無機系であっても有機系であってもよい。研削助剤化合物群の例としては、ワックス、有機ハライド化合物、ハライド塩ならびに金属およびそれらの合金があげられる。有機ハライド化合物は一般に研磨時に分解され、ハロゲン酸または気体のハライド化合物が放出される。このような材料の例としては、テトラクロロナフタレン、ペンタクロロナフタレン、ポリ塩化ビニルなどの塩素化ワックスがあげられる。ハライド塩の例としては、塩化ナトリウム、カリウム氷晶石、ナトリウム氷晶石、アンモニウム氷晶石、テトラフルオロホウ酸カリウム、テトラフルオロホウ酸ナトリウム、フッ化ケイ素、塩化カリウム、塩化マグネシウムがあげられる。金属の例としては、スズ、鉛、ビスマス、コバルト、アンチモン、カドミウム、鉄チタンがあげられる。他の種々雑多な研削助剤としては、硫黄、有機硫黄化合物、グラファイト、金属硫化物があげられる。異なる研削助剤を併用することも本発明の範囲内であり、場合によっては、これによって相乗効果が得られることもある。好ましい研削助剤は氷晶石であり、最も好ましい研削助剤はテトラフルオロホウ酸カリウムである。
【0126】
研削助剤は被覆砥粒研磨材や固定砥粒研磨物品において特に有用なものとなり得る。被覆砥粒研磨物品の場合、研磨粒子の表面に適用されるスーパーサイズコート中に研削助剤を使用するのが一般的である。しかしながら、ときにはサイズコートに研削助剤を加えることもある。一般に、被覆砥粒研磨物品に組み入れられる研削助剤の量は約50〜300g/m(望ましくは約80〜160g/m)である。磁器質固定砥粒研磨物品では、研削助剤を物品の気孔に含浸させておくのが普通である。
【0127】
この研磨物品は、本発明による研磨粒子を100%含有するものであってもよいし、このような研磨粒子と他の研磨粒子および/または希釈粒子とのブレンドを含有するものであってもよい。しかしながら、研磨物品に含まれる研磨粒子の少なくとも約2重量%、望ましくは少なくとも約5重量%、より望ましくは約30〜100重量%を本発明による研磨粒子にするものとする。場合によっては、本発明による研磨粒子を、5から75重量%、約25から75重量%約40から60重量%、あるいは約50%から50重量%(すなわち重量基準で等量)の比で他の研磨粒子および/または希釈粒子とブレンドしてもよい。従来の好適な研磨粒子の例として、溶融酸化アルミニウム(白色溶融アルミナ、熱処理酸化アルミニウム、褐色酸化アルミニウムを含む)、炭化ケイ素、炭化ホウ素、炭化チタン、ダイヤモンド、立方晶窒化ホウ素、ガーネット、溶融アルミナ−ジルコニア、ゾル−ゲル研磨粒子などがあげられる。ゾル−ゲル研磨粒子には種結晶を加えてもよいし加えなくてもよい。同様に、ゾル−ゲル研磨粒子は不規則な形状であってもよいし、それと関連する棒状や三角形などの形状であってもよい。ゾルゲル研磨粒子の例としては、米国特許第4,314,827号(レイセイサー(Leitheiser)ら)、同第4,518,397号(レイセイサー(Leitheiser)ら)、同第4,623,364号(コットリンガー(Cottringer)ら)、同第4,744,802号(シュワベル(Schwabel))、同第4,770,671号(モンロウ(Monroe)ら)、同第4,881,951号(ウッド(Wood)ら)、同第5,011,508号(ウォルド(Wald)ら)、同第5,090,968号(ペロー(Pellow))、同第5,139,978号(ウッド(Wood))、同第5,201,916号(ベルグ(Berg)ら)、同第5,227,104号(バウアー(Bauer))、同第5,366,523号(ローウェンホースト(Rowenhorst)ら)、同第5,429,647号(ラーミー(Larmie))、同第5,498,269号(ラーミー(Larmie))、同第5,551,963号(ラーミー(Larmie))に記載されているものがあげられる。アルミナ粉末を原料ソースとして用いて製造される焼結アルミナ研磨粒子に関するさらに詳細な説明が、たとえば、米国特許第5,259,147号(ファルツ(Falz))、同第5,593,467号(モンロウ(Monroe))、同第5,665,127号(モルトゲン(Moltgen))に記載されている。溶融研磨粒子に関するさらに詳細な説明が、たとえば、米国特許第1,161,620号(コールター(Coulter))、同第1,192,709号(トーン(Tone))、同第1,247,337号(ソーンダズ(Saunders)ら)、同第1,268,533号(アレン(Allen))、同第2,424,645号(バウマン(Baumann)ら)同第3,891,408号(ロウズ(Rowse)ら)、同第3,781,172号(ペット(Pett)ら)、同第3,893,826号(キーナン(Quinan)ら)、同第4,126,429号(ワトソン(Watson))、同第4,457,767号(プーン(Poon)ら)、同第5,023,212号(デュボッツ(Dubots)ら)、同第5,143,522号(ギブソン(Gibson)ら)、同第5,336,280号(デュボッツ(Dubots)ら)ならびに、2000年2月2日出願の米国特許出願第09,495,978号、同第09/496,422号、同第09/496,638号、同第09/496,713号、2000年7月19日出願の米国特許出願第09/618,876号、同第09/618,879号、同第09/619,106号、同第09/619,191号、同第09/619,192号、同第09/619,215号、同第09/619,289号、同第09/619,563号、同第09/619,729号、同第09/619,744号、同第09/620,262号、2001年1月30日出願の米国特許出願第09/772,730号に記載されている。場合によっては、研磨粒子のブレンドを使用することで、いずれかのタイプの研磨粒子を100%含む研磨物品よりも研削性能が改善された研磨物品を得られることがある。
【0128】
研磨粒子がブレンドの場合、このブレンドを形成する研磨粒子のタイプは同じサイズのもので構わない。あるいは、研磨粒子のタイプが異なる粒度のものであってもよい。たとえば、本発明による研磨粒子をサイズが大きい方の研磨粒子に使用し、サイズが小さめの粒子には他のタイプの研磨粒子を使用することができる。逆に、たとえば、本発明による研磨粒子をサイズが小さい方の研磨粒子に使用し、サイズが大きめの粒子には他のタイプの研磨粒子を使用するようにしても構わない。
【0129】
適した希釈粒子の一例として、大理石、石膏、フリント、シリカ、酸化鉄、ケイ酸アルミニウム、ガラス(ガラスバブルおよびガラスビーズを含む)、アルミナバブル、アルミナビーズ、希釈凝集体があげられる。本発明による研磨粒子を研磨凝集体に組み入れたり、あるいはこれと併用したりすることもできる。研磨凝集体の粒子は、複数の研磨粒子と、バインダーと、任意の添加剤とを含むのが一般的である。バインダーは有機系および/または無機系であってよい。研磨凝集体は不規則な形状であってもよいし、それらと関連する所定の形状であってもよい。この形状は、ブロック、円柱、角錐、コイン、正方形などの形をとり得る。研磨凝集体の粒子は一般に粒度が約100から約5000マイクロメートルの範囲であり、約250から約2500マイクロメートルの範囲が普通である。研磨凝集体の粒子に関するさらに詳細な説明については、たとえば、米国特許第4,311,489号(クレスナー(Kressner))、同第4,652,275号(ブロエカー(Bloecher)ら)、同第4,799,939号(ブロエカー(Bloecher)ら)、同第5,549,962号(ホームズ(Holmes)ら)、同第5,975,988号(クリスチャンソン(Christianson))ならびに、2000年10月16日出願の米国特許出願第09/688,444号、同第09/688,484号に記載されている。
【0130】
これらの研磨粒子については、研磨物品中に均一に分散させてもよいし、あるいは研磨物品の選択したエリアまたは部分に集中させても構わない。たとえば、被覆砥粒研磨材では、研磨粒子の層を二層設けることができる。この場合、第1の層に本発明による研磨粒子以外の研磨粒子を含み、第2の(最も外側の)層に本発明による研磨粒子を含む。同様に、固定砥粒研磨材であれば、研削砥石に異なる2つのセクションを設けることができる。最も外側のセクションには本発明による研磨粒子を含み得るのに対し、最も内側のセクションにはこれを含まない。あるいは、本発明による研磨粒子を固定砥粒研磨物品全体に均一に分散させるようにしてもよい。
【0131】
被覆砥粒研磨物品に関するさらに詳細な説明については、たとえば、米国特許第4,734,104号(ブロバーグ(Broberg))、同第4,737,163号(ラーキイ(Larkey))、同第5,203,884号(ブキャナン(Buchanan)ら)、同第5,152,917号(パイパー(Pieper)ら)、同第5,378,251号(カラー(Culler)ら)、同第5,417,726号(スタウト(Stout)ら)、同第5,436,063号(フォレット(Follett)ら)、同第5,496,386号(ブロバーグ(Broberg)ら)、同第5, 609,706号(ベネディクト(Benedict)ら)、同第5,520,711号(ヘルミン(Helmin))、同第5,954,844号(ロー(Law)ら)、同第5,961,674号(ガグリアルディ(Gagliardi)ら)、同第5,975,988号(クリスチネイソン(Christinason))に記載されている。固定砥粒研磨物品に関するさらに詳細な説明については、たとえば、米国特許第4,543,107号(ルー(Rue))、同第4,741,743号(ナラヤナン(Narayanan)ら)、同第4,800,685号(ヘインズ(Haynes)ら)、同第4,898,597号(ヘイ(Hay)ら)、同第4,997,461号(マークホフ・マセニイ(Markhoff−Matheny)ら)、同第5,037,453号(ナラヤナン(Narayanan)ら)、同第5,110,332号(ナラヤナン(Narayanan)ら)、同第5,863,308号(クィ(Qi)ら)に記載されている。ガラス質の固定砥粒研磨材のさらに詳細な説明については、たとえば、米国特許第4,543,107号(ルー(Rue))、同第4,898,597号(ヘイ(Hay)ら)、同第4,997,461号(マークホフ・マセニイ(Markhoff−Matheny)ら)、同第5,094,672号(ジャイルズ・ジュニア(Giles Jr.)ら)、同第5,118,326号(シェルダン(Sheldon)ら)、同第5,131,926号(シェルダン(Sheldon)ら)、同第5,203,886号(シェルダン(Sheldon)ら)、同第5,282,875号(ウッド(Wood)ら)、同第5,738,696号(ウー(Wu)ら)、同第5,863,308号(クィ(Qi))に記載されている。不織研磨物品に関するさらに詳細な説明については、たとえば、米国特許第2,958,593号(フーバー(Hoover)ら)に記載されている。
【0132】
本発明は、本発明による少なくとも1つの研磨粒子をワークピースの表面に接触させ、研磨粒子または被接触表面のうちの少なくとも1つを移動させ、前記表面の少なくとも一部分を研磨粒子で研磨することを含む、表面研磨方法を提供するものである。本発明による研磨粒子で研磨を行うための方法は、スナッギング(すなわち、高圧高研削量)からポリッシング(被覆砥粒を用いた研磨ベルトで医療用インプラントを研磨するなど)にまでわたり、後者は一般に細粒に近い(ANSI 220未満かこれよりも細かいものなど)研磨粒子を使用して行われる。これらの研磨粒子は、磁器質固定砥石を使用してカムシャフトを研削するなどの精密研磨の用途にも用いることができる。個々の研磨用途に用いられる研磨粒子のサイズは当業者には明らかであろう。
【0133】
本発明による研磨粒子を用いる研磨は、乾式と湿式のどちらでも実施できる。湿式研磨の場合、完全にあふれ出るように弱いミスト(light mist)の形で液体を導入供給することができる。一般に使用される液体の一例としては、水、水溶性油、有機潤滑剤、エマルションがあげられる。この液体は、研磨に伴う熱を低減するよう機能するおよび/または潤滑剤として作用するものである。この液体には、殺菌剤、消泡剤などの添加剤を少量含有させることができる。
【0134】
本発明による研磨粒子を利用すれば、アルミニウム金属、炭素鋼、軟鋼、工具綱、ステンレス鋼、高硬度鋼、チタン、ガラス、セラミック、木材、木材様材料、塗料、塗装面、有機被覆面などのワークピースを研磨することができる。研磨時に印加する力は一般に約1から約100キログラムの範囲である。
【0135】
以下、実施例を参照して本発明の利点と実施形態とについてさらに説明するが、これらの実施例に記載の個々の材料およびその量ならびに他の条件や詳細については、本発明を不当に限定するものと解釈すべきではない。特に明記しない限り、部およびパーセントはいずれも重量基準である。また、特に明記しない限り、どの実施例でも有意な量のSiO、B、P、GeO、TeO、As、Vは含有させなかった。
【実施例】
【0136】
実施例1
アルミナ粒子(アリゾナ州トゥーソン(Tucson)のコンディア・ヴィスタ(Condea Vista)から商品名「APA−0.5」で入手)132.36グラム(g)と、酸化ランタン粒子(モリコープ・インコーポレイテッド(Molycorp,Inc.)から入手)122.64グラムと、酸化ジルコニウム粒子(公称組成はZrO(+HfO)が100wt−%、ジョージア州マリエッタ(Marietta)のジルコニア・セールス・インコーポレイテッド(Zirconia Sales,Inc.)から商品名「DK−2」で入手)45グラムと、蒸留水150.6グラムとをポリエチレンボトルに装入した。粉砕分散用アルミナメディア(直径10mm、アルミナ99.9%、オハイオ州アクロン(Akron)のユニオン・プロセス(Union Process)から入手)約450グラムをボトルに加え、混合物を1分あたり120回転(rpm)で4時間かけて微粉砕し、成分同士を完全に混合した。微粉砕後、微粉砕メディアを取り除き、ガラス(「パイレックス(PYREX)」)皿にスラリーを注いで、ここでヒートガンを用いてスラリーを乾燥させた。乳鉢と乳棒とを使って乾燥混合物を砕き、70メッシュの篩(篩の目開きサイズ212マイクロメートル)で篩い分けした。
【0137】
アーク放電炉(モデル番号5T/A 39420、ニューハンプシャー州ナシュア(Nashua)のセントール・ヴァキューム・インダストリーズ(Centorr Vacuum Industries)から入手)にて少量の乾燥粒子を溶融させた。乾燥させて大きさ別に分けた粒子約1グラムを、炉のチャンバ内に配置した冷却(chilled)銅板に載せた。炉のチャンバを脱気した後、圧力13.8キロパスカル(kPa)(1平方インチあたり2ポンド(psi))にてアルゴンガスを再充填した。電極と板との間にアークを発生させた。アーク放電によって生成される温度は、乾燥させて大きさ別に分けた粒子を短時間で溶融させるには十分高い温度であった。溶融終了後、材料を約10秒間溶融状態のまま維持し、溶湯を均一化した。アークを遮断し、溶湯が自然に冷めるようにして、得られた溶湯をすみやかに冷やした。試料の塊を小さくし、水冷銅板の放熱能を大きくすることで、この急激な冷却を達成した。融解させた材料を、炉への電源遮断後1分以内に炉から取り出した。理論に拘泥されるつもりはないが、水冷銅板の表面での溶湯冷却速度は100℃/秒を上回っていると推測される。融解させた材料は透明なガラスビーズであった(ビーズの最大直径を測定したところ、2.8ミリメートル(mm)であった)。
【0138】
図1は実施例1のガラスビーズのX線回折パターンである。ピークが広く拡散していることから、この材料が非晶質の性質を持つものであることが分かる。
【0139】
比較例A
アルミナ粒子(「APA−0.5」)229.5グラムと、酸化ランタン粒子(モリコープ・インコーポレイテッド(Molycorp, Inc.)から入手)40.5グラムと、酸化ジルコニウム粒子(「DK−2」)30グラムと、分散剤(「デュラマックス(DURAMAX) D−30005」)0.6グラムと、蒸留水145グラムとをポリエチレンボトルに装入したこと以外は実施例1で説明したようにして、比較例Aの融解させた材料を調製した。
【0140】
図2は、融解させた比較例Aの材料のポリッシュした断面(実施例6で説明するようにして調製)での走査型電子顕微鏡(SEM)の顕微鏡写真である。この顕微鏡写真には複数のコロニーを含む結晶質で共晶由来のマイクロ構造が見られる。コロニーのサイズは約5〜20マイクロメートルであった。比較例Aの材料の一部に対して行った粉末X線回折の結果と、後方散乱モードでSEMを使用してポリッシュした試料を検査した結果とに基づいて、顕微鏡写真の色の暗い部分は結晶質Al、灰色の部分は結晶質LaAl1118、色の白い部分は結晶質の単斜晶ZrOであると考えられる。
【0141】
実施例2
アルミナ粒子(「APA−0.5」)109グラムと、酸化ランタン粒子(モリコープ・インコーポレイテッド(Molycorp Inc.)から入手)101グラムと、酸化イットリウム粒子(マサチューセッツ州ニュートン(Newton)のエイチ・シー・スターク(H.C.Stark)から入手)9グラムと、酸化ジルコニウム粒子(「DK−2」)81グラムと、分散剤(「デュラマックス(DURAMAX) D−30005」)0.6グラムと、蒸留水145グラムとをポリエチレンボトルに装入したこと以外は実施例1で説明したようにして、実施例2の融解させた材料を調製した。得られた融解材料は透明で緑色を帯びたガラスであった。
【0142】
実施例2のガラス球を2枚の平らなAl板の間に挟んでいくつか炉内に入れた。死荷重を使用し、上板に300グラムの荷重を加えた。これらのガラス球を空気中にて930℃で1.5時間加熱した。大きく平らなキャップ(cap)を両側に用いて熱処理後のガラス球を変形させ、加熱時にガラス球で粘性流動が起こることを例証した。図3を参照すると、アーク溶融後の球を右側に、熱処理後の変形した球を左側に示してある。
【0143】
実施例3
アルミナ粒子(「APA−0.5」)20.49グラムと、酸化ランタン粒子(モリコープ・インコーポレイテッド(Molycorp Inc.)から入手)20.45グラムと、イットリア安定化酸化ジルコニウム粒子(公称組成はZrO(+HfO)が94.6重量パーセント(wt−%)とYが5.4wt−%、ジョージア州マリエッタ(Marietta)のジルコニア・セールス・インコーポレイテッド(Zirconia Sales,Inc.)から商品名「HSY−3」で入手)9.06グラムと、蒸留水80グラムとをポリエチレンボトルに装入したこと以外は実施例1で説明したようにして、実施例3の融解させた材料を調製した。得られた融解材料は透明なガラスであった。
【0144】
実施例4
アルミナ粒子(「APA−0.5」)21.46グラムと、酸化セリウム(IV)(CeO)粒子(ウィスコンシン州ミルウォーキー(Milwaukee)のアルドリッチ・ケミカル・カンパニー(Aldrich Chemical Company)から入手)21.03グラムと、酸化ジルコニウム粒子(「DK−2」)7.5グラムと、蒸留水145グラムとをポリエチレンボトルに装入したこと以外は実施例1で説明したようにして、実施例4の融解させた材料を調製した。得られた融解材料は暗褐色でやや透明であった。
【0145】
実施例5
アルミナ粒子(「APA−0.5」)20.4グラムと、酸化イッテルビウム粒子(ウィスコンシン州ミルウォーキー(Milwaukee)のアルドリッチ・ケミカル・カンパニー(Aldrich Chemical Company)から入手)22.1グラムと、酸化ジルコニウム粒子(「DK−2」)7.5グラムと、蒸留水24.16グラムとをポリエチレンボトルに装入したこと以外は実施例1で説明したようにして、実施例5の融解させた材料を調製した。得られた融解材料は透明であった。
【0146】
実施例6
アルミナ粒子(「APA−0.5」)819.6グラムと、酸化ランタン粒子(モリコープ・インコーポレイテッド(Molycorp, Inc.)から入手)818グラムと、イットリア安定化酸化ジルコニウム粒子(公称組成はZrO(+HfO)が94.6wt−%とYが5.4wt−%、ジョージア州マリエッタ(Marietta)のジルコニア・セールス・インコーポレイテッド(Zirconia Sales,Inc.)から商品名「HSY−3」で入手)362.4グラムと、蒸留水1050グラムと、粉砕分散用ジルコニアメディア(トーソー・セラミックス(Tosoh Ceramics)、ニュージャージー州バウンド・ブルック支店(Division of Bound Brook)から商品名「YTZ」で入手)約2000グラムとを、ポリウレタンを内張りしたミルに装入したものをポリエチレンボトルの代わりに用いたこと以外は実施例1で説明したようにして、実施例6の材料を調製した。
【0147】
粉砕と篩い分けの後、粒子の一部を水素/酸素トーチの火炎中に送った。粒子の溶融による溶融ガラスビーズの生成に用いるトーチは、ペンシルバニア州へラータウン(Hellertown)のベツレヘム・アパレイタス・カンパニー(Bethlehem Apparatus Co.)から入手した、水素と酸素とを以下の流量で供給するベツレヘム(Bethlehem)ベンチバーナーPM2DモデルBとした。内側のリングでは、水素流量を1分あたりの標準リットル(SLPM)で8、酸素流量を3SLPMとした。外側のリングでは、水素流量を23(SLPM)、酸素流量を9.8SLPMとした。乾燥させて大きさ別に分けた粒子を直接トーチ火炎の中に送り、ここで粒子を溶融させ、傾斜させたステンレス鋼の表面(幅約51センチメートル(cm)(20インチ)、傾斜角45度)に、冷水をその表面に流しながら(約8リットル/分)移してビーズを作製した。
【0148】
ビーズ約50グラムをグラファイトダイに入れ、一軸加圧成形装置(商品名「HP−50」で入手、カリフォルニア州ブレア(Brea)のサーマル・テクノロジー・インコーポレイテッド(Thermal Technology Inc.))を用いてホットプレスした。このとき、アルゴン雰囲気中、圧力13.8メガパスカル(MPa)(1平方インチあたり2000ポンド(2ksi))で960℃にてホットプレスを実施した。得られた半透明の円板は直径約48ミリメートル、厚さ約5mmであった。さらにホットプレスを実施し、別の円板を作製した。図4は、ホットプレスした材料の切断したバー(厚さ2mm)の透明度を示す、光学顕微鏡写真である。
【0149】
得られたホットプレスガラス材料の密度をアルキメデスの方法で測定したところ、約4.1〜4.4g/cmの範囲内であることが明らかになった。また、超音波試験システム(ワシントン州リッチランド(Richland)のノーテック(Nortek)から商品名「NDT−140」で入手)を使用して、上記にて得られたホットプレスガラス材料のヤング率(E)を測定したところ、約130〜150GPaの範囲内であることが明らかになった。
【0150】
得られたホットプレス材料の平均微小硬度を以下のようにして求めた。ホットプレス材料の切片(大きさ約2〜5ミリメートル)を、取り付け用樹脂(イリノイ州レーク・ブラフ(Lake Bluff)のビューラー・リミテッド(Buehler Ltd.)から商品名「エポメット(EPOMET)」で入手)に取り付け、これらの粒子の平均微小硬度を測定した。得られた樹脂のシリンダは直径約2.5cm(1インチ)、丈(高さ)約1.9cm(0.75インチ)であった。従来のグラインダ/ポリッシャ(ビューラー・リミテッド(Buehler Ltd.)から商品名「エポメット(EPOMET)」で入手)と従来のダイヤモンドスラリーとを使用し、最後のポリッシュ工程では1マイクロメートルのダイヤモンドスラリー(ビューラー・リミテッド(Buehler Ltd.)から商品名「メタディ(METADI)」で入手)を使用して、上記にて取り付けた試料をポリッシュし、試料のポリッシュ断面を得た。
【0151】
ビッカース圧子を取り付けた従来の微小硬度計(日本の東京にある株式会社ミツトヨから商品名「MITUTOYO MVK−VL」で入手)を使用し、圧入荷重を500グラムとして微小硬度を測定した。この微小硬度の測定は、ASTM試験方法E384 Test Methods for Microhardness of Materials(材料の微小硬度試験方法)(1991)に記載の指針に従って行った。微小硬度値は20回の測定の平均とした。ホットプレス材料の平均微小硬度は約8.3GPaであった。
【0152】
微小硬度計(日本の東京にある株式会社ミツトヨから商品名「MITUTOYO MVK−VL」で入手)を使用し、圧入荷重を500グラムとして作ったビッカース圧痕の頂点から延在する亀裂長を測定し、ホットプレス材料の平均押し込み靭性を算出した。押し込み靭性(KIC)については以下の式に基づいて算出した。
IC=0.016(E/H)1/2(P/c)3/2
(式中、E=材料のヤング率、
H=ビッカース硬度、
P=圧子のニュートン力、
c=圧痕の中心から端までの亀裂長である。)
【0153】
微小硬度試験に関して上述したようにして、靭性用の試料を調製した。記録する押し込み靭性値は5回の測定の平均である。走査型電子顕微鏡(「JEOL SEM」(モデルJSM 6400))を用いて撮影した顕微鏡写真上で、デジタルノギスを使用して亀裂(c)を測定した。ホットプレス材料の平均押し込み靭性は1.4MPa・m1/2であった。
【0154】
サーマルアナライザ(コネチカット州シェルトン(Shelton)のパーキン・エルマー(Perkin Elmer)から商品名「パーキン・エルマー・サーマル・アナライザ(PERKIN ELMER THERMAL ANALYSER)」で入手)を用いて、ホットプレス材料の熱膨張係数を測定した。平均熱膨張係数は7.6×10−6/℃であった。
【0155】
ホットプレス材料の熱伝導率を、ASTM標準「D 5470−95、試験方法A」(1995)に従って測定した。平均熱伝導率は1.15W/m*Kであった。
【0156】
ホットプレスしたLa−Al−ZrOガラスからなる半透明の円板を、炉(電気加熱炉(カリフォルニア州ピコ・リベラ(Pico Rivera)のキース・ファーニスィーズ(Keith Furnaces)から商品名「モデルKKSK−666−3100」で入手))内で以下のようにして熱処理した。まず、円板を約10℃/分の割合で室温(約25℃)から約900℃まで加熱した後、900℃で約1時間保持した。次に、この円板を約10℃/分の割合で約900℃から約1300℃まで加熱した後、1300℃で約1時間保持した上で、炉を切って室温まで戻した。同じ熱処理スケジュールを繰り返し、別の円板を作製した。
【0157】
図5は、実施例6の熱処理材料のポリッシュした断面の走査型電子顕微鏡(SEM)の顕微鏡写真であり、材料が微結晶質の性質であることが示されている。このポリッシュした断面については、従来の取り付け・ポリッシュの手法で作製した。ポリッシュについては、ポリッシャ(イリノイ州レーク・ブラフ(Lake Bluff)のビューラー(Buehler)から商品名「エコメット(ECOMET) 3タイプのポリッシャ−グラインダ」で入手)を使用して行った。ダイヤモンド砥石を使って試料を約3分間ポリッシュした後、45、30、15、9、3マイクロメートルのダイヤモンドスラリーをそれぞれ使って3分間ポリッシュを行った。ポリッシュした試料に金−パラジウムの薄層をコーティングし、JEOL SEM(モデルJSM 840A)を用いて観察した。
【0158】
実施例6の熱処理材料の一部に対して行った粉末X線回折の結果と、後方散乱モードでSEMを使用してポリッシュした試料を検査した結果とに基づいて、顕微鏡写真の色の暗い部分は結晶質LaAl1118であり、灰色の部分は結晶質LaAlO、色の白い部分は結晶質の立方晶/正方晶ZrOであると考えられる。
【0159】
熱処理材料の密度をアルキメデスの方法で測定したところ、約5.18g/cmであることが明らかになった。また、超音波試験システム(ワシントン州リッチランド(Richland)のノーテック(Nortek)から商品名「NDT−140」で入手)を使用して、熱処理材料のヤング率(E)を測定したところ、約260GPaであることが明らかになった。実施例6でガラスビーズに関して上述したようにして熱処理材料の平均微小硬度を求めたところ、18.3GPaであることが明らかになった。実施例6でホットプレス材料に関して上述したようにして熱処理材料の平均破壊靭性(Kic)を求めたところ、3.3MPa*m1/2であることが明らかになった。
【0160】
実施例7〜40
原料と使用した原料の量とを以下の表1に示すとおりとし、ジルコニアメディア(トーソー・セラミックス(Tosoh Ceramics)、ニュージャージー州バウンド・ブルック支店(Division of Bound Brook)から、商品名「YTZ」で入手)200グラムを用いて、イソプロピルアルコール90ミリリットル(ml)中にて、120rpmで24時間かけて原料の微粉砕を実施したこと以外は、実施例6で説明したようにして、実施例7〜40のガラスビーズを作製した。使用した原料のソースを以下の表2に示す。
【0161】
【表1】

【0162】
【表2】

【0163】
【表3】

【0164】
【表4】

【0165】
【表5】

【0166】
【表6】

【0167】
実施例6〜40の材料のいくつかの材料のさまざまな特性/特徴を以下のようにして測定した。粉末X線回折(X線回折装置(ニュージャージー州マーワー(Mahwah)にあるフィリップス(PHILLIPS)から商品名「PHILLIPS XRG 3100」で入手)にて、1.54050オングストロームの銅のKα1線を用いる))を使用し、実施例の材料中に存在する相を定性的に測定した。強度のピークが広く拡散している場合、その材料はガラス質の性質を持つと考えた。広いピークと明確に定まるピークの両方がある場合は、ガラス質のマトリクス中に結晶質の物質が混入しているものと考えた。さまざまな実施例で検出した相を以下の表3に示す。
【0168】
【表7】

【0169】
【表8】


*実施例にTがあることから、ガラス
【0170】
示差熱分析(DTA)の目的で、材料を篩い分けてサイズが90〜125マイクロメートルの範囲のビーズを保持した。(ドイツのゼルブ(Selb)にあるネッツシュ・インスツルメンツ(Netzsch Instruments)から商品名「ネッツシュ・エスティエー(NETZSCH STA) 409 DTA/TGA」で入手した機器を使用して)DTAを実施した。100マイクロリットルのAlサンプルホルダに入れる各篩い分け試料の量を400ミリグラムとした。各試料を静空気中にて10℃/分の速度で室温(約25℃)から1200℃まで加熱した。
【0171】
図6を参照すると、線801で実施例6の材料のDTAデータをプロットしてある。図6の線801を参照すると、この材料では線801の下向きの曲線から明らかなように、840℃前後の温度で発熱イベントが起こった。このイベントは材料のガラス転移(T)によるものであると考えられた。約934℃では、線801の鋭利なピークから明らかなように、発熱イベントが観察された。このイベントは材料の結晶化(T)によるものであるとであると考えられた。他の実施例のT値およびT値については上記の表3にあげてある。
【0172】
上述したホットプレス設備の変位制御ユニットによって示される、かなりのガラスフローが発生するホットプレス温度を、さまざまな実施例について上記の表3にあげてある。
【0173】
実施例41
アルミナ粒子(「APA−0.5」)20.49グラムと、酸化ランタン粒子(モリコープ・インコーポレイテッド(Molycorp, Inc.)から入手)20.45グラムと、イットリア安定化酸化ジルコニウム粒子(公称組成はZrO(+HfO)が94.6wt−%とYが5.4wt−%、ジョージア州マリエッタ(Marietta)のジルコニア・セールス・インコーポレイテッド(Zirconia Sales,Inc.)から商品名「HSY−3」で入手)9.06グラムと、蒸留水80グラムとをポリエチレンボトルに装入したこと以外は実施例5で説明したようにして、実施例41の融解させた材料を調製した。
【0174】
得られた非晶質ビーズを、2mmの粉砕分散用ジルコニアメディア(ニュージャージー州バウンド・ブルック(Bound Brook)のトーソー・セラミックス(Tosoh Ceramics)から商品名「YTZ」で入手)200グラムと一緒にポイエチレン(poyethylene)ボトル(実施例1同様)に入れた。蒸留水300グラムをボトルに加え、混合物を120rpmで24時間かけて微粉砕し、ビーズを粉々にして粉末を得た。微粉砕した材料をヒートガンで乾燥させた。乾燥粒子15グラムをグラファイトダイに入れ、実施例6で説明したようにして960℃でホットプレスした。得られた円板は半透明であった。
【0175】
実施例42
実施例5で説明したようにして実施例42の溶融非晶質ビーズを作製した。グラファイトダイ底部の孔を深さ2mmの溝にしたこと以外は実施例5で説明したようにして、ビーズ約15グラムをホットプレスした。得られた材料には溝が再現されていたことから、印加圧下での加熱時にガラスが極めて良好に流動していたことが分かる。
【0176】
比較例B
アルミナ粒子(「APA−0.5」)27グラムと、イットリア安定化酸化ジルコニウム粒子(公称組成はZrO(+HfO)が94.6wt−%とYが5.4wt−%、ジョージア州マリエッタ(Marietta)のジルコニア・セールス・インコーポレイテッド(Zirconia Sales,Inc.)から商品名「HSY−3」で入手)23グラムと、蒸留水80グラムとをポリエチレンボトルに装入したこと以外は実施例5で説明したようにして、比較例Bの融解させた材料を調製した。この実施例の組成物はAl−ZrO二成分系の共晶組成物に対応している。得られた直径100〜150マイクロメートルの球は、X線回折分析から明らかなように部分的に非晶質であり、大部分が結晶性であった。
【0177】
実施例43
実施例6で説明したようにして作製した非晶質ビーズの試料(31.25グラム)と、比較例Bで説明したようにして作製したビーズ18.75グラムとを、ポリエチレンボトルに装入した。蒸留水80グラムと粉砕分散用ジルコニアメディア(ニュージャージー州バウンド・ブルック(Bound Brook)のトーソー・セラミックス(Tosoh Ceramics)から商品名「YTZ」で入手)300グラムとをボトルに加えた後、24時間かけて120rpmで混合物を微粉砕した。微粉砕後の材料をヒートガンで乾燥させた。乾燥粒子20グラムを実施例6で説明したようにしてホットプレスした。実施例43の材料のポリッシュした断面(実施例6で説明したようにして作製した)のSEM顕微鏡写真を図7に示す。比較例Bの材料(暗い部分)と実施例6の材料(明るい部分)との界面に亀裂がないことから、良好な結合状態が得られていることが分かる。
【0178】
実施例44〜48
比較例Bのビーズの代わりにさまざまな添加剤(以下の表4参照)を使用したこと以外は、実施例43で説明したホットプレス処理を含む実施例44〜48を調製した。使用した原料の提供元を以下の表5にあげておく。
【0179】
【表9】

【0180】
【表10】

【0181】
実施例44〜48で得られたホットプレス材料を目視観察と手触りでの判断によって観察したところ、強い複合材料であった。図8は、実施例47のポリッシュした断面のSEM顕微鏡写真であり、ダイヤモンドとガラスとが良好な結合状態にあることが分かる。
【0182】
実施例49〜53
実施例6のビーズの15グラムのバッチを空気中にて1000℃から1300℃の温度で60分間熱処理し、実施例49〜53を調製した。この熱処理については、電気加熱炉(カリフォルニア州ピコ・リベラ(Pico Rivera)のキース・ファーニスィーズ(Keith Furnaces)から商品名「モデルKKSK−666−3100」で入手)中で行った。得られた熱処理材料を、実施例6〜40で上述したようにして粉末X線回折で分析した。結果を以下の表6にまとめておく。
【0183】
実施例49〜53のビーズ(サイズは約125マイクロメートル)の平均微小硬度を実施例6で説明したようにして測定した。
【0184】
【表11】

【0185】
実施例6および6Aならびに比較例C〜Eの粉砕性能
実施例6のホットプレス材料を、「チップムンク(Chipmunk)」ジョークラッシャー(タイプVD、カリフォルニア州バーバンク(Burbank)のビーアイシーオー・インコーポレイテッド(BICO Inc.)製)で破砕して(研磨材)粒子にし、分級してメッシュが−25+30の画分(すなわちシーブの目開き25マイクロメートルから目開きサイズ30マイクロメートルで回収される画分)とメッシュが−30+35の画分(すなわちシーブの目開きサイズ30マイクロメートルから目開きサイズ35マイクロメートルで回収される画分)(USA標準試験シーブ)とを保持した。これらの2種類のメッシュの画分を混合し、50/50のブレンドを得た。このブレンド材料を実施例6で説明したようにして熱処理した。得られたガラス−セラミック研磨粒子30グラムを、被覆砥粒研磨円板に組み入れた。被覆砥粒研磨円板に関しては、従来の手順で作製した。従来の炭酸カルシウム充填フェノールメイク樹脂(レゾールフェノール樹脂48%、炭酸カルシウム52%、水とグリコールエーテルとを用いて固形分81%まで希釈)と従来の氷晶石充填フェノールサイズ樹脂(レゾールフェノール樹脂32%、酸化鉄2%、氷晶石66%、水とグリコールエーテルとを用いて固形分78%まで希釈)とを使用して、直径17.8cm、厚さ0.8mmのヴァルカナイズドファイバー裏材(直径2.2cmの中心穴を有する)にガラス−セラミック研磨粒子を結合した。メイク樹脂の湿重量は約185g/mであった。メイクコートの塗布直後に、ガラス−セラミック研磨粒子を静電塗布した。メイク樹脂を88℃にて120分かけて予備硬化させた。次に、氷晶石充填フェノールサイズコートをメイクコートおよび研磨粒子の上に塗布した。サイズの湿重量は約850g/mであった。サイズ樹脂を99℃にて12時間かけて硬化させた。試験の前に被覆砥粒研磨円板を屈曲させた。
【0186】
破砕後に熱処理を施すのではなく、ホットプレスおよび熱処理を施した実施例6の材料を破砕して実施例6Aの研磨粒子を得たこと以外は実施例6で説明したようにして、実施例6Aの被覆砥粒研磨円板を作製した。
【0187】
実施例6のガラス−セラミック研磨粒子の代わりに熱処理した溶融アルミナ研磨粒子(オーストリアのフラッハ(Villach)にあるトリエバッハ(Triebacher)から商品名「アロデュール・ビーエフアーピーエル(ALODUR BFRPL)」で入手)を用いたこと以外は実施例6(上記)で説明したようにして、比較例Cの被覆砥粒研磨円板を作製した。
【0188】
実施例6のガラス−セラミック研磨粒子の代わりにアルミナ−ジルコニア研磨粒子(Alが53%とZrOが47%の共晶組成を有し、マサチューセッツ州ウースター(Worcester)のノートン・カンパニー(Norton Company)から商品名「ノーゾン(NORZON)」で入手)を用いたこと以外は実施例6(上記)で説明したようにして、比較例Dの被覆砥粒研磨円板を作製した
【0189】
実施例6のガラス−セラミック研磨粒子の代わりにゾル−ゲル研磨粒子(ミネソタ州セントポール(St.Paul)のスリーエム・カンパニー(3M Company)から商品名「321 キュービトロン(CUBITRON)」で販売されている)を用いたこと以外は上述したようにして、比較例Eの被覆砥粒研磨円板を作製した。
【0190】
実施例6および比較例C〜Eの被覆砥粒研磨円板の粉砕性能を次のようにして評価した。面取りしたアルミニウム製バックアップパッドに各被覆砥粒研磨円板を装着し、事前に秤量した1.25cm×18cm×10cmの1018軟鋼ワークピースの表面の研削に使用した。バックアップパッドの面取りした端と重なっている円板の部分を荷重8.6キログラムでワークピースと接触させた状態で、円板を5,000rpmで動かした。各円板を使用して、個々のワークピースを1分間隔で連続して研削した。試験時間を通してワークピースから除去された材料の量の合計を全切削量とした。12分間の粉砕後の各試料の全切削量ならびに12回目の1分間の切削量(すなわち最終切削量)を以下の表6に示す。実施例6の結果は、実施例6Aならびに比較例C、DおよびEのそれぞれで1枚の円板を試験した場合の2枚の円板の平均である。
【0191】
【表12】

【0192】
本発明の範囲および趣旨を逸脱することのない本発明のさまざまな改変および変更が当業者には明らかであろうし、本発明は本願明細書に記載の例示的な実施形態に不当に制限されるべきではないことを理解されたい。
【図面の簡単な説明】
【0193】
【図1】実施例1の材料のX線回折パターンである。
【図2】比較例Aの材料のポリッシュした断面のSEM顕微鏡写真である。
【図3】実施例2の材料の光学顕微鏡写真である。
【図4】実施例6のホットプレス材料の断面の光学顕微鏡写真である。
【図5】熱処理した実施例6の材料のポリッシュした断面のSEM顕微鏡写真である。
【図6】実施例6の材料のDTA曲線である。
【図7】実施例43の材料のポリッシュした断面のSEM顕微鏡写真である。
【図8】実施例47の材料のポリッシュした断面のSEM顕微鏡写真である。
【図9】本発明による研磨粒子を含む被覆砥粒研磨物品の部分概略断面図である。
【図10】本発明による研磨粒子を含む固定砥粒研磨物品の斜視図である。
【図11】本発明による研磨粒子を含む不織研磨物品の拡大概略図である。

【特許請求の範囲】
【請求項1】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成されるガラス。
【請求項2】
前記ガラスの総重量に対して、Alと、REOと、ZrOとを合わせて少なくとも80重量パーセント含む、請求項1に記載のガラス。
【請求項3】
請求項1に記載のガラスを含有するセラミック。
【請求項4】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスの製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、前記製造方法が、
少なくともAlと、REOと、ZrOまたはHfOのうちの少なくとも一方と、のソースを溶融して溶湯を提供し、
前記溶湯を冷却してガラスを提供することを含む、ガラスの製造方法。
【請求項5】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含有するセラミックの製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、前記製造方法が、
少なくともAlと、REOと、ZrOまたはHfOのうちの少なくとも一方と、のソースを溶融して溶湯を提供し、
前記溶湯を冷却してセラミックを提供することを含む、セラミックの製造方法。
【請求項6】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む物品の製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方との少なくともソースを溶融して溶湯を提供し、
前記溶湯を冷却し、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、Tを有する前記ガラスを含むガラスビーズを提供し、
前記ガラスビーズが融合して形状体が形成されるように前記ガラスビーズをTより高い温度で加熱し、
融合した形状体を冷却して物品を提供することを含む、物品の製造方法。
【請求項7】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む物品の製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方との少なくともソースを溶融して溶湯を提供し、
前記溶湯を冷却し、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、Tを有する前記ガラスを含むガラスビーズを提供し、
前記ガラスビーズが融合して形状体が形成されるように前記ガラスビーズをTより高い温度で加熱し、
融合した形状体を冷却して物品を提供することを含む、物品の製造方法。
【請求項8】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む物品の製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満がSiOと、Bと、Pとを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方との少なくともソースを溶融して溶湯を提供し、
前記溶湯を冷却し、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成され、Tを有する前記ガラスを含むガラスビーズを提供し、
前記ガラスビーズが融合して形状体が形成されるように前記ガラスビーズをTより高い温度で加熱し、
融合した形状体を冷却して物品を提供することを含む、物品の製造方法。
【請求項9】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む物品の製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方との少なくともソースを溶融して溶湯を提供し、
前記溶湯を冷却し、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、Tを有する前記ガラスを含むガラスビーズを提供し、
前記ガラスビーズを変換してガラス粉末を提供し、
前記ガラス粉末が融合して形状体が形成されるように前記ガラス粉末をTより高い温度で加熱し、
融合した形状体を冷却して物品を提供することを含む、物品の製造方法。
【請求項10】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む物品の製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方との少なくともソースを溶融して溶湯を提供し、
前記溶湯を冷却し、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、Tを有する前記ガラスを含むガラスビーズを提供し、
前記ガラスビーズを変換してガラス粉末を提供し、
前記ガラス粉末が融合して形状体が形成されるように前記ガラス粉末をTより高い温度で加熱し、
融合した形状体を冷却して物品を提供することを含む、物品の製造方法。
【請求項11】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む物品の製造方法であって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満がSiOと、Bと、Pとを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方との少なくともソースを溶融して溶湯を提供し、
前記溶湯を冷却し、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満がSiOと、Bと、Pとを合わせて構成され、Tを有する前記ガラスを含むガラスビーズを提供し、
前記ガラスビーズを変換してガラス粉末を提供し、
前記ガラス粉末が融合して形状体が形成されるように前記ガラス粉末をTより高い温度で加熱し、
融合した形状体を冷却して物品を提供することを含む、物品の製造方法。
【請求項12】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを少なくとも75容量パーセント含有するセラミックであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される、セラミック。
【請求項13】
前記ガラスが、該ガラスの総重量に対して、Alと、REOと、ZrOとを合わせて少なくとも85重量パーセント含む、請求項12に記載のセラミック。
【請求項14】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される、ガラス−セラミック。
【請求項15】
前記ガラス−セラミックの総重量に対して、Alと、REOと、ZrOとを合わせて少なくとも85重量パーセント含む、請求項14に記載のガラス−セラミック。
【請求項16】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される、ガラス−セラミック。
【請求項17】
前記ガラス−セラミックの総重量に対して、Alと、REOと、ZrOとを合わせて少なくとも70重量パーセント含む、請求項16に記載のガラス−セラミック。
【請求項18】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満がSiOと、Bと、Pとを合わせて構成される、ガラス−セラミック。
【請求項19】
前記ガラス−セラミックの総重量に対して、Alと、REOと、ZrOとを合わせて少なくとも70重量パーセント含む、請求項18に記載のガラス−セラミック。
【請求項20】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックであって、前記セラミックが、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものである、ガラス−セラミック。
【請求項21】
Alと、REOと、ZrOとを含む、請求項20に記載のガラス−セラミック。
【請求項22】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される前記ガラスを熱処理し、前記ガラス−セラミックを提供することを含む、ガラス−セラミックの製造方法。
【請求項23】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される前記ガラスを含有するセラミックを熱処理し、前記ガラス−セラミックを提供することを含む、ガラス−セラミックの製造方法。
【請求項24】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される前記ガラスを熱処理し、前記ガラス−セラミックを提供することを含む、ガラス−セラミックの製造方法。
【請求項25】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される前記ガラスを含有するセラミックを熱処理し、前記ガラス−セラミックを提供することを含む、ガラス−セラミックの製造方法。
【請求項26】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成される前記ガラスを熱処理し、前記ガラス−セラミックを提供することを含む、ガラス−セラミックの製造方法。
【請求項27】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成され、前記製造方法が、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成される前記ガラスを含有するセラミックを熱処理し、前記ガラス−セラミックを提供することを含む、ガラス−セラミックの製造方法。
【請求項28】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを熱処理して前記ガラス−セラミックを提供することを含み、前記ガラス−セラミックが、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものである、ガラス−セラミックの製造方法。
【請求項29】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックの製造方法であって、
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含有するセラミックを熱処理して前記ガラス−セラミックを提供することを含み、前記ガラス−セラミックが、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものである、ガラス−セラミックの製造方法。
【請求項30】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、Tを有する前記ガラスを変換してガラス粉末を提供し、
前記ガラス粉末が融合して形状体が形成されるように前記ガラス粉末をTより高い温度で加熱し、
融合した形状体を冷却してガラス物品を提供し、
前記ガラス物品を熱処理してガラス−セラミック物品を提供することを含む、ガラス−セラミック物品の製造方法。
【請求項31】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成され、Tを有する前記ガラスを変換してガラス粉末を提供し、
前記ガラス粉末が融合して形状体が形成されるように前記ガラス粉末をTより高い温度で加熱し、
融合した形状体を冷却してガラス物品を提供し、
前記ガラス物品を熱処理してガラス−セラミック物品を提供することを含む、ガラス−セラミック物品の製造方法。
【請求項32】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成され、Tを有する前記ガラスを変換してガラス粉末を提供し、
前記ガラス粉末が融合して形状体が形成されるように前記ガラス粉末をTより高い温度で加熱し、
融合した形状体を冷却してガラス物品を提供し、
前記ガラス物品を熱処理してガラス−セラミック物品を提供することを含む、ガラス−セラミック物品の製造方法。
【請求項33】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)平均晶子サイズが200ナノメートル未満の晶子を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、ガラス−セラミック。
【請求項34】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)複数の晶子を含み、該晶子のいずれもサイズが200ナノメートルを超えないマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、ガラス−セラミック。
【請求項35】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)複数の晶子を含み、該晶子のうちの少なくとも一部のサイズが150ナノメートル以下であるマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、ガラス−セラミック。
【請求項36】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)平均晶子サイズが200ナノメートル未満の晶子を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、セラミック。
【請求項37】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)複数の晶子を含み、該晶子のいずれもサイズが200ナノメートルを超えないマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、セラミック。
【請求項38】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)複数の晶子を含み、該晶子のうちの少なくとも一部のサイズが150ナノメートル以下であるマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、セラミック。
【請求項39】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)平均晶子サイズがサイズで200ナノメートル以下の晶子を含むマイクロ構造を示し、(b)密度が理論密度の少なくとも90%である、セラミック。
【請求項40】
前記結晶質セラミックが、該結晶質セラミックの総重量に対してAlと、REOと、ZrOとを合わせて構成される、請求項39に記載のセラミック。
【請求項41】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックを含む研磨粒子であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される、研磨粒子。
【請求項42】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックを含む研磨粒子であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される、研磨粒子。
【請求項43】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス−セラミックを含む研磨粒子であって、該ガラス−セラミックの総重量に対して、前記ガラス−セラミックの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満がSiOと、Bと、Pとを合わせて構成される、研磨粒子。
【請求項44】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス粒子であって、該ガラス粒子の総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される前記ガラス粒子を熱処理し、ガラス−セラミック研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項45】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む粒子であって、該ガラス粒子の総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される前記粒子を熱処理し、ガラス−セラミック研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項46】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される前記ガラスを熱処理し、ガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を得ることを含む、研磨粒子の製造方法。
【請求項47】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含むセラミックであって、前記ガラスの総重量に対して、前記ガラスの少なくとも85重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成される前記セラミックを熱処理し、ガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を得ることを含む、研磨粒子の製造方法。
【請求項48】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス粒子であって、該ガラス粒子の総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される前記ガラス粒子を熱処理し、ガラス−セラミック研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項49】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む粒子であって、該ガラス粒子の総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される前記粒子を熱処理し、ガラス−セラミック研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項50】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される前記ガラスを熱処理し、ガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を得ることを含む、研磨粒子の製造方法。
【請求項51】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含むセラミックであって、前記ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、15重量パーセント未満がSiOで構成され、15重量パーセント未満がBで構成される前記セラミックを熱処理し、ガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を得ることを含む、研磨粒子の製造方法。
【請求項52】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス粒子であって、該ガラス粒子の総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成される前記ガラス粒子を熱処理し、ガラス−セラミック研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項53】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む粒子であって、該ガラス粒子の総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成される前記粒子を熱処理し、ガラス−セラミック研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項54】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスであって、該ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成される前記ガラスを熱処理し、ガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を得ることを含む、研磨粒子の製造方法。
【請求項55】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含むセラミックであって、前記ガラスの総重量に対して、前記ガラスの少なくとも70重量パーセントが、Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを合わせて構成され、30重量パーセント未満が、SiOと、Bと、Pとを合わせて構成される前記セラミックを熱処理し、ガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を得ることを含む、研磨粒子の製造方法。
【請求項56】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラス粒子を熱処理してガラス−セラミック研磨粒子を提供することを含み、ガラス−セラミックが、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものである、研磨粒子の製造方法。
【請求項57】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含む粒子を熱処理してガラス−セラミック研磨粒子を提供することを含み、ガラス−セラミックが、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものである、研磨粒子の製造方法。
【請求項58】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを熱処理し、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものであるガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項59】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含むガラスを含有するセラミックを熱処理し、(a)平均晶子サイズが1マイクロメートル未満の晶子を含むマイクロ構造を示し、(b)共晶マイクロ構造の特徴を持たないものであるガラス−セラミックを提供し、
前記ガラス−セラミックを変換して研磨粒子を提供することを含む、研磨粒子の製造方法。
【請求項60】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)平均晶子サイズが200ナノメートル未満の晶子を含むマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のガラス−セラミックを含む、研磨粒子。
【請求項61】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項60に記載の研磨粒子。
【請求項62】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)複数の晶子を含み、該晶子のいずれもサイズが200ナノメートルを超えないマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のガラス−セラミックを含む、研磨粒子。
【請求項63】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項62に記載の研磨粒子。
【請求項64】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含み、(a)複数の晶子を含み、該晶子のうちの少なくとも一部のサイズが150ナノメートル以下であるマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のガラス−セラミックを含む、研磨粒子。
【請求項65】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項64に記載の研磨粒子。
【請求項66】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)平均晶子サイズが200ナノメートル未満の晶子を含むマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のセラミックを含む、研磨粒子。
【請求項67】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項66に記載の研磨粒子。
【請求項68】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)複数の晶子を含み、該晶子のいずれもサイズが200ナノメートルを超えないマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のセラミックを含む、研磨粒子。
【請求項69】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項68に記載の研磨粒子。
【請求項70】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)複数の晶子を含み、該晶子のうちの少なくとも一部のサイズが150ナノメートル以下であるマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のセラミックを含む、研磨粒子。
【請求項71】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項70に記載の研磨粒子。
【請求項72】
Alと、REOと、ZrOまたはHfOのうちの少なくとも一方とを含む結晶質セラミックを少なくとも75容量パーセントを含み、(a)平均晶子サイズがサイズで200ナノメートル以下の晶子を含むマイクロ構造を示し、(b)理論密度の少なくとも90%である密度のセラミックを含む、研磨粒子。
【請求項73】
前記研磨粒子の全容量に対して前記セラミックを少なくとも90容量パーセント含む、請求項72に記載の研磨粒子。
【請求項74】
規定公称グレードを有する複数の研磨粒子であって、複数の研磨粒子の少なくとも一部分が、αAlと、結晶質ZrOと、第1の複合Al・REOとを含み、前記αAl、前記結晶質ZrOまたは前記第1の複合Al・REOのうちの少なくとも1つの平均結晶サイズが150ナノメートル以下であり、その部分の研磨粒子の密度が理論密度の少なくとも90パーセントである、研磨粒子。
【請求項75】
バインダーと複数の研磨粒子とを含む研磨物品であって、研磨粒子の少なくとも一部分が、αAlと、結晶質ZrOと、第1の複合Al・REOとを含み、前記αAl、前記結晶質ZrOまたは前記第1の複合Al・REOのうちの少なくとも1つの平均結晶サイズが150ナノメートル以下であり、その部分の前記研磨粒子の密度が理論密度の少なくとも90パーセントである、研磨物品。
【請求項76】
バインダーと複数の研磨粒子とを含む研磨物品であって、研磨粒子の少なくとも一部分が、αAlと、結晶質ZrOと、第1の複合Al・REOとを含み、前記αAl、前記結晶質ZrOまたは前記第1の複合Al・REOのうちの少なくとも1つの平均結晶サイズが150ナノメートル以下であり、その部分の前記研磨粒子の密度が理論密度の少なくとも90パーセントである研磨物品を提供し、
前記αAlと、前記結晶質ZrOと、前記第1の複合Al・REOとを含む前記研磨粒子のうちの少なくとも1つをワークピースの表面に接触させ、
前記αAlと、前記結晶質ZrOと、前記第1の複合Al・REOとを含む被接触研磨粒子または被接触表面のうちの少なくとも一方を移動させ、前記αAlと、前記結晶質ZrOと、前記第1の複合Al・REOとを含む被接触研磨粒子で前記表面の少なくとも一部分を研磨することを含む、表面の研磨方法。
【請求項77】
規定公称グレードを有する複数の研磨粒子であって、複数の研磨粒子の少なくとも一部分が、第1の複合Al・REOと、これとは異なる第2の複合Al・REOと、結晶質ZrOとを含み、前記第1の複合Al・REO、前記第2の複合Al・REOまたは前記結晶質ZrOのうちの少なくとも1つについて、その結晶サイズの少なくとも90数量パーセントが200ナノメートル以下であり、その部分の研磨粒子の密度が理論密度の少なくとも90パーセントである、研磨粒子。
【請求項78】
バインダーと複数の研磨粒子とを含む研磨物品であって、前記研磨粒子の少なくとも一部分が、第1の複合Al・REOと、これとは異なる第2の複合Al・REOと、結晶質ZrOとを含み、このような部分において、前記第1の複合Al・REO、前記第2の複合Al・REOまたは前記結晶質ZrOのうちの少なくとも1つについて、その結晶サイズの少なくとも90数量パーセントが200ナノメートル以下であり、その部分の研磨粒子の密度が理論密度の少なくとも90パーセントである、研磨物品。
【請求項79】
バインダーと複数の研磨粒子とを含む研磨物品であって、前記研磨粒子の少なくとも一部分が、第1の複合Al・REOと、これとは異なる第2の複合Al・REOと、結晶質ZrOとを含み、このような部分において、前記第1の複合Al・REO、前記第2の複合Al・REOまたは前記結晶質ZrOのうちの少なくとも1つについて、その結晶サイズの少なくとも90数量パーセントが200ナノメートル以下であり、その部分の研磨粒子の密度が理論密度の少なくとも90パーセントである研磨物品を提供し、
前記第1の複合Al・REOと、前記第2の複合Al・REOと、前記結晶質ZrOとを含む前記研磨粒子のうちの少なくとも1つをワークピースの表面に接触させ、
前記第1の複合Al・REOと、前記第2の複合Al・REOと、前記結晶質ZrOとを含む被接触研磨粒子または被接触表面のうちの少なくとも一方を移動させ、前記第1の複合Al・REOと、前記第2の複合Al・REOと、前記結晶質ZrOとを含む被接触研磨粒子で前記表面の少なくとも一部分を研磨することを含む、表面の研磨方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−49627(P2013−49627A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2012−239397(P2012−239397)
【出願日】平成24年10月30日(2012.10.30)
【分割の表示】特願2003−516978(P2003−516978)の分割
【原出願日】平成14年8月2日(2002.8.2)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.パイレックス
2.PYREX
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】