説明

GaN系発光ダイオード

【課題】m面GaN基板の裏面に形成されたn側電極を有し、素子内を流れる電流の経路を制御することにより発光効率を改善したGaN系発光ダイオードを提供する。
【解決手段】GaN系発光ダイオードは、n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に形成されたn側電極と、該エピ層の上面に形成された透光性のp側オーミック電極と、該p側オーミック電極上の一部に形成されたp側電極パッドとを有する。前記基板の裏面のうち前記n側電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、前記基板の裏面への前記p側電極パッドの正射影の全部または一部が前記高接触抵抗領域に含まれる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はGaN系半導体を用いて形成された発光構造を有するGaN系発光ダイオードに関し、とりわけ、エピタキシャル成長により形成されたpn接合型の発光構造をm面GaN基板上に有するGaN系発光ダイオードに関する。GaN系半導体は、一般式AlInGa1−a−bN(0≦a≦1、0≦b≦1、0≦a+b≦1)で表される化合物半導体であり、窒化物半導体、窒化物系化合物半導体などとも呼ばれる。
【背景技術】
【0002】
GaN系半導体をエピタキシャル成長させることにより形成されたpn接合型の発光構造をm面GaN基板上に有する半導体発光素子が公知である(非特許文献1〜4)。
【0003】
非特許文献1〜3に開示されているのは発光ダイオード(LED)であり、いずれの素子においても、m面GaN基板上にエピタキシャル成長したn型のSiドープGaN層にn側オーミック電極が形成されている。非特許文献4に開示されているのはレーザダイオード(LD)であり、この素子ではm面GaN基板の裏面にn側オーミック電極が形成されている。このレーザダイオードの閾値電流はCW駆動時で36mA、パルス駆動時で28mAであり、閾値電圧は約7〜8Vとなっている。
【0004】
GaN基板上に発光構造を形成した発光素子においては、GaN基板の裏面に良好なn側オーミック電極を形成することが難しいといわれている(特許文献1〜6)。そこで、特許文献2に記載された方法では、GaN基板の裏面を粒径10μm以上の研磨剤で研磨して粗くすることにより、該裏面上に形成するn側オーミック電極の接触抵抗の低減が図られている。また、特許文献3に記載された方法では、同じ目的のために、GaN基板の裏面をウェットエッチングまたはドライエッチングで粗くしている。一方、特許文献4によれば、GaN基板の厚さを落とすためにその裏面をグラインディング、ラッピングまたはポリッシングしたときにダメージ層が形成され、これが良好なオーミック電極の形成を阻害するとのことである。そこで、該特許文献4に記載の方法では、研磨加工後のGaN基板の裏面をドライエッチングまたはウェットエッチングで削っている。しかし、特許文献5には、ウェットエッチングではこの目的は達成できなかったと記載されている。特許文献6に記載された方法では、GaN基板の裏面をドライエッチングして、機械研磨により発生した結晶欠陥を含む部分を削り取ることにより、GaN基板とn側オーミック電極との接触抵抗の低減が図られている。なお、これら特許文献1〜6に記載された知見や発明は、基本的にはc面GaN基板に関するものである。
【0005】
金属ワイヤ、金属バンプまたはハンダのような給電部材が接合される部品として発光ダイオードに必須なのが、素子表面に金属材料を用いて形成される電極パッドである。電極パッドは光透過性を有さないので、発光構造を流れる電流が光取出し方向から見て電極パッドの影となる部位に集中する発光ダイオードは、発光効率の低いものとなる。なぜなら、この部位で発生する光は電極パッドによる遮蔽と吸収を受けるので、素子外部に効率的に取り出せないからである。そこで、電流がこの部位に集中しないように、電極パッドと発光構造の間に電流ブロック構造として高抵抗膜(絶縁膜)または高抵抗領域を設けて、素子内を流れる電流の経路を制御することが行われている(特許文献7〜9)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平11−340571号公報
【特許文献2】特開2002−16312号公報
【特許文献3】特開2004−71657号公報
【特許文献4】特開2003−51614号公報
【特許文献5】特開2003−347660号公報
【特許文献6】特開2004−6718号公報
【特許文献7】特開平1−151274号公報
【特許文献8】特開平7−193279号公報
【特許文献9】特開10−229219号公報
【非特許文献】
【0007】
【非特許文献1】Kuniyoshi Okamoto et al., JapaneseJournal of Applied Physics, Vol. 45, No. 45, 2006, pp. L1197-L1199
【非特許文献2】Mathew C. Schmidt et al., JapaneseJournal of Applied Physics, Vol. 46, No. 7, 2007, pp. L126-L128
【非特許文献3】Shih-Pang Chang et al., Journal ofThe Electrochemical Society, 157 (5) H501-H503 (2010)
【非特許文献4】Kuniyoshi Okamoto et al., JapaneseJournal of Applied Physics, Vol. 46, No. 9, 2007, pp. L187-L189
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明者は、m面GaN基板の裏面に低接触抵抗のn側電極を形成した発光ダイオードを得ることに成功するとともに、m面GaN基板の裏面に異なる処理を行うことによって、該裏面に形成する電極の接触抵抗を変化させ得ることを見出した。
【0009】
本発明はこの知見に基づきなされたものであり、m面GaN基板の裏面に形成されたn側電極を有し、素子内を流れる電流の経路を制御することにより発光効率を改善したGaN系発光ダイオードを提供することを主たる目的とする。
【課題を解決するための手段】
【0010】
本発明によれば以下のGaN系発光ダイオードが提供される。
(1)n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に形成されたn側電極と、該エピ層の上面に形成された透光性のp側オーミック電極と、該p側オーミック電極上の一部に形成されたp側電極パッドとを有し、
前記基板の裏面のうち前記n側電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、
前記基板の裏面への前記p側電極パッドの正射影の全部または一部が前記高接触抵抗領域に含まれる、GaN系発光ダイオード。
(2)前記p側オーミック電極上に、前記p側電極パッドに接続された補助電極が形成されており、前記基板の裏面への前記補助電極の正射影の全部または一部が前記高接触抵抗領域に含まれない、前記(1)のGaN系発光ダイオード。
(3)n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に形成された透光性のn側オーミック電極と、該n側オーミック電極上の一部に形成されたn側電極パッドと、該エピ層の上面に形成されたp側電極とを有し、
前記基板の裏面のうち前記n側オーミック電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、
前記基板の裏面への前記n側電極パッドの正射影の全部または一部が前記高接触抵抗領域に含まれる、GaN系発光ダイオード。
(4)前記n側オーミック電極上に、前記n側電極パッドに接続された補助電極が形成されており、前記基板の裏面への前記補助電極の正射影の全部または一部が前記高接触抵抗領域に含まれない、前記(3)のGaN系発光ダイオード。
(5)n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に部分的に形成されたn側電極と、該エピ層の上面に形成されたp側電極とを有し、
前記n側電極は、パッド部と、該パッド部に接続された補助部とを有し、
基板の裏面のうち前記n側電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、
前記基板の裏面への前記パッド部の正射影の全部または一部が前記高接触抵抗領域に含まれる、GaN系発光ダイオード。
(6)前記基板の裏面への前記補助部の正射影の全部または一部が前記高接触抵抗領域に含まれない、前記(5)のGaN系発光ダイオード。
(7)前記基板のキャリア濃度が1017cm−3である、前記(1)〜(6)のいずれかのGaN系発光ダイオード。
【発明の効果】
【0011】
本発明の実施形態に係る上記のGaN系発光ダイオードでは、素子内を流れる電流の経路を制御することにより、n側電極とp側電極の少なくともいずれかに含まれる電極パッドによる光の遮蔽または吸収を抑制することができる。また、素子内を流れる電流の経路を制御し、発光構造を流れる電流の密度を均一化することにより、ドループ現象による発光効率の低下を抑制することができる。
【図面の簡単な説明】
【0012】
【図1】本発明者等が試作したGaN系発光ダイオードの構造を示す模式図であり、図1(a)は上面図、図1(b)は図1(a)のX−X線の位置における断面図である。
【図2】本発明の実施形態に係るGaN発光ダイオードの構造を模式的に示す図面であり、図2(a)はエピ層側から見た平面図、図2(b)は図2(a)のX−X線の位置における断面図である。
【図3】本発明の実施形態に係るGaN発光ダイオードの構造を模式的に示す図面であり、図3(a)はエピ層側から見た平面図、図3(b)は図3(a)のX−X線の位置における断面図である。
【図4】本発明の実施形態に係るGaN発光ダイオードの構造を模式的に示す図面であり、図4(a)はエピ層側から見た平面図、図4(b)は図4(a)のX−X線の位置における断面図である。
【図5】本発明の実施形態に係るGaN発光ダイオードの構造を模式的に示す図面であり、図5(a)は基板側から見た平面図、図5(b)は図5(a)のX−X線の位置における断面図である。
【図6】本発明の実施形態に係るGaN発光ダイオードの構造を模式的に示す図面であり、図6(a)は基板側から見た平面図、図6(b)は図6(a)のX−X線の位置における断面図である。
【図7】本発明の実施形態に係るGaN発光ダイオードの構造を模式的に示す図面であり、図7(a)は基板側から見た平面図、図7(b)は図7(a)のX−X線の位置における断面図である。
【発明を実施するための形態】
【0013】
(実施形態1)
実施形態1に係るGaN系発光ダイオードの構造を図2に模式的に示す。GaN系発光ダイオード100は基板110と、その上にエピタキシャル成長したGaN系半導体からなるエピ層120とを有している。図2(a)はGaN系発光ダイオード100をエピ層120側から見た平面図であり、図2(b)は図2(a)のX−X線の位置における断面図である。
【0014】
基板110はn型導電性のm面GaN基板である。エピ層120はpn接合を構成するn型層121とp型層123を含んでいる。ダブルヘテロ構造が形成されるように、n型層121とp型層123との間には活性層122が設けられている。基板110の裏面にはオーミック電極と電極パッドを兼用するn側電極E100が設けられ、エピ層120上には、透光性電極であるp側オーミック電極E201が設けられている。n側電極E100と、p側オーミック電極E201上の一部に形成されたp側電極パッドE202とを通してエピ層120に順方向電圧を印加することにより、活性層122で発光が生じる。この光は、p側オーミック電極E201を透過してGaN系発光ダイオードの外部に放出される。また、この光の一部は、基板110の端面およびエピ層120の端面からも放出される。
【0015】
n側電極E100は好ましくは積層構造とされる。その場合、基板110と接触する部分はAl、Ti、Cr、V、W、ITOのような、n型GaN系半導体とオーミック接触を形成する材料を用いて形成し、その他部分はAu、Al、Cu、Agのような導電性の高い金属を用いて形成する。
【0016】
p側オーミック電極E201は、ITOのような透明導電性酸化物(TCO;Transparent Conductive Oxide)を用いて形成される。p側オーミック電極E201は、p型層123の上面の全体を覆うように形成することが好ましい。p側電極パッドE202は金属を用いて形成され、好ましくは積層構造とされる。p側電極パッドE202を積層構造とする場合、p側オーミック電極E201と接する部分はCr、Ti、Ni、Pt、Rhのような、TCOとの密着性に優れた金属で形成し、その他の部分はAu、Al、Cu、Agのような導電性の高い金属を用いて形成する。TCOで形成されるp側オーミック電極E201の厚さは好ましくは0.1μm〜0.5μmであり、金属で形成されるp側電極パッドE202の厚さは好ましくは0.5μm〜5μmである。
【0017】
n側電極E100は基板110の裏面を全面的に覆っている。その基板110の裏面には、n側電極E100との接触抵抗が相対的に低い低接触抵抗領域112aと、該接触抵抗が相対的に高い高接触抵抗領域112bとが存在している。低接触抵抗領域112aはポリッシング仕上げされている。すなわち、n側電極E100を形成する前に低接触抵抗領域112aに行われた最後の加工(洗浄は含まない)は、ポリッシング加工である。一方、高接触抵抗領域112bはドライエッチング仕上げされている。すなわち、n側電極E100を形成する前に高接触抵抗領域112bに行われた最後の加工は、反応性イオンエッチング(RIE)のようなドライエッチング加工である。
【0018】
本発明者等が実験的に確認したところによれば、n型導電性のm面GaN基板を、酸性のCMPスラリーを用いて、0.5μm/h以下という低いポリッシングレートでポリッシング加工することにより得られる表面(m面)には、低接触抵抗の電極を形成することができる。一方、ポリッシング加工後に更にドライエッチング加工を施したm面GaN基板の表面に形成した電極は、より高い接触抵抗を示す。
【0019】
高接触抵抗領域112bは、基板110の裏面へのp側電極パッドE202の正射影の少なくとも一部を含んでいればよいが、好ましくは全部を含むように形成する。この構成によって、基板110およびエピ層120の内部を流れる電流が、p側電極パッドE202とn側電極E100とを最短距離で結ぶ経路(図2(b)中に矢印で示す経路)に集中することが防止される。その結果として、この領域に電流が集中した場合と比べて、活性層122で発生する光がp側電極パッドE202により受ける遮蔽および吸収が低減される。加えて、活性層122を横切って流れる電流の密度がより均一となるので、ドループ現象(GaN系発光ダイオードに特有の、電流密度が高くなるにつれて発光効率が低下する現象)による発光効率低下が抑制される。
【0020】
(実施形態2)
実施形態2に係るGaN系発光ダイオードの構造を図3に模式的に示す。図3では、実施形態1のGaN系発光ダイオードと共通する構成要素については同一の符号を付している。図3(a)はGaN系発光ダイオード100をエピ層120側から見た平面図であり、図3(b)は図3(a)のX−X線の位置における断面図である。
【0021】
図3に示すGaN系発光ダイオード100では、p側電極パッドE202に4つの補助電極E203が接続されている。したがって、金属ワイヤなどからp側電極パッドE202に供給される電流は、ライン状の補助電極E203によって横方向(エピ層120の厚さ方向に直交する方向)に拡げられたうえ、p側オーミック電極E201に流れることになる。
【0022】
基板110の裏面のうち、n側電極E100に覆われた領域には、高接触抵抗領域112bがp側電極パッドE202の正射影の少なくとも一部、好ましくは全部を含むように形成されている。従って、基板110およびエピ層120の内部を流れる電流が、p側電極パッドE202とn側電極E100とを最短距離で結ぶ経路に集中することが防止される。更に、p側電極パッドE202に補助電極E203が接続されているので、エピ層120内を流れる電流はp側電極パッドE202から横方向に十分に離れた領域まで広げられる。
【0023】
図3のGaN系発光ダイオード100では、補助電極E203の基板110の裏面への正射影が高接触抵抗領域112bに含まれていない。従って、補助電極E203からは直下の方向にも電流が流れるが、補助電極E203はp側電極パッドE202と異なり細長く形成されているので、その直下で起こる発光に及ぼす影響(遮蔽および吸収)は比較的小さい。一実施形態では、補助電極E203の基板110の裏面への正射影の全部または一部を含むように、高接触抵抗領域112bを形成することもできる。
【0024】
(実施形態3)
実施形態3に係るGaN系発光ダイオードの構造を図4に模式的に示す。図4では、実施形態1のGaN系発光ダイオードと共通する構成要素については同一の符号を付している。図4(a)はGaN系発光ダイオード100をエピ層120側から見た平面図であり、図4(b)は図4(a)のX−X線の位置における断面図である。
【0025】
図4に示すGaN系発光ダイオード100では、エピ層120とp側オーミック電極E201との間の、p側パッド電極E100の直下の位置に、絶縁膜Z100が形成されている。基板110の裏面に設けられた高接触抵抗領域112bと絶縁膜Z100という2つの電流ブロック構造が設けられることにより、基板110およびエピ層120の内部を流れる電流がp側電極パッドE202とn側電極E100とを最短距離で結ぶ経路に集中することが、効果的に防止される。
【0026】
(実施形態4)
実施形態4に係るGaN系発光ダイオードの構造を図5に模式的に示す。図5では、実施形態1のGaN系発光ダイオードと共通する構成要素については同一の符号を付している。図5(a)はGaN系発光ダイオード100を基板110側から見た平面図であり、図5(b)は図5(a)のX−X線の位置における断面図である。
【0027】
図5に示すGaN系発光ダイオード100では、基板110の裏面に透光性電極であるn側オーミック電極E101が設けられ、エピ層120上にオーミック電極と電極パッドを兼用するp側電極E200が設けられている。n側オーミック電極E101上の一部に形成されたn側電極パッドE102と、p側電極E200とを通してエピ層120に順方向電圧を印加することにより、活性層122で発光が生じる。この光は、n側オーミック電極E101を透過してGaN系発光ダイオードの外部に放出される。また、この光の一部は、基板110の端面およびエピ層120の端面からも放出される。
【0028】
n側オーミック電極E101は、ITOのような透明導電性酸化物(TCO;Transparent Conductive Oxide)を用いて形成される。n側電極パッドE102は金属を用いて形成され、好ましくは積層構造とされる。n側電極パッドE102を積層構造とする場合、n側オーミック電極E201と接する部分はCr、Ti、Ni、Pt、Rhのような、TCOとの密着性に優れた金属で形成し、その他の部分はAu、Al、Cu、Agのような導電性の高い金属を用いて形成する。TCOで形成されるn側オーミック電極E101の厚さは好ましくは0.1μm〜0.5μmであり、金属で形成されるn側電極パッドE102の厚さは好ましくは0.5μm〜5μmである。
【0029】
p側電極E200は好ましくは積層構造とされる。その場合、p型層123と接触する部分はNi、Au、Pt、Pd、Co、ITOのような、p型GaN系半導体とオーミック接触を形成する材料を用いて形成し、その他の部分はAu、Al、Cu、Agのような導電性の高い金属を用いて形成する。p側電極E200は、p型層123の上面の全体を覆うように形成することが好ましい。
【0030】
n側オーミック電極E101は基板110の裏面を全面的に覆っている。その基板110の裏面には、n側オーミック電極E101との接触抵抗が相対的に低い低接触抵抗領域112aと、該接触抵抗が相対的に高い高接触抵抗領域112bとが存在している。低接触抵抗領域112aはポリッシング仕上げされた領域であり、高接触抵抗領域112bはドライエッチング仕上げされた領域である。
【0031】
高接触抵抗領域112bはn側電極パッドE102の直下に設けられる。高接触抵抗領域112bは、基板110の裏面へのn側電極パッドE102の正射影の少なくとも一部を含んでいればよいが、好ましくは全部を含むように形成する。この構成によって、基板110およびエピ層120の内部を流れる電流が、p側電極E200とn側電極パッドE102とを最短距離で結ぶ経路(図6(b)中に矢印で示す経路)に集中することが防止される。その結果として、この領域に電流が集中した場合と比べて、活性層122で発生する光がn側電極パッドE102により受ける遮蔽および吸収が低減される。加えて、活性層122を横切って流れる電流の密度がより均一となるので、ドループ現象(GaN系発光ダイオードに特有の、電流密度が高くなるにつれて発光効率が低下する現象)による発光効率低下が抑制される。
【0032】
(実施形態5)
実施形態5に係るGaN系発光ダイオードの構造を図6に模式的に示す。図6では、実施形態1のGaN系発光ダイオードと共通する構成要素については同一の符号を付している。図6(a)はGaN系発光ダイオード100を基板110側から見た平面図であり、図6(b)は図6(a)のX−X線の位置における断面図である。
【0033】
図6に示すGaN系発光ダイオード100では、n側電極パッドE102に4つの補助電極E103が接続されている。したがって、金属ワイヤなどからn側電極パッドE102に供給される電流は、ライン状の補助電極E103によって横方向(基板層110の厚さ方向に直交する方向)に拡げられたうえ、n側オーミック電極E101に流れることになる。
【0034】
基板110の裏面のうち、n側オーミック電極E101に覆われた領域には、高接触抵抗領域112bがn側電極パッドE102の正射影の少なくとも一部、好ましくは全部を含むように形成されている。従って、基板110およびエピ層120の内部を流れる電流が、p側電極E200とn側電極パッドE102とを最短距離で結ぶ経路に集中することが防止される。更に、n側電極パッドE102に補助電極E103が接続されているので、エピ層120内を流れる電流はn側電極パッドE102から横方向に十分に離れた領域まで広げられる。
【0035】
図6のGaN系発光ダイオード100では、補助電極E103の基板110の裏面への正射影が高接触抵抗領域112bに含まれていない。従って、補助電極E103からは直下の方向にも電流が流れるが、補助電極E103はn側電極パッドE202と異なり細長く形成されているので、その直下で起こる発光に及ぼす影響(遮蔽および吸収)は比較的小さい。一実施形態では、補助電極E103の基板110の裏面への正射影の全部または一部を含むように、高接触抵抗領域112bを形成することもできる。
【0036】
(実施形態6)
実施形態6に係るGaN系発光ダイオードの構造を図7に模式的に示す。図7では、実施形態1のGaN系発光ダイオードと共通する構成要素については同一の符号を付している。図7(a)はGaN系発光ダイオード100を基板110側から見た平面図であり、図7(b)は図7(a)のX−X線の位置における断面図である。
【0037】
図7に示すGaN系発光ダイオード100では、n側電極E100はオーミック電極であるn側電極E100が、基板110の裏面に直接形成されている。n側電極E100は、電極パッドを兼用するパッド部E100aと、該パッド部E100aに接続され、十文字パターン(枝分かれした線状パターンともいえる)を呈する補助部E100bとを有している。
【0038】
n側電極E100は、好ましくは、基板110と接触する部分をAl、Ti、Cr、V、W、ITOのような、n型GaN系半導体とオーミック接触を形成する材料を用いて形成し、その他部分をAu、Al、Cu、Agのような、導電性の高い金属を用いて形成する。
【0039】
基板110の裏面のうち、n側電極E100に覆われた領域には、高接触抵抗領域112bがn側電極のパッド部E100aの正射影の少なくとも一部、好ましくは全部を含むように形成されている。従って、n側電極E100から基板110に注入されるキャリア(電子)は、パッド部E100aから直接ではなく、補助部E100bによって横方向に拡げられたうえで基板110に注入される。従って、高接触抵抗領域112bを設けない場合に比べて、エピ層120内の発光構造を流れる電流の密度が均一となる。なお、補助部E100bからは直下の方向にも電流が流れるが、補助部E100bはパッド部E100aと異なり細長く形成されているので、その直下で起こる発光に及ぼす影響(遮蔽および吸収)は小さい。
【0040】
(実験結果)
本発明者によるGaN系発光ダイオード(以下では単に「LED」ともいう)の試作および評価の結果を以下に記す。
1.試作したLEDの基本構造
図1に、試作したLEDの基本構造を模式的に示す。図1(a)は上面図、図1(b)は図1(a)のX−X線の位置における断面図である。図1(a)に示すように、LED1の平面形状は矩形であり、サイズは350μm×340μmである。
【0041】
図1(b)に示すように、LED1は、基板10の上にGaN系半導体からなる半導体積層体20を有している。基板10はm面GaN基板であり、半導体積層体20は該基板10のおもて面11上に配置されている。半導体積層体20は基板10側から順に、第1のアンドープGaN層21、Siドープされたn型GaNコンタクト層22、第2のアンドープGaN層23、Siドープされたn型GaNクラッド層24、MQW活性層25、Mgドープされたp型Al0.1Ga0.9Nクラッド層26、Mgドープされたp型Al0.03Ga0.97Nコンタクト層27を有している。
【0042】
MQW活性層25は、交互に積層されたアンドープIn0.04Ga0.96Nバリア層とアンドープIn0.16Ga0.84Nウェル層とを有している。アンドープInGaNバリア層の数は4層、アンドープInGaNウェル層の数は3層であり、ゆえに、MQW活性層25の最下層と最上層はいずれもバリア層である。ウェル層の組成は発光ピーク波長が445〜465nmの範囲内に入るように調整されたものである。
【0043】
LED1は2つのn側電極と1つのp側電極を有している。n側電極のひとつは第1のn側メタルパッドE11であり、基板10の裏面12全体を覆うように設けられている。もうひとつは第2のn側メタルパッドE12であり、半導体積層体20を一部除去することにより露出したn型GaNコンタクト層22の表面上に形成されている。第1のn側メタルパッドE11と第2のn側メタルパッドE12は、どちらもオーミック電極を兼用している。p側電極を構成するのは、p型AlGaNコンタクト層27の上面に形成されたオーミック性の透光性電極E21と、該透光性電極E21上の一部に形成されたp側メタルパッドE22である。MQW活性層25への電流印加は、第1のn側メタルパッドE11とp側メタルパッドE22を通して行うこともできるし、第2のn側メタルパッドE12とp側メタルパッドE22を通して行うこともできる。
【0044】
第1のn側メタルパッドE11は多層膜であり、基板10側から順にTiW層、Au層、Pt層、Au層、Pt層、Au層、Pt層、Au層を有している。第2のn側メタルパッドE12も同様の積層構造を備える多層膜であり、n型GaNコンタクト層22側から順にTiW層、Au層、Pt層、Au層、Pt層、Au層、Pt層、Au層を有している。透光性電極E21はITO(インジウム錫酸化物)膜である。p側メタルパッドE12は第1のn側メタルパッドE11および第2のn側メタルパッドE12と同様の積層構造を備える多層膜であり、透光性電極E21側から順にTiW層、Au層、Pt層、Au層、Pt層、Au層、Pt層、Au層を有している。
2.LEDの試作
LED1を次の手順により作製した。
2−1.エピタキシャル成長
サイズが7mm(c軸方向)×15mm(a軸方向)×330μm(厚さ)、おもて面(半導体積層体を設ける側の主面)のオフ角が0±0.5°の範囲内で、n型不純物としてSiが添加されたn型導電性のm面GaN基板を準備した。ホール測定により調べた該m面GaN基板のキャリア濃度は1.3×1017cm−3であった。
【0045】
このm面GaN基板のおもて面上に、常圧MOVPE法を用いて複数のGaN系半導体層をエピタキシャル成長させて半導体積層体を形成した。III族原料にはTMG(トリメチルガリウム)、TMI(トリメチルインジウム)およびTMA(トリメチルアルミニウム)、V族原料にはアンモニア、Si原料にはシラン、Mg原料にはビスエチルシクロペンタジエニルマグネシウム((EtCp)Mg)を用いた。
【0046】
各層の成長温度および膜厚を表1に示す。
【0047】
【表1】

【0048】
n型GaNコンタクト層、n型GaNクラッド層、p型AlGaNクラッド層およびp型AlGaNコンタクト層に添加した不純物の濃度は表2に示す通りである。
【0049】
【表2】

【0050】
p型AlGaNクラッド層およびp型AlGaNコンタクト層に添加したMgの活性化は、p型AlGaNコンタクト層を所定時間成長させた後、MOVPE装置の成長炉内で基板温度が室温まで降下する間に、該成長炉内に流す窒素ガスおよびアンモニアガスの流量を制御する方法を用いて行った。
2−2.p側電極および第2のn側メタルパッドの形成
上記エピタキシャル成長により形成した半導体積層体の表面(p型AlGaNコンタクト層の表面)に、電子ビーム蒸着法によりITO膜を210nmの厚さに形成した。続いて、フォトリソグラフィとエッチングの技法を用いて、このITO膜を所定の形状にパターニングして、透光性電極を形成した。パターニング後、反応性イオンエッチング(RIE)加工により半導体積層体の一部を除去して、第2のn側メタルパッドを形成すべき部位にn型GaNコンタクト層を露出させるとともに、メサ形成を行った。RIE加工においては、エッチングガスとしてClを用い、アンテナ/バイアスを100W/20W、チャンバー内圧力を0.5Paと設定した。
【0051】
RIE加工に続いて、上記作製したITO膜に対し、大気雰囲気中、520℃で20分間の熱処理を施した。更に続けて、RTA(Rapid Thermal Annealing)装置を用いて、このITO膜に対し、窒素ガス雰囲気中、500℃で1分間の熱処理を施した。
【0052】
ITO膜の熱処理後、リフトオフ法を用いて、第2のn側メタルパッドとp側メタルパッドを同時に所定のパターンに形成した。第2のn側メタルパッドとp側メタルパッドを構成するメタル多層膜に含まれる全ての層(TiW層、Au層およびPt層)は、スパッタリング法で形成した。TiW膜を形成する際は、ターゲットにTi含有量が10wt%のTi−Wターゲット、スパッタガスにAr(アルゴン)を使用し、スパッタ条件はRF電力800W、Ar流量50sccm、スパッタガス圧2.2×10−1Paとした。最下層であるTiW層とその直上に積層するAu層の厚さは108nmとし、それ以外のPt層およびAu層の厚さはいずれも89nmとした。
【0053】
第2のn側メタルパッドとp側メタルパッドを形成した後、露出した半導体積層体の表面および透光性電極の表面に、SiOからなるパッシベーション膜を230nmの厚さに形成した。
2−3.m面GaN基板の裏面の加工
上記パッシベーション膜の形成後、m面GaN基板の裏面に対し、以下に加工a〜加工dとして記す4通りの異なる加工を行った。
【0054】
加工a:m面GaN基板の裏面にラッピングおよびポリッシングをこの順に施すことにより、該基板の厚さを200μmに減じた。
【0055】
ラッピング工程では、定法に従い、使用するダイヤモンド砥粒の粒径を段階的に小さくしていった。
【0056】
ポリッシング工程では、酸性コロイダルシリカ(粒径70〜100nm)に酸を添加してpHを2未満に調整したCMPスラリーを用い、ポリッシングレートが0.5μm/hとなるように荷重を調整し、ポリッシング加工時間は約14時間とした。この条件でポリッシュされたm面GaN基板の表面は、AFM(例えばDIGITAL INSTRUMENTS社製 DIMENSION 5000)を用いて測定される10μm角の範囲の算術平均粗さRaが0.1nm以下となる。
【0057】
ポリッシングされた面(m面GaN基板の裏面)は水で洗った後、更に室温のIPAおよびアセトンを用いて洗浄し、乾燥後に5分間の紫外線オゾン洗浄(110℃、酸素流量5L/分)を施した。
【0058】
加工b:加工aを行った後、更に、RIEによってm面GaN基板の裏面から表層部分を削り取った。RIE条件は上記2−2.で半導体積層体に対してRIE加工を施したときの条件と同じとし、エッチング深さが0.1μmとなるよう、エッチング時間を60秒に設定した。RIE加工後の表面の粗さを触針式段差計(株式会社小坂研究所製ET3000)で測定したところ、算術平均粗さRaは0.02μm、最大高さRzは0.04μmであった。
【0059】
加工c:加工aを行った後、更に、RIEによってm面GaN基板の裏面から表層部分を削り取った。RIE条件は上記2−2.で半導体積層体に対してRIE加工を施したときの条件と同じとし、エッチング深さが1.0μmとなるよう、エッチング時間を610秒に設定した。RIE加工後の表面の粗さを触針式段差計で測定したところ、算術平均粗さRaは0.06μm、最大高さRzは0.55μmであった。
【0060】
加工d:加工aを行った後、更に、RIEによってm面GaN基板の裏面から表層部分を削り取った。RIE条件は上記2−2.で半導体積層体に対してRIE加工を施したときの条件と同じとし、エッチング深さが2.0μmとなるよう、エッチング時間を1220秒に設定した。RIE加工後の表面の粗さを触針式段差計で測定したところ、算術平均粗さRaは0.07〜0.12μm、最大高さRzは1.30μmであった。
2−4.第1のn側メタルパッドの形成
上記加工a〜dのいずれかを行ったm面GaN基板の裏面に、第1のn側メタルパッドとなるメタル多層膜を形成した。このメタル多層膜に含まれる全ての層(TiW層、Au層およびPt層)は、スパッタリング法で形成した。TiW膜を形成する際は、ターゲットにTi含有量が10wt%のTi−Wターゲット、スパッタガスにAr(アルゴン)を使用し、スパッタ条件はRF電力800W、Ar流量50sccm、スパッタガス圧2.2×10−1Paとした。最下層であるTiW層とその直上に積層するAu層の厚さは108nmとし、それ以外のPt層およびAu層の厚さはいずれも89nmとした。
【0061】
上記メタル多層膜の形成後、スクライブおよびブレーキングを行うことによりウェハを分断し、LED素子をチップにした。上記メタル多層膜はこの工程でGaN基板と共に分断した。従って、第1のn側メタルパッドの平面形状はm面GaN基板の裏面の形状と同じとなった。また、第1のn側メタルパッドのサイズはチップサイズと略同じ350μm×340μmとなった。
2−5.順方向電圧の評価
上記手順にて得たLEDチップに対して、第1のn側メタルパッドとp側メタルパッドを通して電流を印加したときの順方向電圧(Vf)と、第2のn側メタルパッドとp側メタルパッドを通して電流を印加したときの順方向電圧(Vf)を比較した。印加電流はパルス幅1msec、パルス周期100msecのパルス電流とし、電流値は20mAおよび60mAの2通りとした。結果を表3に示す。
【0062】
【表3】

【符号の説明】
【0063】
100 GaN系発光ダイオード
110 基板
112a 低接触抵抗領域
112b 高接触抵抗領域
120 エピ層
121 n型層
122 活性層
123 p型層
E100 n側電極
E101 n側オーミック電極
E102 n側電極パッド
E103 補助電極
E200 p側電極
E201 p側オーミック電極
E202 p側電極パッド
E203 補助電極

【特許請求の範囲】
【請求項1】
n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に形成されたn側電極と、該エピ層の上面に形成された透光性のp側オーミック電極と、該p側オーミック電極上の一部に形成されたp側電極パッドとを有し、
前記基板の裏面のうち前記n側電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、
前記基板の裏面への前記p側電極パッドの正射影の全部または一部が前記高接触抵抗領域に含まれる、GaN系発光ダイオード。
【請求項2】
前記p側オーミック電極上に、前記p側電極パッドに接続された補助電極が形成されており、前記基板の裏面への前記補助電極の正射影の全部または一部が前記高接触抵抗領域に含まれない、請求項1に記載のGaN系発光ダイオード。
【請求項3】
n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に形成された透光性のn側オーミック電極と、該n側オーミック電極上の一部に形成されたn側電極パッドと、該エピ層の上面に形成されたp側電極とを有し、
前記基板の裏面のうち前記n側オーミック電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、
前記基板の裏面への前記n側電極パッドの正射影の全部または一部が前記高接触抵抗領域に含まれる、GaN系発光ダイオード。
【請求項4】
前記n側オーミック電極上に、前記n側電極パッドに接続された補助電極が形成されており、前記基板の裏面への前記補助電極の正射影の全部または一部が前記高接触抵抗領域に含まれない、請求項3に記載のGaN系発光ダイオード。
【請求項5】
n型導電性のm面GaN基板である基板と、該基板上にエピタキシャル成長したGaN系半導体からなりpn接合型の発光構造を含むエピ層と、該基板の裏面に部分的に形成されたn側電極と、該エピ層の上面に形成されたp側電極とを有し、
前記n側電極は、パッド部と、該パッド部に接続された補助部とを有し、
基板の裏面のうち前記n側電極に覆われた領域には、ポリッシング仕上げされた領域である低接触抵抗領域と、ドライエッチング仕上げされた領域である高接触抵抗領域とが含まれ、
前記基板の裏面への前記パッド部の正射影の全部または一部が前記高接触抵抗領域に含まれる、GaN系発光ダイオード。
【請求項6】
前記基板の裏面への前記補助部の正射影の全部または一部が前記高接触抵抗領域に含まれない、請求項5に記載のGaN系発光ダイオード。
【請求項7】
前記基板のキャリア濃度が1017cm−3である、請求項1〜6のいずれか一項に記載のGaN系発光ダイオード。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate