説明

Cu配線の形成方法およびCu膜の成膜方法、ならびに成膜システム

【課題】微細なトレンチまたはホール等の凹部にボイドを発生させずに確実にCuを埋め込むことができ、かつ低抵抗のCu配線を形成すること。
【解決手段】ウエハWに形成されたトレンチ203を有する層間絶縁膜202において、トレンチ203の表面にバリア膜204を形成する工程と、バリア膜204の上にRu膜205を形成する工程と、Ru膜205の上に、加熱しつつ、PVDによりCuがマイグレーションするようにCu膜206を形成してトレンチ203を埋める工程とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板に形成されたトレンチまたはホールにCu配線を形成するCu配線の形成方法およびCu膜の成膜方法、ならびにCu配線を形成するための成膜システムに関する。
【背景技術】
【0002】
半導体デバイスの製造においては、半導体ウエハに成膜処理やエッチング処理等の各種の処理を繰り返し行って所望のデバイスを製造するが、近時、半導体デバイスの高速化、配線パターンの微細化、高集積化の要求に対応して、配線の導電性向上およびエレクトロマイグレーション耐性の向上が求められている。
【0003】
このような点に対応して、配線材料にアルミニウム(Al)やタングステン(W)よりも導電性が高く(抵抗が低く)かつエレクトロマイグレーション耐性に優れている銅(Cu)が用いられるようになってきている。
【0004】
Cu配線の形成方法としては、トレンチやホールが形成された層間絶縁膜全体にタンタル金属(Ta)、チタン(Ti)、タンタル窒化膜(TaN)、チタン窒化膜(TiN)などからなるバリア膜をPVDであるプラズマスパッタで形成し、バリア膜の上に同じくプラズマスパッタによりCuシード膜を形成し、さらにその上にCuめっきを施してトレンチやホールを完全に埋め込み、ウエハ表面の余分な銅薄膜をCMP(Chemical Mechanical Polishing)処理により研磨処理して取り除く技術が提案されている(例えば特許文献1)。また、密着性良くかつ微細パターンにもCu膜を形成することができる技術として、バリア膜の上にCVD(Chemical Vapor Deposition)によりRu膜を形成した後にCuシード膜およびCuめっきを形成する方法も提案されている(例えば特許文献2)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−148075号公報
【特許文献2】特開2007−194624号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、半導体デバイスのデザインルールが益々微細化しており、トレンチの幅やホール径が数十nmとなっており、このような狭いトレンチやホール等の凹部内に、プラズマスパッタリングでバリア膜やシード膜を形成する場合には、トレンチやホールの開口部にオーバーハング部分が発生してしまい、その後のCuめっきによりトレンチやホールを埋め込んでも内部が十分に埋まらずにボイドが発生する等の問題が生ずる。
【0007】
上記特許文献1では、プラズマスパッタ装置の載置台に供給するバイアス電力を調整して成膜レートとスパッタエッチングのエッチングレートをコントロールすることにより良好な埋め込みを行なう試みがなされており、Cuめっき装置を改善してCuめっきの埋め込み性を高めることも検討されており、上記特許文献2でもCuの埋め込み性は高められているが、最近、さらに微細化されたトレンチやホールに対して対応することが困難である。
【0008】
また、Cuめっきは不純物が多く、配線の低抵抗化の要求に対し、必ずしも十分に対応することができていないのが現状である。
【0009】
本発明はかかる事情に鑑みてなされたものであって、微細なトレンチまたはホール等の凹部にボイドを発生させずに確実にCuを埋め込むことができ、かつ低抵抗のCu配線を形成することができるCu配線の形成方法およびCu膜の成膜方法、ならびにそのようなCu配線を形成するための成膜システムを提供することを課題とする。
【課題を解決するための手段】
【0010】
本発明の第1の観点では、基板に形成された凹部内にCuを埋め込んでCu配線を形成するCu配線の形成方法であって、少なくとも前記凹部の表面にバリア膜を形成する工程と、前記バリア膜の上にRu膜を形成する工程と、前記Ru膜の上に、加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を形成して前記凹部内にCuを埋め込む工程とを有することを特徴とするCu配線の形成方法を提供する。この場合に、前記凹部としてはトレンチまたはホールを挙げることができる。
【0011】
本発明の第2の観点では、基板に形成された凹部内にCuを埋め込んでCu配線を形成するCu配線の形成方法であって、少なくとも前記凹部の表面にバリア膜を形成する工程と、前記バリア膜の上にRu膜を形成する工程と、前記Ru膜の上に、加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を形成して前記凹部内にCuを埋め込む工程とを有し、前記凹部は、トレンチと該トレンチの底部に形成されたホールとを有し、前記Cu膜を形成して前記凹部内にCuを埋め込む工程は、前記ホールへのCuの埋め込みが完了するまでの第1段階と、前記ホールの埋め込みが完了後、前記トレンチの埋め込みが完了するまでの第2段階とを有し、前記第1段階の成膜速度は前記第2段階の成膜速度よりも小さいことを特徴とするCu配線の形成方法を提供する。
【0012】
上記第2の観点において、前記第1段階の成膜速度は、トレンチの底部でオーバーハングが生じない程度のCuの流動性が確保される成膜速度であることが好ましい。また、前記第1段階の成膜速度は5〜20nm/minであり、前記第2段階の成膜速度は20〜150nm/minであることが好ましい。
【0013】
上記第1の観点および第2の観点において、前記Cuを埋め込むためのCu膜は、基板が収容された処理容器内にプラズマ生成ガスによりプラズマを生成し、CuターゲットからCuを放出させて、Cuを前記プラズマ中でイオン化させ、前記基板にバイアス電力を印加してCuイオンを基板上に引きこむことにより形成されることが好ましい。
【0014】
この場合に前記Cuを埋め込むためのCu膜の形成は、基板温度を65℃以上350℃以下にして行われることが好ましい。
【0015】
前記Cuを埋め込むためのCu膜の形成は、基板温度を200℃超350℃以下にし、かつ前記Cuイオンによる基板へのCu成膜量Tと前記プラズマ生成ガスのイオンによるCu膜のエッチング量Tが0≦T/T<1の関係を満たすように前記バイアス電力の大きさを調整して行うことができる。前記Cu膜の形成は、基板温度を65℃以上200℃以下にし、かつ前記Cuイオンによる基板へのCu成膜量Tと前記プラズマ生成ガスのイオンによるCu膜のエッチング量Tが0.02≦T/T<1の関係を満たすように前記バイアス電力の大きさを調整して行うことができる。これらの場合に、前記バイアス電力の大きさは、0.05≦T/T≦0.24を満たすように調整されることが好ましい。
【0016】
上記第1の観点および第2の観点において、前記バリア膜は、Ti膜、TiN膜、Ta膜、TaN膜、Ta/TaNの2層膜、TaCN膜、W膜、WN膜、WCN膜、Zr膜、ZrN膜、V膜、VN膜、Nb膜、NbN膜からなる群から選択されるものを用いることができる。前記バリア膜は、PVDにより形成されることが好ましい。
【0017】
前記Ru膜は、CVDにより形成されることが好ましい。また、前記Ru膜は、成膜原料としてルテニウムカルボニルを用いたCVDにより形成されることがより好ましい。
【0018】
本発明の第3の観点では、基板に形成された凹部を有する所定の層にバリア膜およびRu膜を介して前記凹部内にCuを埋め込むためのCu膜を成膜するCu膜の成膜方法であって、前記Ru膜の上に加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を成膜して、前記凹部内にCuを埋め込むことを特徴とするCu膜の成膜方法を提供する。
【0019】
本発明の第4の観点では、基板に形成された凹部を有する所定の層にバリア膜およびRu膜を介して前記凹部内にCuを埋め込むためのCu膜を成膜するCu膜の成膜方法であって、前記凹部は、トレンチと該トレンチの底部に形成されたホールとを有し、前記Ru膜の上に加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を成膜して、前記凹部内にCuを埋め込み、前記Cu膜の成膜は、前記ホールへのCuの埋め込みが完了するまでの第1段階と、前記ホールの埋め込みが完了後、前記トレンチの埋め込みが完了するまでの第2段階とを有し、前記第1段階の成膜速度は前記第2段階の成膜速度よりも小さいことを特徴とするCu膜の成膜方法を提供する。
【0020】
本発明の第5の観点では、基板に形成された凹部内にCuを埋め込んでCu配線を形成するための成膜システムであって、前記凹部の表面にバリア膜を形成するバリア膜成膜装置と、前記バリア膜の上にRu膜を形成するRu膜成膜装置と、前記Ru膜の上に、PVDによりCu膜を形成して前記凹部にCuを埋め込むCu膜成膜装置と、前記Cu膜成膜装置を、前記基板を加熱しつつ、CuがマイグレーションするようにCu膜を形成して前記凹部にCuを埋め込むように制御する制御部とを有することを特徴とする成膜システムを提供する。
【0021】
上記成膜システムにおいて、前記バリア膜成膜装置と、前記Ru膜成膜装置と、前記Cu膜成膜装置との間を真空を破らずに搬送する搬送手段をさらに有することが好ましい。
【0022】
本発明の第6の観点では、コンピュータ上で動作し、成膜システムを制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、上記第1または第2の観点のCu配線の形成方法が行われるように、コンピュータに前記成膜システムを制御させることを特徴とする記憶媒体を提供する。
【0023】
本発明の第7の観点では、コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、上記第3または第4の観点のCu膜の成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする記憶媒体を提供する。
【発明の効果】
【0024】
本発明によれば、基板に形成されたトレンチまたはホール等の凹部内にCuを埋め込んでCu配線を形成するにあたり、バリア膜の上にRu膜を形成し、その上にPVDによりCu膜を形成して凹部にCuを埋め込むが、CuはRuへの濡れ性が良好であるため、Ru膜上でCuを凝集させずにマイグレーションさせることができる。このため、加熱しつつ、CuがマイグレーションするようにCu膜を形成することにより、Cuが凹部に流動し、凹部の間口を塞ぐことがないため、凹部として微細なトレンチやホールが形成されている場合にも、その中にボイドを発生させずに確実にCuを埋めることができる。また、Cu配線がPVDのみで形成されるため、不純物が少なく低抵抗のCu配線を実現することができる。
【0025】
また、凹部の構造がトレンチと該トレンチの底部に形成されたホールを有するものである場合には、CuがマイグレーションするようにCu膜を形成してもトレンチの底部でオーバーハングが生じてホール部分にボイドが形成するおそれがあるが、Cu膜を形成して凹部内にCuを埋め込む工程を、ホールへのCuの埋め込みが完了するまでの第1段階、および前記ホールの埋め込みが完了後、前記トレンチの埋め込みが完了するまでの第2段階を有するものとし、第1段階の成膜速度が第2段階の成膜速度よりも小さくなるようにすることにより、このようなボイドの形成を防止することができる。
【図面の簡単な説明】
【0026】
【図1】本発明に係るCu配線の形成方法を実施するためのマルチチャンバタイプの成膜システムの一例を示す平面図である。
【図2】図1の成膜システムに搭載された、Cu膜を形成するためのCu膜成膜装置を示す断面図である。
【図3】図1の成膜システムに搭載された、Ruライナー膜を形成するためのRuライナー膜成膜装置を示す断面図である。
【図4】本発明の第1の実施形態に係るCu配線の形成方法のフローチャートである。
【図5】本発明の第1の実施形態に係るCu配線の形成方法を説明するための工程断面図である。
【図6】図2の装置によりCu膜を成膜する場合におけるバイアスパワーとCu成膜量との関係を示す模式図である。
【図7】図2の装置によりCu膜を成膜する場合における成膜モデルを説明するための模式図である。
【図8】実際に図2の装置でCu膜を形成した際において、横軸にCuターゲットに供給する直流電力をとり、縦軸にバイアスパワーをとって、T/Tの値を等高線で示す図である。
【図9】実際に図2の装置でCu膜を形成した際において、横軸にバイアスパワーをとり、縦軸にT/Tをとって、Cuターゲットへの直流電力ごとにこれらの関係を示すグラフである。
【図10】バイアスパワーをT/T=0となる130W(0.19W/cm)として、成膜温度を200℃、225℃、250℃、300℃としてCu膜を成膜した際の走査型電子顕微鏡(SEM)写真である。
【図11】バイアスパワーをT/T=0となる130W(0.19W/cm)、およびT/T=0.02となる195W(0.28W/cm)として、成膜温度65℃でCu膜を成膜した際の走査型電子顕微鏡(SEM)写真である。
【図12】バイアスパワーをT/Tが0〜0.24になるように変化させて、成膜温度250℃でCu膜を成膜時間56secで成膜した際の走査型電子顕微鏡(SEM)写真である。
【図13】本発明の第1の実施形態によりCu配線を形成した際における、Tiバリア膜のみを形成した状態、Ruライナー膜を形成した状態、Cu膜を5nm、10nm、20nm、30nm成膜した状態の走査型電子顕微鏡(SEM)写真である。
【図14】本発明の第1の実施形態によって形成したCu配線と、Cuめっきを用いた従来のCu配線の電気特性を比較した結果を示す図である。
【図15】本発明の第2の実施形態に係るCu配線の形成方法のフローチャートである。
【図16】本発明の第2の実施形態に係るCu配線の形成方法を説明するための工程断面図である。
【図17】デュアルダマシン構造にCuを埋め込む際にトレンチ底部に形成されたビアにボイドが生じる場合のメカニズムを説明するための図である。
【図18】第2の実施形態に従ってデュアルダマシン構造にCuを埋め込む際の状態を説明するための図である。
【図19】図2の成膜装置において、直流電源のパワーとCu堆積速度との関係を示す図である。
【発明を実施するための形態】
【0027】
以下、添付図面を参照して本発明の実施形態について具体的に説明する。
【0028】
<本発明の実施形態に用いる成膜システム>
図1は本発明に係るCu配線の形成方法を実施するためのマルチチャンバタイプの成膜システムの一例を示す平面図である。
【0029】
成膜システム1は、バリア膜およびRuライナー膜を形成する第1の処理部2と、Cu膜を形成する第2の処理部3と、搬入出部4とを有しており、半導体ウエハ(以下、単にウエハと記す。)Wに対してCu配線を形成するためのものである。
【0030】
第1の処理部2は、平面形状が七角形をなす第1の真空搬送室11と、この第1の真空搬送室11の4つの辺に対応する壁部に接続された、2つのバリア膜成膜装置12a,12bおよび2つのRuライナー膜成膜装置14a,14bとを有している。バリア膜成膜装置12aおよびRuライナー膜成膜装置14aとバリア膜成膜装置12bおよびRuライナー膜成膜装置14bとは線対称の位置に配置されている。
【0031】
第1の真空搬送室11の他の2辺に対応する壁部には、それぞれウエハWのデガス処理を行うデガス室5a,5bが接続されている。また、第1の真空搬送室11のデガス室5aと5bとの間の壁部には、第1の真空搬送室11と後述する第2の真空搬送室21との間でウエハWの受け渡しを行う受け渡し室5が接続されている。
【0032】
バリア膜成膜装置12a,12b、Ruライナー膜成膜装置14a,14b、デガス室5a,5b、および受け渡し室5は、第1の真空搬送室11の各辺にゲートバルブGを介して接続され、これらは対応するゲートバルブGを開放することにより第1の真空搬送室11と連通され、対応するゲートバルブGを閉じることにより第1の真空搬送室11から遮断される。
【0033】
第1の真空搬送室11内は所定の真空雰囲気に保持されるようになっており、その中には、バリア膜成膜装置12a,12b、Ruライナー膜成膜装置14a,14b、デガス室5a,5b、および受け渡し室5に対してウエハWの搬入出を行う第1の搬送機構16が設けられている。この第1の搬送機構16は、第1の真空搬送室11の略中央に配設されており、回転および伸縮可能な回転・伸縮部17を有し、その回転・伸縮部17の先端にウエハWを支持する2つの支持アーム18a,18bが設けられており、これら2つの支持アーム18a,18bは互いに反対方向を向くように回転・伸縮部17に取り付けられている。
【0034】
第2の処理部3は、平面形状が七角形をなす第2の真空搬送室21と、この第2の真空搬送室21の対向する2つの辺に対応する壁部に接続された、2つのCu膜成膜装置22a,22bとを有している。
【0035】
第2の真空搬送室21の第1の処理部2側の2辺に対応する壁部には、それぞれ上記デガス室5a,5bが接続され、デガス室5aと5bとの間の壁部には、上記受け渡し室5が接続されている。すなわち、受け渡し室5ならびにデガス室5aおよび5bは、いずれも第1の真空搬送室11と第2の真空搬送室21との間に設けられ、受け渡し室5の両側にデガス室5aおよび5bが配置されている。さらに、搬入出部4側の2辺には、それぞれ大気搬送および真空搬送可能なロードロック室6a,6bが接続されている。
【0036】
Cu膜成膜装置22a,22b、デガス室5a,5b、およびロードロック室6a,6bは、第2の真空搬送室21の各辺にゲートバルブGを介して接続され、これらは対応するゲートバルブを開放することにより第2の真空搬送室21と連通され、対応するゲートバルブGを閉じることにより第2の真空搬送室21から遮断される。また、受け渡し室5はゲートバルブを介さずに第2の真空搬送室21に接続されている。
【0037】
第2の真空搬送室21内は所定の真空雰囲気に保持されるようになっており、その中には、Cu膜成膜装置22a,22b、デガス室5a,5b、ロードロック室6a,6b、および受け渡し室5に対してウエハWの搬入出を行う第2の搬送機構26が設けられている。この第2の搬送機構26は、第2の真空搬送室21の略中央に配設されており、回転および伸縮可能な回転・伸縮部27を有し、その回転・伸縮部27の先端にウエハWを支持する2つの支持アーム28a,28bが設けられており、これら2つの支持アーム28a,28bは互いに反対方向を向くように回転・伸縮部27に取り付けられている。
【0038】
搬入出部4は、上記ロードロック室6a,6bを挟んで第2の処理部3と反対側に設けられており、ロードロック室6a,6bが接続される大気搬送室31を有している。ロードロック室6a,6bと大気搬送室31との間の壁部にはゲートバルブGが設けられている。大気搬送室31のロードロック室6a,6bが接続された壁部と対向する壁部には被処理基板としてのウエハWを収容するキャリアCを接続する2つの接続ポート32,33が設けられている。これら接続ポート32,33にはそれぞれ図示しないシャッターが設けられており、これら接続ポート32,33にウエハWを収容した状態の、または空のキャリアCが直接取り付けられ、その際にシャッターが外れて外気の侵入を防止しつつ大気搬送室31と連通するようになっている。また、大気搬送室31の側面にはアライメントチャンバ34が設けられており、そこでウエハWのアライメントが行われる。大気搬送室31内には、キャリアCに対するウエハWの搬入出およびロードロック室6a,6bに対するウエハWの搬入出を行う大気搬送用搬送機構36が設けられている。この大気搬送用搬送機構36は、2つの多関節アームを有しており、キャリアCの配列方向に沿ってレール38上を走行可能となっていて、それぞれの先端のハンド37上にウエハWを載せてその搬送を行うようになっている。
【0039】
この成膜システム1は、この成膜システム1の各構成部を制御するための制御部40を有している。この制御部40は、各構成部の制御を実行するマイクロプロセッサ(コンピュータ)からなるプロセスコントローラ41と、オペレータが成膜システム1を管理するためにコマンドの入力操作等を行うキーボードや、成膜システム1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース42と、成膜システム1で実行される処理をプロセスコントローラ41の制御にて実現するための制御プログラムや、各種データ、および処理条件に応じて処理装置の各構成部に処理を実行させるためのプログラムすなわちレシピが格納された記憶部43とを備えている。なお、ユーザーインターフェース42および記憶部43はプロセスコントローラ41に接続されている。
【0040】
上記レシピは記憶部43の中の記憶媒体43aに記憶されている。記憶媒体は、ハードディスクであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。
【0041】
そして、必要に応じて、ユーザーインターフェース42からの指示等にて任意のレシピを記憶部43から呼び出してプロセスコントローラ41に実行させることで、プロセスコントローラ41の制御下で、成膜システム1での所望の処理が行われる。
【0042】
このような成膜システム1においては、キャリアCから大気搬送用搬送機構36によりトレンチやホールを有する所定パターンが形成されたウエハWを取り出し、ロードロック室6aまたは6bに搬送し、そのロードロック室を第2の真空搬送室21と同程度の真空度に減圧した後、第2の搬送機構26によりロードロック室のウエハWを取り出し、第2の真空搬送室21を介してデガス室5aまたは5bに搬送し、ウエハWのデガス処理を行う。その後、第1の搬送機構16によりデガス室のウエハWを取り出し、第1の真空搬送室11を介してバリア膜成膜装置12aまたは12bに搬入し、バリア膜として例えば、Ti膜、TiN膜、Ta膜、TaN膜等を成膜する。バリア膜成膜後、第1の搬送機構16によりバリア膜成膜装置12aまたは12bからウエハWを取り出し、Ruライナー膜成膜装置14aまたは14bに搬入し、Ruライナー膜を成膜する。Ruライナー膜成膜後、第1の搬送機構16によりRuライナー膜成膜装置14aまたは14bからウエハWを取り出し、受け渡し室5に搬送する。その後、第2の搬送機構26によりウエハWを取り出し、第2の真空搬送室21を介してCu膜成膜装置22aまたは22bに搬入し、Cu膜を成膜する。Cu膜成膜後、第2の搬送機構26によりCu膜成膜装置22aまたは22bからウエハWを取り出し、ロードロック室6aまたは6bに搬送し、そのロードロック室を大気圧に戻した後、大気搬送用搬送機構36によりCu膜が形成されたウエハWを取り出し、キャリアCに戻す。このような処理をキャリア内のウエハWの数の分だけ繰り返す。
【0043】
<Cu膜成膜装置>
次に、本発明の方法を実施するために重要なCu膜成膜装置22a(22b)について説明する。
図2は、Cu膜成膜装置の一例を示す断面図である。ここではCu膜成膜装置としてiPVD(Ionized physical vapor deposition)であるICP(Inductively Coupled Plasma)型プラズマスパッタ装置を例にとって説明する。
【0044】
図2に示すように、このCu膜成膜装置22a(22b)は、例えばアルミニウム等により筒体状に成形された処理容器51を有している。この処理容器51は接地され、その底部52には排気口53が設けられており、排気口53には排気管54が接続されている。排気管54には圧力調整を行うスロットルバルブ55および真空ポンプ56が接続されており、処理容器51内が真空引き可能となっている。また処理容器51の底部52には、処理容器51内へ所定のガスを導入するガス導入口57が設けられる。このガス導入口57にはガス供給配管58が接続されており、ガス供給配管58には、プラズマ励起用ガスとして希ガス、例えばArガスや他の必要なガス例えばNガス等を供給するためのガス供給源59が接続されている。また、ガス供給配管58には、ガス流量制御器、バルブ等よりなるガス制御部60が介装されている。
【0045】
処理容器51内には、被処理基板であるウエハWを載置するための載置機構62が設けられる。この載置機構62は、円板状に成形された載置台63と、この載置台63を支持するとともに接地された中空筒体状の支柱64とを有している。載置台63は、例えばアルミニウム合金等の導電性材料よりなり、支柱64を介して接地されている。載置台63の中には冷却ジャケット65が設けられており、図示しない冷媒流路を介して冷媒を供給するようになっている。また、載置台63内には冷却ジャケット65の上に絶縁材料で被覆された抵抗ヒーター87が埋め込まれている。抵抗ヒーター87は図示しない電源から給電されるようになっている。載置台63には熱電対(図示せず)が設けられており、この熱電対で検出された温度に基づいて、冷却ジャケット65への冷媒の供給および抵抗ヒーター87への給電を制御することにより、ウエハ温度を所定の温度に制御できるようになっている。
【0046】
載置台63の上面側には、例えばアルミナ等の誘電体部材66aの中に電極66bが埋め込まれて構成された薄い円板状の静電チャック66が設けられており、ウエハWを静電力により吸着保持できるようになっている。また、支柱64の下部は、処理容器51の底部52の中心部に形成された挿通孔67を貫通して下方へ延びている。支柱64は、図示しない昇降機構により上下移動可能となっており、これにより載置機構62の全体が昇降される。
【0047】
支柱64を囲むように、伸縮可能に構成された蛇腹状の金属ベローズ68が設けられており、この金属ベローズ68は、その上端が載置台63の下面に気密に接合され、また下端が処理容器51の底部52の上面に気密に接合されており、処理容器51内の気密性を維持しつつ載置機構62の昇降移動を許容できるようになっている。
【0048】
また底部52には、上方に向けて例えば3本(図2では2本のみ示す)の支持ピン69が起立させて設けられており、また、この支持ピン69に対応させて載置台63にピン挿通孔70が形成されている。したがって、載置台63を降下させた際に、ピン挿通孔70を貫通した支持ピン69の上端部でウエハWを受けて、そのウエハWを外部より侵入する搬送アーム(図示せず)との間で移載することができる。このため、処理容器51の下部側壁には、搬送アームを侵入させるために搬出入口71が設けられ、この搬出入口71には、開閉可能になされたゲートバルブGが設けられている。このゲートバルブGの反対側には、前述した第2の真空搬送室21が設けられている。
【0049】
また上述した静電チャック66の電極66bには、給電ライン72を介してチャック用電源73が接続されており、このチャック用電源73から電極66bに直流電圧を印加することにより、ウエハWが静電力により吸着保持される。また給電ライン72にはバイアス用高周波電源74が接続されており、この給電ライン72を介して静電チャック66の電極66bに対してバイアス用の高周波電力を供給し、ウエハWにバイアス電力が印加されるようになっている。この高周波電力の周波数は、400kHz〜60MHzが好ましく、例えば13.56MHzが採用される。
【0050】
一方、処理容器51の天井部には、例えばアルミナ等の誘電体よりなる高周波に対して透過性のある透過板76がOリング等のシール部材77を介して気密に設けられている。そして、この透過板76の上部に、処理容器51内の処理空間Sにプラズマ励起用ガスとしての希ガス、例えばArガスをプラズマ化してプラズマを発生するためのプラズマ発生源78が設けられる。なお、このプラズマ励起用ガスとして、Arに代えて他の希ガス、例えばHe、Ne、Kr等を用いてもよい。
【0051】
プラズマ発生源78は、透過板76に対応させて設けた誘導コイル80を有しており、この誘導コイル80には、プラズマ発生用の例えば13.56MHzの高周波電源81が接続されて、上記透過板76を介して処理空間Sに高周波電力が導入され誘導電界を形成するようになっている。
【0052】
また透過板76の直下には、導入された高周波電力を拡散させる例えばアルミニウムよりなるバッフルプレート82が設けられる。そして、このバッフルプレート82の下部には、上記処理空間Sの上部側方を囲むようにして例えば断面が内側に向けて傾斜されて環状(截頭円錐殻状)のCuターゲット83が設けられており、このCuターゲット83にはArイオンを引きつけるための直流電力を印加するターゲット用の電圧可変の直流電源84が接続されている。なお、直流電源に代えて交流電源を用いてもよい。
【0053】
また、Cuターゲット83の外周側には、これに磁界を付与するための磁石85が設けられている。Cuターゲット83はプラズマ中のArイオンによりCuの金属原子、あるいは金属原子団としてスパッタされるとともに、プラズマ中を通過する際に多くはイオン化される。
【0054】
またこのCuターゲット83の下部には、上記処理空間Sを囲むようにして例えばアルミニウムや銅よりなる円筒状の保護カバー部材86が設けられている。この保護カバー部材86は接地されるとともに、その下部は内側へ屈曲されて載置台63の側部近傍に位置されている。したがって、保護カバー部材86の内側の端部は、載置台63の外周側を囲むようにして設けられている。
【0055】
なお、Cu膜成膜装置の各構成部も、上述の制御部40により制御されるようになっている。
【0056】
このように構成されるCu膜成膜装置においては、ウエハWを図2に示す処理容器51内へ搬入し、このウエハWを載置台63上に載置して静電チャック66により吸着し、制御部40の制御下で以下の動作が行われる。このとき、載置台63は、抵抗ヒーター87により所定温度に加熱されて温度制御される。
【0057】
まず、真空ポンプ56を動作させることにより所定の真空状態にされた処理容器51内に、ガス制御部60を操作して所定流量でArガスを流しつつスロットルバルブ55を制御して処理容器51内を所定の真空度に維持する。その後、可変直流電源84から直流電圧をCuターゲット83に印加し、さらにプラズマ発生源78の高周波電源81から誘導コイル80に高周波電力(プラズマ電力)を供給する。一方、バイアス用高周波電源74から静電チャック66の電極66bに対して所定のバイアス用の高周波電力を供給する。
【0058】
これにより、処理容器51内においては、誘導コイル80に供給された高周波電力によりアルゴンプラズマが形成されてアルゴンイオンが生成され、これらイオンはCuターゲット83に印加された直流電圧に引き寄せられてCuターゲット83に衝突し、このCuターゲット83がスパッタされてCu粒子が放出される。この際、Cuターゲット83に印加する直流電圧により放出されるCu粒子の量が最適に制御される。
【0059】
また、スパッタされたCuターゲット83からのCu粒子であるCu原子、Cu原子団はプラズマ中を通る際に多くはイオン化される。ここでCu粒子は、イオン化されたCuイオンと電気的に中性な中性Cu原子とが混在する状態となって下方向へ飛散して行く。特に、この処理容器51内の圧力をある程度高くし、これによりプラズマ密度を高めて、Cu粒子を高効率でイオン化できるようになっている。この時のイオン化率は高周波電源81から供給される高周波電力により制御される。
【0060】
そして、Cuイオンは、バイアス用高周波電源74から静電チャック66の電極66bに印加されたバイアス用の高周波電力によりウエハW面上に形成される厚さ数mm程度のイオンシースの領域に入ると、強い指向性をもってウエハW側に加速するように引き付けられてウエハWに堆積してCu薄膜が形成される。なお、このときバイアス用高周波電源74から静電チャック66の電極66bに対して印加されるバイアスパワーを調整することによりCuによる成膜とArによるエッチングを調整して適切な成膜を実現することができる。この点について詳細は後述する。
【0061】
<バリア膜成膜装置>
バリア膜成膜装置12a(12b)としてはCuターゲット83を使用する材料に変えるのみで図2の成膜装置と同様の構成の成膜装置を用いてプラズマスパッタにより成膜することができる。また、プラズマスパッタに限定されず、通常のスパッタ、イオンプレーティング等の他のPVDであってもよく、CVD(Chemical Vapor Deposition)やALD(Atomic Layer Deposition)、プラズマを用いたCVDやALDで成膜することもできる。不純物を低減する観点からはPVDが好ましい。
【0062】
<Ru膜成膜装置>
次に、Ruライナー膜を形成するためのRuライナー膜成膜装置14a(14b)について説明する。Ruライナー膜は熱CVDにより好適に形成することができる。図3は、Ru膜成膜装置の一例を示す断面図であり、熱CVDによりRu膜を形成するものである。
【0063】
図3に示すように、このRuライナー膜成膜装置14a(14b)は、例えばアルミニウム等により筒体に形成された処理容器101を有している。処理容器101の内部には、ウエハWを載置する例えばAlN等のセラミックスからなる載置台102が配置されており、この載置台102内にはヒーター103が設けられている。このヒーター103はヒーター電源(図示せず)から給電されることにより発熱する。
【0064】
処理容器101の天壁には、Ru膜を形成するための処理ガスやパージガス等を処理容器101内にシャワー状に導入するためのシャワーヘッド104が載置台102と対向するように設けられている。シャワーヘッド104はその上部にガス導入口105を有し、その内部にガス拡散空間106が形成されており、その底面には多数のガス吐出孔107が形成されている。ガス導入口105にはガス供給配管108が接続されており、ガス供給配管108にはRu膜を形成するための処理ガスやパージガス等を供給するためのガス供給源109が接続されている。また、ガス供給配管108には、ガス流量制御器、バルブ等よりなるガス制御部110が介装されている。Ruを成膜するためのガスとしては、ルテニウムカルボニル(Ru(CO)12)を挙げることができる。このルテニウムカルボニルは熱分解によりRuとなりウエハW上にRu膜を形成することができる。
【0065】
処理容器101の底部には、排気口111が設けられており、この排気口111には排気管112が接続されている。排気管112には圧力調整を行うスロットルバルブ113および真空ポンプ114が接続されており、処理容器101内が真空引き可能となっている。
【0066】
載置台102には、ウエハ搬送用の3本(2本のみ図示)のウエハ支持ピン116が載置台102の表面に対して突没可能に設けられ、これらウエハ支持ピン116は支持板117に固定されている。そして、ウエハ支持ピン116は、エアシリンダ等の駆動機構118によりロッド119を昇降することにより、支持板117を介して昇降される。なお、符号120はベローズである。一方、処理容器101の側壁には、ウエハ搬出入口121が形成されており、ゲートバルブGを開けた状態で第1の真空搬送室11との間でウエハWの搬入出が行われる。
【0067】
このようなRuライナー膜成膜装置14a(14b)においては、ゲートバルブGを開けて、ウエハWを載置台102上に載置した後、ゲートバルブGを閉じ、処理容器101内を真空ポンプ114により排気して処理容器101内を所定の圧力に調整しつつ、ヒーター103より載置台102を介してウエハWを所定温度に加熱した状態で、ガス供給源109からガス供給配管108およびシャワーヘッド104を介して処理容器101内へルテニウムカルボニル(Ru(CO)12)ガス等の処理ガスを導入する。これにより、ウエハW上で処理ガスの反応が進行し、ウエハWの表面にRu膜が形成される。
【0068】
Ru膜の成膜には、ルテニウムカルボニル以外の他の成膜原料、例えば(シクロペンタジエニル)(2,4−ジメチルペンタジエニル)ルテニウム、ビス(シクロペンタジエニル)(2,4−メチルペンタジエニル)ルテニウム、(2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム、ビス(2,4−メチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムのようなルテニウムのペンタジエニル化合物をOガスのような分解ガスとともに用いることができる。またRu膜をPVDで成膜することもできる。ただし、良好なステップカバレッジが得られ、かつ膜の不純物を少なくすることができることからルテニウムカルボニルを用いたCVDで成膜することが好ましい。
【0069】
<第1の実施形態に係るCu配線の形成方法>
次に、本発明の第1の実施形態に係るCu配線の形成方法について図4のフローチャートおよび図5の工程断面図を参照して説明する。
【0070】
本実施形態では、まず、下部構造201(詳細は省略)の上にSiO膜等の層間絶縁膜202を有し、そこに凹部としてトレンチ203が形成されたウエハWを準備する(ステップ1、図5(a))。このようなウエハWとしては、DegasプロセスやPre−Cleanプロセスによって、絶縁膜表面の水分やエッチング/アッシング時の残渣を除去したものであることが好ましい。本実施形態ではこのようなウエハWを図1の成膜システムに搬入し、デガス室5aまたは5bでデガス処理を行う。
【0071】
次に、ウエハWをバリア膜成膜装置12aまたは12bに搬入し、トレンチ203表面を含む全面にCuを遮蔽(バリア)するバリア膜204を成膜する(ステップ2、図5(b))。
【0072】
バリア膜204としては、Cuに対して高いバリア性を有し、低抵抗を有するものが好ましく、Ti膜、TiN膜、Ta膜、TaN膜、Ta/TaNの2層膜を好適に用いることができる。また、TaCN膜、W膜、WN膜、WCN膜、Zr膜、ZrN膜、V膜、VN膜、Nb膜、NbN膜等を用いることができる。Cu配線はトレンチまたはホール内に埋め込むCuの体積が大きくなるほど低抵抗になるので、バリア膜は非常に薄く形成することが好ましく、そのような観点からその厚さは1〜20nmが好ましい。より好ましくは1〜10nmである。バリア膜は、プラズマスパッタにより成膜することができる。また、通常のスパッタ、イオンプレーティング等の他のPVDで成膜することができ、CVDやALD、プラズマを用いたCVDやALDで成膜することもできる。
【0073】
次いで、Ruライナー膜成膜装置14aまたは14bにより、バリア膜204の上にRuライナー膜205を成膜する(ステップ3、図5(c))。Ruライナー膜は、埋め込むCuの体積を大きくして配線を低抵抗にする観点から、例えば1〜5nmと薄く形成することが好ましい。Ruライナー膜は、ルテニウムカルボニル(Ru(CO)12)を成膜原料として用いて上述した図3に示すような成膜装置を用いて熱CVDにより好適に形成することができる。これにより、高純度で非常に薄いRu膜を高ステップカバレッジで成膜することができる。このときの成膜条件は、例えば処理容器内の圧力が1.3〜66.5Paの範囲であり、成膜温度(ウエハ温度)が150〜250℃の範囲である。Ruライナー膜205は、上述したように、ルテニウムカルボニル以外の他の成膜原料、例えば(シクロペンタジエニル)(2,4−ジメチルペンタジエニル)ルテニウム、ビス(シクロペンタジエニル)(2,4−メチルペンタジエニル)ルテニウム、(2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム、ビス(2,4−メチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムのようなルテニウムのペンタジエニル化合物を用いたCVDやPVDで成膜することもできる。
【0074】
次いで、図2に示すiPVDであるプラズマスパッタ装置からなるCu膜成膜装置22aまたは22bを用いて、ウエハWの載置台にバイアスを印加してCuがマイグレーションするようにCu配線となるCu膜206を成膜し、トレンチ203を埋め込む(ステップ4、図5(d))。
【0075】
プラズマスパッタ装置においては、バイアスを印加することによりプラズマによりターゲットから放出されたCuイオンがウエハWに引きこまれ、成膜レートを大きくすることができるが、バイアスパワーが大きくなりすぎるとプラズマ生成用のガスのイオン(例えばArイオン)によるウエハW表面のスパッタ作用(エッチング作用)によりせっかく堆積されたCu膜が削りとられてしまうため、バイアスを印加する場合には、通常、そのパワーをCu膜が削りとられない程度の大きさに制限している。また、従来、このようなPVDを用いた場合には、ステップカバレッジが悪いことが知られており、トレンチやホールの間口を塞ぐピンチオフが生じやすいことから、PVDのみでトレンチやホールを埋め込んでCu配線を形成することは行われていない。
【0076】
これに対し、Cu膜の下地にRuライナー膜を設けることにより、RuはCuに対する濡れ性が高いため、ある程度の温度にウエハWを加熱しつつ、バイアスパワーを調整してCuイオンの成膜作用とプラズマ生成ガスのイオン(Arイオン)によるエッチング作用とを制御することにより、Ruライナー膜上でCuを凝集させずにマイグレーション(流動)させることができ、トレンチやホールの間口を塞ぐ(オーバーハング)ことなくその中にCuを埋めることができることが見出された。これにより、微細なトレンチまたはホールにもボイドを発生させずに確実にCuを埋め込むことができる。また、このようにPVDでCuを埋め込んだ場合には、不純物が少なく高純度となり、また、グレインサイズも大きくなるため、めっきでCuを埋め込んだ場合よりも、低抵抗のCu配線を形成することができる。
【0077】
このようにCu膜を成膜してトレンチまたはホール内にCuを埋め込んだ後のウエハWを、成膜システム1から搬出し、Cuめっき装置に搬送して、そこでウエハWの全面にCuめっき層207を形成する(ステップ5、図5(e))。その後、必要に応じてアニールしてCuのグレンサイズを大きくするとともに、Cuめっき層207を安定させ(ステップ6)、次いでCMP(Chemical Mechanical Polishing)によりウエハW表面を研磨して、Ruライナー膜205、バリア膜204を完全に除去する(ステップ7、図5(f))。これによりトレンチまたはホール内に残存したCu膜206がCu配線として機能する。
【0078】
<第1の実施形態に係るCu配線の形成方法におけるステップ4のCu膜成膜の説明>
次に、上記ステップ4のCu膜の成膜について具体的に説明する。
上述したように、ステップ4のCu膜の成膜においては、図2に示すようなバイアスによりウエハW表面にイオンを引きこみながらプラズマスパッタを行う装置を用いるが、その際のバイアスパワーとCu成膜量との関係は図6の模式図に示すようになる。すなわち、バイアスパワーが上昇することによりCuイオンの引き込み量が大きくなるため、バイアスパワーがある値までは成膜量が増加していくが、その後はプラズマ生成用ガスイオン(例えばArイオン)によるウエハW表面のスパッタ作用(エッチング作用)により成膜量が減少していく。本実施形態では、温度とプラズマ生成用ガスイオンによる作用を利用してCu膜をトレンチまたはビア(ホール)に埋めるため、バイアスパワーは、プラズマ生成用ガスイオンによる作用が存在し、かつ成膜が進行する範囲である図6のAより大きくBより小さい範囲が好ましい。すなわち、Cu成膜量(成膜レート)をT、プラズマ生成用のガスのイオンによるエッチング量(エッチングレート)をTとすると、AはT/T=0であり、BはT/T=1であるが、Ruライナー膜上をCuが移動(マイグレーション)するためには、プラズマ生成用ガスイオン(Arガスイオン)のエネルギーが存在することが好ましいからT/T>0であることが好ましい。ただし、温度が高い場合には、T/T=0でもCuを流動させることができる。一方、成膜が進行しフィールドのエッチングが起こらないためにはT/T<1であることが必要である。
【0079】
このような範囲における成膜のモデルを図7に模式的に説明する。図7の(a)に示すように、Cuイオンとプラズマ生成ガスであるArイオンの存在下でバイアスを印加しつつCu膜の成膜を開始すると、(b)に示すように、トレンチの間口に堆積したCuがArイオンによりエッチングされるとともに、温度とArイオンの作用によりCuがトレンチ内に移動されるため、(c)に示すように、トレンチの間口を塞ぐことなく、Cuがトレンチ内を埋めることができる。
【0080】
次に、ステップ4のCu膜成膜工程の好ましいプロセス条件について説明する。
本実施形態においては、Arイオンのようなプラズマ生成ガスイオンによりCuをマイグレーションさせる必要があることから、通常のプラズマスパッタの場合よりもウエハ温度を高くする必要があり、ウエハ温度は65〜350℃の範囲が好ましい。また、Cu膜成膜時における処理容器内の圧力(プロセス圧力)は、1〜100mTorr(0.133〜13.3Pa)が好ましく、35〜90mTorr(4.66〜12.0Pa)がより好ましい。また、Cuターゲットへの直流電力は4〜12kWであることが好ましく、6〜10kWがより好ましい。
【0081】
また、バイアスパワーは上述したように0≦T/T<1、好ましくは0<T/T<1となるような範囲に設定されるが、プラズマ生成用ガスイオン(Arガスイオン)によるCuの移動性は温度に依存し、成膜温度Tが低いとCuの移動性が低くなる。このため、65≦T(℃)≦350の好ましい範囲において、高温側の200<T(℃)≦350では、0≦T/T<1の範囲でよいが、低温側の65≦T(℃)≦200では、0.02≦T/T<1とすることが好ましい。このときのバイアスパワー密度は200<T(℃)≦350では1.74W/cm(バイアスパワー:1200W)以下、65≦T(℃)≦200では0.15〜1.74W/cm(100〜1200W)が好ましい。より好ましい範囲は、65≦T(℃)≦350において、0.05≦T/T≦0.24であり、より好ましいバイアスパワー密度の範囲は0.38〜0.76W/cm(バイアスパワー:260〜520W)である。
【0082】
また、ステップ4のCu膜成膜の際の成膜速度は、20〜150nm/minが好ましい。具体例としては30nm/minを挙げることができる。
【0083】
図8は、実際に図2の装置でCu膜を形成した際において、横軸に直流電源84からCuターゲット83に供給する直流電力をとり、縦軸に高周波電源74からのバイアスパワーをとって、上述のT/Tの値を等高線で示すものであり、(a)がプロセス圧力90mTの場合、(b)がプロセス圧力35mTの場合である。なお、誘導コイル80に高周波電源81から供給する高周波電力は4kW、CuターゲットとウエハWとの距離は240mmとした。
【0084】
また、図9は、実際に図2の装置でCu膜を形成した際において、横軸にバイアスパワーをとり、縦軸にT/Tをとって、Cuターゲット83への直流電力ごとにこれらの関係を示すグラフであり、(a)がプロセス圧力90mTの場合、(b)がプロセス圧力35mTの場合である。いずれの圧力およびCuターゲット83への直流電力においても、バイアスパワーが130W(バイアスパワー密度:0.19W/cm)ではT/Tが0であり、バイアスパワーを上昇させていくとT/Tが上昇している。
【0085】
次に、幅30nm、深さ200nmのトレンチが形成された層間絶縁膜にTiバリア膜およびRuライナー膜を形成した後、プロセス圧力:90mT、Cuターゲットに供給する直流電力:8kW、誘導コイルに供給する高周波電力:4kW、ターゲットとウエハWとの距離:240mmとし、バイアスパワーをT/T=0となる130W(バイアスパワー密度:0.19W/cm)として、成膜温度を200℃、225℃、250℃、300℃としてCu膜を成膜時間55secで成膜した。その際の走査型電子顕微鏡(SEM)写真を図10に示す。図10に示すように、成膜温度が225℃以上でT/T=0においてCuの埋め込みが可能であることが確認された。
【0086】
次に、幅50nm、深さ200nmのトレンチが形成された層間絶縁膜にTiバリア膜およびRuライナー膜を形成した後、プロセス圧力:90mT、Cuターゲットに供給する直流電力:8kW、誘導コイルに供給する高周波電力:4kW、ターゲットとウエハWとの距離:240mmとし、バイアスパワーをT/T=0となる130W(バイアスパワー密度:0.19W/cm)、およびT/T=0.02となる195W(0.28W/cm)として、成膜温度65℃でCu膜を成膜時間55secで成膜した。その際の走査型電子顕微鏡(SEM)写真を図11に示す。図11に示すように、成膜温度65℃のときはCuマイグレーションに対する温度の効果が少ないため、T/T=0となる130W(0.19W/cm)ではトレンチにCuが埋め込まれないのに対し、T/T=0.02となる195W(0.28W/cm)では埋め込みされることが確認された。
【0087】
次に、幅20〜30nm、深さ200nmのトレンチが形成された層間絶縁膜にTiバリア膜およびRuライナー膜を形成した後、プロセス圧力:90mT、Cuターゲットに供給する直流電力:6kW、誘導コイルに供給する高周波電力:4kW、ターゲットとウエハWとの距離:240mmとし、バイアスパワーを130W(バイアスパワー密度:0.19W/cm)(T/T=0)、260W(0.38W/cm)(T/T=0.05)、390W(0.57W/cm)(T/T=0.14)、520W(0.76W/cm)(T/T=0.24)と変化させて、成膜温度250℃でCu膜を成膜時間55secで成膜した。その際の走査型電子顕微鏡(SEM)写真を図12に示す。図12に示すように0≦T/T≦0.24の範囲でCuの埋め込みが確認されたが、0.05≦T/T≦0.24でより好ましい埋め込み性が得られることが確認された。
【0088】
次に、幅18nm、深さ200nmのトレンチが形成された層間絶縁膜にTiバリア膜を形成し、次いでRuライナー膜を形成し、その後、プロセス圧力:90mT、Cuターゲットに供給する直流電力:6kW、誘導コイルに供給する高周波電力:4kW、ターゲットとウエハWとの距離:240mmという本実施形態の条件でCuを埋め込んだ。その際の、Tiバリア膜のみを形成した状態、Ruライナー膜を形成した状態、Cu膜を5nm、10nm、20nm、30nm成膜した状態の走査型電子顕微鏡(SEM)写真を図13に示す。図13に示すように、本実施形態において、ボイドを発生させずに微細なトレンチ内にCuを埋め込めることが確認された。
【0089】
次に、本発明によって形成したCu配線と、バリア膜上にPVDによりCuシード層を形成した後、CuめっきでCuを埋め込んで形成した従来のCu配線の電気特性を比較した。図14はこれらについて60nm配線における電気特性を評価した結果を示す図である。この図に示すように、本発明により形成したCu配線は、従来よりも配線抵抗が低くなることが確認された。
【0090】
<第2の実施形態に係るCu配線の形成方法>
次に、本発明の第2の実施形態に係るCu配線の形成方法について図15のフローチャートおよび図16の工程断面図を参照して説明する。本実施形態では、トレンチとトレンチの底に形成されたビア(ホール)とを有する凹部が形成されたデュアルダマシン構造を含むウエハに対するCuの埋め込みについて説明する。
【0091】
本実施形態では、まず、下部配線301の上の層間絶縁膜302にトレンチ303とトレンチ303の底に形成された下部配線301への接続配線が形成されるビア304とを有する凹部が形成されたデュアルダマシン構造を含むウエハを準備する(ステップ11、図16(a),(b))。なお、図16(a)はトレンチ303およびビア304の平面図であり、図16(b)は、図16(a)のX−X′線およびY−Y′線による断面図である。以降の工程は、図16(b)と同様のX−X′線およびY−Y′線による断面図16(c)〜(f)に基づいて説明する。
【0092】
第1の実施形態と同様、ウエハWをデガス室5aまたは5bでデガス処理を行った後、第1の実施形態と同様にCuを遮蔽(バリア)するバリア膜305を成膜し(ステップ12、図16(c))、さらにバリア膜305の上にRuライナー膜306を成膜する(ステップ13、図165(d))。
【0093】
次いで、図2に示すiPVDであるプラズマスパッタ装置からなるCu膜成膜装置22aまたは22bを用いて、ウエハWの載置台にバイアスを印加してCuがマイグレーションするようにCu配線となるCu膜を成膜し、ビア304およびトレンチ303を埋め込むが、本実施形態では、ビア304の埋め込みが完了するまでの第1段階では、相対的に低速でCu膜307を成膜し(ステップ14、図16(e))、ビア304の埋め込みが完了後、トレンチの埋め込みが完了するまでの第2段階では、相対的に高速でCu膜を成膜する(ステップ15、図16(f))。すなわち、ビアが埋め込まれた後の第2段階よりもビアの埋め込みが行われている第1段階の成膜速度(堆積速度)のほうが小さくなるようにする。
【0094】
このように2段階に成膜する理由は以下の通りである。
トレンチの底にビアが存在しない場合には、i−PVDによりCuが上記第1の実施形態の条件でCuがマイグレーションするようにCuを埋め込めばよく、フィールド部からトレンチ303の底部にCuが常に流れ込んで、トレンチ303の底部へのCuの堆積速度が大きい条件に設定することができる。しかし、本実施形態のようにトレンチ303の底にビア304が形成されたデュアルダマシン構造の場合には堆積速度が大きいと、図17(a)に示すように成膜初期には問題がないものの、成膜が進行すると図17(b)に示すように、トレンチ303の底部に堆積されたCu膜307の流動性が悪くなって、トレンチ303の底部でオーバーハング308が形成されるおそれがある。このようにオーバーハング308が形成されると、やがて図17(c)のようにピンチオフを起こしてボイド309が形成されてしまう。
【0095】
そこで、本実施形態では、Cu成膜の第1段階として、ビア304の埋め込みが完了するまでは、トレンチ303の底部でのCuの流動性が良好になるように相対的に低速でCu膜307を成膜する。これにより、図18(a),(b)に示すように、トレンチ303の底部でオーバーハングが生じ難くなり、ボイドの形成が防止される。つまり、第1段階ではトレンチ303の底部でオーバーハングが生じない程度のCuの流動性が確保されるような成膜速度でCuを成膜する。一方、ビア304の埋め込みが完了した後は、第2段階として、相対的に高速な成膜速度でトレンチ303の残りの部分の埋め込みを行う。すなわち、ビア304の埋め込みが完了した後は、トレンチ303の底部でのオーバーハングは生じないから第1の実施形態のトレンチ埋め込みの際と同様、堆積速度が大きい条件に設定しても、図18(c)に示すように、ボイドが形成されることはない。
【0096】
Cu膜の成膜速度は、直流電源84によりCuターゲット83に印加するパワーを変化させることにより制御することができる。つまり、Cuターゲット83に印加するパワーが大きいほどCuのスパッタ量が増加し、Cuの堆積速度(つまり成膜速度)が大きくなる。図19は、図2の成膜装置において、処理容器内の圧力:90mTorr(12.0Pa)、ターゲットとウエハWとの距離:240mm、バイアスパワー:0Wとしたときの、直流電源84のパワーとCu堆積速度との関係を示すものであるが、直流電源84のパワーにほぼ比例してCu堆積速度が上昇していることがわかる。
【0097】
上記Cu膜成膜の際に、第1段階のビア埋め込み完了までのCu堆積速度(Cu膜成膜速度)は5〜20nm/min、例えば12nm/minが好ましい。また、第2段階のビア埋め込み完了してからトレンチを埋め込むまでの速度(Cu膜成膜速度)は20〜150nm/min、例えば30nm/minが好ましい。
【0098】
このように、ステップ15の第2段階のCu成膜を行った後、第1の実施形態と同様にしてCuメッキ層の形成(ステップ16)、アニール(ステップ17)、CMPによる全面研磨(ステップ18)を行い、Cu配線を形成する。
【0099】
なお、このような第2の実施形態に係る方法は、トレンチ303の幅が10〜100nm、トレンチのアスペクト比が2〜6、ビアのアスペクト比が1.5〜4の範囲の凹部を有するデュアルダマシン構造に対して有効である。具体例としては、トレンチ幅が19nmでトレンチのアスペクト比が3、ビアのアスペクト比が2の凹部、およびトレンチ幅が30nmでトレンチのアスペクト比が3、ビアのアスペクト比が2の凹部を挙げることができる。
【0100】
次に、幅30nmでトレンチのアスペクト比が3、ビアのアスペクト比が2の凹部を有するデュアルダマシン構造を含むウエハにTiバリア膜およびRuライナー膜を形成した後、プロセス圧力:90mT、Cuターゲットに供給する直流電力:4kW、誘導コイルに供給する高周波電力:4kW、バイアスパワー:200W、ターゲットとウエハWとの距離:240mm、温度:300℃の条件で、第1段階のCu膜の成膜を行い、ビアの埋め込みが完了した後、プロセス圧力:90mT、Cuターゲットに供給する直流電力:6kW、誘導コイルに供給する高周波電力:4kW、バイアスパワー:390W、ターゲットとウエハWとの距離:240mm、温度:300℃の条件で、第2段階のCu膜の成膜をトレンチの埋め込みが完了するまで行った。第1段階から第2段階への条件の切り替えは、予め把握したビア埋め込み完了までの時間経過後に行った。なお、このときの第1段階の成膜速度は12nm/min、第2段階の成膜速度は30nm/minであった。
【0101】
このようにした2段階の成膜を行った後、断面観察を行った結果、ビアの埋め込み部分にボイドが形成されることなくデュアルダマシン構造の埋め込みが達成されていた。
【0102】
<他の適用>
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、Cuの埋め込みにICP型プラズマスパッタ装置を用いた例について説明したが、これに限らず他のタイプのプラズマスパッタ装置でもよく、また、Cuイオンとプラズマガス生成イオンの引き込みを調整することができれば他のタイプのPVD装置でもよい。
【0103】
また、成膜システムとしては、図1のようなタイプに限らず、一つの搬送装置に全ての成膜装置が接続されているタイプであってもよい。また、図1のようなマルチチャンバタイプのシステムではなく、別個に設けられた装置によりバリア膜、Ruライナー膜、Cu膜を成膜するようにしてもよい。
【0104】
さらに、上記実施形態では、トレンチを有するウエハおよびトレンチおよびその底部に形成されたビアを有するデュアルダマシン構造を含むウエハに本発明の方法を適用した例を示したが、これらに限らずホールのみを有する場合等、他の構造の凹部でも本発明を適用できることはいうまでもない。また、上記実施形態では、被処理基板として半導体ウエハを例にとって説明したが、半導体ウエハにはシリコンのみならず、GaAs、SiC、GaNなどの化合物半導体も含まれ、さらに、半導体ウエハに限定されず、液晶表示装置等のFPD(フラットパネルディスプレイ)に用いるガラス基板や、セラミック基板等にも本発明を適用することができることはもちろんである。
【符号の説明】
【0105】
1;成膜システム
12a,12b;バリア膜成膜装置
14a,14b;Ruライナー膜成膜装置
22a,22b;Cu膜成膜装置
51;処理容器
56;真空ポンプ
59;ガス供給源
63;載置台
65;冷却ジャケット
74;バイアス用高周波電源
78;プラズマ発生源
80;コイル
83;Cuターゲット
84;直流電源
85;磁石
87;抵抗ヒーター
201;下部構造
202;層間絶縁膜
203;トレンチ
204;バリア膜
205;Ruライナー膜
206;Cu膜
301;下部配線
302;層間絶縁膜
303;トレンチ
304;ビア
305;バリア膜
306;Ruライナー膜
307;Cu膜
W;半導体ウエハ(被処理基板)


【特許請求の範囲】
【請求項1】
基板に形成された凹部内にCuを埋め込んでCu配線を形成するCu配線の形成方法であって、
少なくとも前記凹部の表面にバリア膜を形成する工程と、
前記バリア膜の上にRu膜を形成する工程と、
前記Ru膜の上に、加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を形成して前記凹部内にCuを埋め込む工程と
を有することを特徴とするCu配線の形成方法。
【請求項2】
前記凹部はトレンチまたはホールであることを特徴とする請求項1に記載のCu配線の形成方法。
【請求項3】
基板に形成された凹部内にCuを埋め込んでCu配線を形成するCu配線の形成方法であって、
少なくとも前記凹部の表面にバリア膜を形成する工程と、
前記バリア膜の上にRu膜を形成する工程と、
前記Ru膜の上に、加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を形成して前記凹部内にCuを埋め込む工程と
を有し、
前記凹部は、トレンチと該トレンチの底部に形成されたホールとを有し、
前記Cu膜を形成して前記凹部内にCuを埋め込む工程は、前記ホールへのCuの埋め込みが完了するまでの第1段階と、前記ホールの埋め込みが完了後、前記トレンチの埋め込みが完了するまでの第2段階とを有し、
前記第1段階の成膜速度は前記第2段階の成膜速度よりも小さいことを特徴とするCu配線の形成方法。
【請求項4】
前記第1段階の成膜速度は、トレンチの底部でオーバーハングが生じない程度のCuの流動性が確保される成膜速度であることを特徴とする請求項3に記載のCu配線の形成方法。
【請求項5】
前記第1段階の成膜速度は5〜20nm/minであり、前記第2段階の成膜速度は20〜150nm/minであることを特徴とする請求項3または請求項4に記載のCu配線の形成方法。
【請求項6】
前記Cuを埋め込むためのCu膜は、基板が収容された処理容器内にプラズマ生成ガスによりプラズマを生成し、CuターゲットからCuを放出させて、Cuを前記プラズマ中でイオン化させ、前記基板にバイアス電力を印加してCuイオンを基板上に引きこむことにより形成されることを特徴とする請求項1から請求項5のいずれか1項に記載のCu配線の形成方法。
【請求項7】
前記Cu膜を形成して前記凹部内にCuを埋め込む工程は、基板温度を65℃以上350℃以下にして行われることを特徴とする請求項6に記載のCu配線の形成方法。
【請求項8】
前記Cu膜を形成して前記凹部内にCuを埋め込む工程は、基板温度を200℃超350℃以下にし、かつ前記Cuイオンによる基板へのCu成膜量Tと前記プラズマ生成ガスのイオンによるCu膜のエッチング量Tが0≦T/T<1の関係を満たすように前記バイアス電力の大きさを調整して行われることを特徴とする請求項6に記載のCu配線の形成方法。
【請求項9】
前記Cu膜を形成して前記凹部内にCuを埋め込む工程は、基板温度を65℃以上200℃以下にし、かつ前記Cuイオンによる基板へのCu成膜量Tと前記プラズマ生成ガスのイオンによるCu膜のエッチング量Tが0.02≦T/T<1の関係を満たすように前記バイアス電力の大きさを調整して行われることを特徴とする請求項6に記載のCu配線の形成方法。
【請求項10】
前記バイアス電力の大きさは、0.05≦T/T≦0.24を満たすように調整されることを特徴とする請求項8または請求項9に記載のCu配線の形成方法。
【請求項11】
前記バリア膜は、Ti膜、TiN膜、Ta膜、TaN膜、Ta/TaNの2層膜、TaCN膜、W膜、WN膜、WCN膜、Zr膜、ZrN膜、V膜、VN膜、Nb膜、NbN膜からなる群から選択されるものであることを特徴とする請求項1から請求項10のいずれか1項に記載のCu配線の形成方法。
【請求項12】
前記バリア膜は、PVDにより形成されることを特徴とする請求項1から請求項11のいずれか1項に記載のCu配線の形成方法。
【請求項13】
前記Ru膜は、CVDにより形成されることを特徴とする請求項1から請求項12のいずれか1項に記載のCu配線の形成方法。
【請求項14】
前記Ru膜は、成膜原料としてルテニウムカルボニルを用いたCVDにより形成されることを特徴とする請求項13に記載のCu配線の形成方法。
【請求項15】
基板に形成された凹部を有する所定の層にバリア膜およびRu膜を介して前記凹部内にCuを埋め込むためのCu膜を成膜するCu膜の成膜方法であって、
前記Ru膜の上に加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を成膜して、前記凹部内にCuを埋め込むことを特徴とするCu膜の成膜方法。
【請求項16】
前記凹部はトレンチまたはホールであることを特徴とする請求項15に記載のCu膜の成膜方法。
【請求項17】
基板に形成された凹部を有する所定の層にバリア膜およびRu膜を介して前記凹部内にCuを埋め込むためのCu膜を成膜するCu膜の成膜方法であって、
前記凹部は、トレンチと該トレンチの底部に形成されたホールとを有し、前記Ru膜の上に加熱しつつ、PVDによりCuがマイグレーションするようにCu膜を成膜して、前記凹部内にCuを埋め込み、
前記Cu膜の成膜は、前記ホールへのCuの埋め込みが完了するまでの第1段階と、前記ホールの埋め込みが完了後、前記トレンチの埋め込みが完了するまでの第2段階とを有し、
前記第1段階の成膜速度は前記第2段階の成膜速度よりも小さいことを特徴とするCu膜の成膜方法。
【請求項18】
前記第1段階の成膜速度は、トレンチの底部でオーバーハングが生じない程度のCuの流動性が確保される成膜速度であることを特徴とする請求項17に記載のCu膜の成膜方法。
【請求項19】
前記第1段階の成膜速度は5〜20nm/minであり、前記第2段階の成膜速度は20〜150nm/minであることを特徴とする請求項17または請求項18に記載のCu膜の成膜方法。
【請求項20】
基板が収容された処理容器内にプラズマ生成ガスによりプラズマを生成し、CuターゲットからCuを放出させて、Cuを前記プラズマ中でイオン化させ、前記基板にバイアス電力を印加してCuイオンを基板上に引きこむことによりCu膜を成膜して前記凹部内にCuを埋め込むことを特徴とする請求項15から請求項19のいずれか1項に記載のCu膜の成膜方法。
【請求項21】
基板温度を65℃以上350℃以下にすることを特徴とする請求項20に記載のCu膜の成膜方法。
【請求項22】
基板温度を200℃超350℃以下にし、かつ前記Cuイオンによる基板へのCu成膜量Tと前記プラズマ生成ガスのイオンによるCu膜のエッチング量Tが0≦T/T<1の関係を満たすように前記バイアス電力の大きさを調整することを特徴とする請求項20に記載のCu膜の成膜方法。
【請求項23】
基板温度を65℃以上200℃以下にし、かつ前記Cuイオンによる基板へのCu成膜量Tと前記プラズマ生成ガスのイオンによるCu膜のエッチング量Tが0.02≦T/T<1の関係を満たすように前記バイアス電力の大きさを調整することを特徴とする請求項20に記載のCu膜の成膜方法。
【請求項24】
前記バイアス電力の大きさは、0.05≦T/T≦0.24を満たすように調整されることを特徴とする請求項22または請求項23に記載のCu膜の成膜方法。
【請求項25】
基板に形成された凹部内にCuを埋め込んでCu配線を形成するための成膜システムであって、
前記凹部の表面にバリア膜を形成するバリア膜成膜装置と、
前記バリア膜の上にRu膜を形成するRu膜成膜装置と、
前記Ru膜の上に、PVDによりCu膜を形成して前記凹部にCuを埋め込むCu膜成膜装置と、
前記Cu膜成膜装置を、前記基板を加熱しつつ、CuがマイグレーションするようにCu膜を形成して前記凹部にCuを埋め込むように制御する制御部と
を有することを特徴とする成膜システム。
【請求項26】
前記バリア膜成膜装置と、前記Ru膜成膜装置と、前記Cu膜成膜装置との間を真空を破らずに搬送する搬送手段をさらに有することを特徴とする請求項25に記載の成膜システム。
【請求項27】
コンピュータ上で動作し、成膜システムを制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、請求項1から請求項14のいずれかのCu配線の形成方法が行われるように、コンピュータに前記成膜システムを制御させることを特徴とする記憶媒体。
【請求項28】
コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、請求項15から請求項24のいずれかのCu膜の成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする記憶媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2012−169590(P2012−169590A)
【公開日】平成24年9月6日(2012.9.6)
【国際特許分類】
【出願番号】特願2011−251520(P2011−251520)
【出願日】平成23年11月17日(2011.11.17)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 平成22年11月1日 インターネットアドレス「https://www.sematech.org/8964」に発表
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】