説明

Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材

【課題】従来の超電導線材よりも強度を高くする。
【解決手段】前駆体1(NbSn超電導線材製造用前駆体)は、純NbまたはNb基合金からなる複数本のNb基フィラメント5がブロンズマトリックス部4(Cu−Sn基合金)中に配置された超電導マトリックス部2と、超電導マトリックス部2の外周に配置された拡散障壁層6と、拡散障壁層6の外周に配置された安定化銅層7と、超電導マトリックス部2内に配置され純TaまたはTa基合金からなる補強部材8と、を備える。補強部材8は、前駆体1の軸直角断面に占める面積率が15〜25%である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、NbSn超電導線材の製造に用いられるNbSn超電導線材製造用前駆体、および、この前駆体を用いて製造されるNbSn超電導線材に関する。
【背景技術】
【0002】
特許文献1に従来のNbSn超電導線材が記載されている。この超電導線材は、超電導マグネットのコイルの巻線などとして用いられる。この超電導マグネットは、核磁気共鳴(NMR)分析装置、物性評価装置、電力貯蔵や核融合炉等に用いられる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−255563号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
以下に述べるように、従来の超電導線材には、強度が不十分という問題がある。コイルの巻線として用いられる超電導線材には、強い電磁力が作用して歪が加わる。この歪みが大きくなると、NbSn超電導線材の臨界電流が下がる(臨界電流特性が劣化する)。この歪によるNbSn超電導線材の臨界電流の低下は避けることが出来ない。
【0005】
そこで、特許文献1に記載の技術では、超電導線材を高強度化することで、歪の抑制を図っている。具体的には、Ta層またはTa合金層(文献1の図2等の符号4)を設けることで、超電導線材を補強している。
【0006】
特許文献1には、超電導線材または前駆体の軸直角断面に占める、Ta層またはTa合金層の面積率(「面積率A」とする)は記載されていないが、実用化されている超電導線材または前駆体の面積率Aは10%程度である。面積率Aが10%程度の超電導線材の0.2%耐力は、約300MPa未満であり、この強度では不十分な場合がある。超電導マグネットの高磁場化、コンパクト化に伴い、より強い電磁力が超電導線材に作用することになるので、より高強度を有する超電導線材が望まれている。
【0007】
そこで本発明は、従来の超電導線材よりも強度が高いNbSn超電導線材を製造できるNbSn超電導線材製造用前駆体を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明のNbSn超電導線材製造用前駆体は、NbSn超電導線材の製造に用いられる前駆体であって、純NbまたはNb基合金からなる複数本のNb基フィラメントがCu−Sn基合金中に配置された超電導マトリックス部と、前記超電導マトリックス部の外周に配置された拡散障壁層と、前記拡散障壁層の外周に配置された安定化銅層と、前記超電導マトリックス部内に配置され純TaまたはTa基合金からなる補強部材と、を備える。前記補強部材は、前記前駆体の軸直角断面に占める面積率が15〜25%である。前記超電導マトリックス部の前記Cu−Sn基合金中のSn濃度は、13.5質量%以上である。
【発明の効果】
【0009】
本発明のNbSn超電導線材製造用前駆体では、従来の超電導線材よりも強度が高いNbSn超電導線材を製造できる。
【図面の簡単な説明】
【0010】
【図1】NbSn超電導線製造用前駆体を軸方向から見た断面図である。
【図2】図1に示す補強部材8の面積率と、臨界電流密度および0.2%耐力と、の関係を示すグラフである。
【図3】変形例1の図1相当図である。
【発明を実施するための形態】
【0011】
図1〜図2を参照して本発明の実施形態の前駆体1(NbSn超電導線材製造用前駆体)等について説明する。まず、前駆体1を用いて製造される超電導線材(NbSn超電導線材)について説明する。
【0012】
超電導線材(NbSn超電導線材)は、図1に示す前駆体1に対してNbSn生成熱処理を施し、NbSn系超電導相を形成させることで製造される(製法は後述)。この超電導線材の軸直角断面(軸方向に直交する断面、軸方向から見た断面)の構造は、後述する前駆体1の軸直角断面の構造とほぼ同様である。この超電導線材は、例えば、超電導マグネットのコイルの巻線として用いられる。このコイルを励磁させると、超電導線材は、電磁力によりコイル径方向外側にひろがる力(フープ力)を受ける。その結果、超電導線材は、軸方向に引張荷重を受けて歪む。超電導線材は、歪みにより臨界電流が下がる(臨界電流特性が劣化する)。そこで、超電導線材の強度は、この歪みを十分抑制できるように設定される。
【0013】
前駆体1(NbSn超電導線材製造用前駆体)は、ブロンズ法により製造されるNbSn超電導線材の製造に用いられる線材である。前駆体1は、NbSn生成熱処理を施す前の段階の前駆体である。詳細は後述するが、前駆体1は、静水圧押出しした二次多芯ビレットを伸線加工した後の段階の前駆体である。
【0014】
この前駆体1の軸直角断面の形状は、前駆体1を用いて製造した超電導線材を巻線としてコイルを形成したときに、デッドスペースを減らせるように形成される。具体的には、前駆体1は、軸直角断面が矩形状(正方形を含む長方形)である。すなわち、前駆体1は平角線材である。前記「矩形状」には、矩形の4つの角が丸いものを含む。矩形の4つの角が直角に近いほど、デッドスペースが少なくなる。ただし、矩形の2つの角(対角を除く)の間に直線部分があることが、前記「矩形状」であることの必要条件とする。さらに詳しくは、前駆体1の軸直角断面の外周が、平行な2本の直線と、この2本の直線に直交する平行な2本の直線と、を備えることが、前記「矩形状」であることの必要条件とする(上記「平行」及び「直交」は、「略平行」及び「略直交」でも良い)。前駆体1の軸直角断面の長辺側長さをW、短辺側長さをHとすると、長辺側長さW/短辺側長さHは、例えば1.2〜2.0である(この範囲外としても良い)。なお、前駆体1の軸直角断面の形状は、円形や楕円形など、矩形状以外の形状としても良い。
【0015】
この前駆体1は、超電導マトリックス部2と、超電導マトリックス部2の外周(径方向外側)に配置された拡散障壁層6および安定化銅層7と、超電導マトリックス部2内に配置された補強部材8と、補強部材8と超電導マトリックス部2との間に配置された中間層9とを備える。
【0016】
超電導マトリックス部2は、複数本のNb基フィラメント5がCu−Sn基合金(ブロンズマトリックス部4)中に配置された構造を備える。超電導マトリックス部2は、例えば、数十本、百数十本、または数百本などの複数の多芯部3を並べた構造を備える(図1では複数の多芯部3の一部を図示している)。複数の多芯部3はそれぞれ、ブロンズマトリックス部4と、ブロンズマトリックス部4中に複数本配置されたNb基フィラメント5とを備える。
【0017】
ブロンズマトリックス部4は、Cu−Sn基合金からなる。Cu−Sn基合金には、例えば、Tiが0.3〜0.5質量%程度含まれる(後述するように他の元素を含んでも良い)。ブロンズマトリックス部4の軸直角断面の形状は、例えば六角形である(円形等でも良い)。
【0018】
このブロンズマトリックス部4を形成するCu−Sn基合金中のSnの濃度(以下、単に「Sn濃度」とも言う)が高いほど、臨界電流密度(Jc)が高くなる(前駆体1を用いて製造された超電導線材の臨界電流密度が高くなる)。Sn濃度は、必要な臨界電流密度に応じて適切に設定する。具体的には、Sn濃度は、13.5質量%以上であり、14質量%以上が好ましく、15質量%以上がさらに好ましい。また、Sn濃度は、常温では通常15.6質量%まで高めることができる。さらに、Ti及びZrの少なくともいずれかをCu−Sn基合金に含有させれば、Sn濃度を19質量%まで高めることができる。
このSn濃度についてさらに詳しく説明する。Sn濃度は、常温では通常15.6質量%より大きくできない。これは、Cu−Sn基合金中に15.6質量%を超えてSnを含有させようとすると、Cu−Snの金属間化合物が生成するからである。また、Cu−Snの金属間化合物には、代表的なものとして「δ相」がある。このδ相は硬く延性が乏しいので、前駆体1製造時の加工性(後述する減面加工の加工性)が悪くなる。そこで、Ti及びZrの少なくともいずれかをCu−Sn基合金に含有させる。すると、Cu−Sn基合金中のδ相を消失させることができる。その結果、常温での固溶限界とされる15.6質量%よりも多くのSnを、Cu−Sn基合金に含有させることができる。具体的には、Sn濃度を19質量%まで高めることができる。
【0019】
Nb基フィラメント5は、純NbまたはNb基合金からなる。この純Nbは、微量(例えば0.5質量%未満)の不純物を含んだものでも良い。このNb基合金は、添加元素(例えばTa、Hf、Zr、Ti等)を10質量%〜0.5質量%程度含有する合金である。Nb基フィラメント5は、1つの多芯部3中に例えば7本配置される(6本以下や8本以上でも良い)。なお、図1では、複数のNb基フィラメント5のうち、1つのNb基フィラメント5にのみ符号を付している。Nb基フィラメント5の軸直角断面の形状は、例えば円形である(円形でなくても良い)。
【0020】
このNb基フィラメント5の直径(軸直角断面が円形でない場合は等価直径)を細くすると、臨界電流密度が高くなる。しかし、Nb基フィラメント5の直径を細くすると、n値が低くなる。n値とは、超電導状態から常電導状態への転位の鋭さを示す量である。また、Nb基フィラメント5の(等価)直径D5は、後述する補強部材8の等価直径D8との比率「D5/D8」が、例えば0.001〜0.015、好ましくは0.003〜0.011となるように設定する。
【0021】
拡散障壁層6は、NbSn生成熱処理の際に超電導マトリックス部2内のSnが外部(安定化銅層7)に拡散することを抑制する層である。拡散障壁層6は、超電導マトリックス部2の外周(径方向外側)、かつ、安定化銅層7の内周(径方向内側)に配置される。拡散障壁層6は、Nb層およびTa層の少なくともいずれかの層を備える。拡散障壁層6の最内周側の層(超電導マトリックス部2と接する部分)は、Ta層であることが好ましい。その理由は、拡散障壁層6の最内周側の層がTa層でなくNb層の場合、拡散障壁層6のNb層と超電導マトリックス部2内のSnとがNbSn生成熱処理の際に反応し、拡散障壁層6の近傍にNbSn超電導相が形成され、有効フィラメント径が増大して交流損失が大きくなるおそれがあるからである。なお、拡散障壁層6としてのTa層は、後述する補強部材8に含まない。また、拡散障壁層6と超電導マトリックス部2とは必ずしも隣接していなくても良く、これらの間に図示しない例えばCu−Sn基合金層などがあっても良い。
【0022】
安定化銅層7は、拡散障壁層6の外周(径方向外側)に配置される。安定化銅層7は、超電導線材が超電導状態から常電導状態になったときに、超電導相に過電流が流れて超電導相が焼損すること防ぐための層である。なお、安定化銅層7の軸直角断面の外周側端部に囲まれた形状が、前駆体1の軸直角断面の形状である。
【0023】
補強部材8は、超電導線材を補強する部材である。補強部材8の軸直角断面の形状は、例えば略楕円形である(円形や矩形などでも良い)。補強部材8は、超電導マトリックス部2内に配置される。すなわち、補強部材8は、超電導マトリックス部2の外周側端部よりも径方向内側に配置される。具体的には、補強部材8は、超電導マトリックス部2の軸直角断面の中央に集中配置される(これ以外の配置は後述)。前記「集中配置」とは、複数箇所に分かれて(例えば分散して)配置されることではなく、一箇所のみに集めて配置されることを意味する。補強部材8が前記「中央に配置される」とは、超電導マトリックス部2の軸直角断面の概ね中央の領域に補強部材8が配置されることを意味する。補強部材8は、超電導マトリックス部2の軸直角断面の中心に配置されていなくても良い。さらに詳しくは、補強部材8の軸直角断面の外周全体が超電導マトリックス部2よりも内側にあることが前記「中央に配置される」ことの必要条件とする。具体的には例えば、補強部材8の軸直角断面の外周と拡散障壁層6との間に超電導マトリックス部2が存在しない部分がある場合は、前記「中央に配置される」に含まれない。
【0024】
この補強部材8は、純TaまたはTa基合金からなる。この純Taは、微量(例えば0.5質量%未満)の不純物を含んだものでも良い。なお、比較的容易に入手できるという観点からすれば、工業用純Ta(例えば、ASTMB708のElectoron−Beam Cast,Vacuum−Arc Cast Unalloyed Tantalum)を用いることが好ましい。また、補強部材8を形成するTa基合金は、添加元素を10質量%〜0.5質量%程度含有する合金である。純TaよりもTa基合金のほうが硬い。よって、補強部材8をTa基合金で形成した場合に比べ、補強部材8を純Taで形成した場合は、前駆体1製造時の加工性(後述する減面加工の加工性)が良い。また、補強部材8を純Taで形成した場合に比べ、補強部材8をTa基合金で形成した場合は、補強部材8の(超電導線材の)強度が高くなる。ただし、Ta基合金中の添加元素が10質量%を超えると上記の加工性が悪化するので、添加元素は10質量%以下であることが好ましい。
【0025】
この補強部材8は、前駆体1の軸直角断面に占める面積率Aが15〜25%(15%以上、25%以下)である。この面積率Aは次式で表される。
面積率A=(補強部材8の断面積/前駆体1全体の断面積)×100(%)
なお、上記と同様に、前駆体1の軸直角断面に占める超電導マトリックス部2の面積率を面積率Bとする。このとき、前駆体1の軸直角断面に占める、超電導マトリックス部2及び補強部材8の「面積率A+面積率B」は、例えば70〜90%である。
【0026】
中間層9は、補強部材8と超電導マトリックス部2との間に配置される層である。中間層9の硬さ(ヴィッカース硬度。以下の「硬さ」についても同様)は、超電導マトリックス部2のCu−Sn基合金の硬さと、補強部材8の硬さとの中間である。中間層9は、前駆体1製造時の加工(後述する減面加工)の際に均一加工をしやすくするための層であり、補強部材8の不均一変形を抑制するための層である。中間層9は、薄いほど上記加工性が良くなる。中間層9は、例えばNbからなる。なお、前記「Cu−Sn基合金の硬さ」は、前駆体1の状態での硬さ、すなわち、後述する焼鈍をした後(柔らかくした後)の状態での硬さである。また、中間層9は無くても良い。
【0027】
(製法)
次に、ブロンズ法によるNbSn超電導線材の製法の一例を説明する。超電導線材の製法は、一次スタック材(多芯部3に対応)を作製する第1工程と、一次スタック材等を用いて二次多芯ビレット(前駆体1が形成される前の段階のもの)を作製する第2工程と、二次多芯ビレットを加工して前駆体1を形成する第3工程と、前駆体1にNbSn生成熱処理を施して超電導線材とする第4工程とを備える。
【0028】
第1工程は、一次スタック材(多芯部3に対応。以下、前駆体1の段階での部材名を単に括弧を付して記載する場合がある)を作製する工程である。一次スタック材(多芯部3)は以下(a)〜(g)のように作製される。(a)Cu−Sn基合金棒(ブロンズマトリックス部4)を用意する。(b)Cu−Sn基合金棒の軸直角断面の中心とその周囲に、穴を7箇所形成する。(c)その穴に純Nb棒(またはNb基合金棒)(Nb基フィラメント5)を挿入する。(d)上記(b)及び(c)を経たCu−Sn基合金棒(多芯部3)の軸方向両端を、溶接によって真空封止する。この真空封止されたものを「一次多芯ビレット」とする。(e)一次多芯ビレットを静水圧押出し法で押出し(減面加工)する。(f)押出しされた押出材を、引抜加工等により伸線加工(減面加工)する。この伸線加工の途中に、複数回の焼鈍を行う。この焼鈍は、Cu−Sn基合金の加工硬化を原因とした断線がおこらない様にするために行う。(g)伸線加工された線材(棒材)を、六角ダイスにより六角断面形状に仕上げる。これにより、一次スタック材(多芯部3)が作製される。
【0029】
第2工程は、一次スタック材等を用いて二次多芯ビレットを作製する工程である。二次多芯ビレットは次の(h)〜(m)のように作製される。(h)純Ta棒(またはTa基合金棒)(補強部材8)を用意する。(i)純Ta等棒(補強部材8)の外周に純Nbシート(中間層9)を巻く。(j)純Nbシート(中間層9)の外周に一次スタック材(多芯部3)を複数配置する。(k)複数の一次スタック材(超電導マトリックス部2)の外周に純Ta等のシート(拡散障壁層6)を巻く。(l)これらの部材を一体化させたもの(上記(h)〜(k)を経てできたもの)を、Cu製パイプ(安定化銅層7)に挿入する。(m)上記(l)を経たCu製パイプ(安定化銅層7)の軸方向両端部を溶接によって真空封止する。この真空封止されたものが「二次多芯ビレット」である。
【0030】
第3工程は、二次多芯ビレットを加工して前駆体1を形成する工程である。この工程は次の(n)及び(o)のように行われる。(n)二次多芯ビレットを静水圧押出し法で押出し(減面加工)する。(o)押出しされた押出材を、引抜加工等により伸線加工(減面加工)する。この伸線加工は、線材の軸直角断面が最終的に矩形状となるように行う。また、上記(f)と同様に、伸線加工の途中に複数回の焼鈍を行う。これにより前駆体1が製造される(この段階の製造物が「前駆体1」である)。
【0031】
第4工程は、前駆体1にNbSn生成熱処理(拡散熱処理)を施して超電導線材とする工程である。NbSn生成熱処理は、真空中で、例えば650〜720℃で、例えば80〜200時間行う。このNbSn生成熱処理により、ブロンズマトリックス部4(Cu−Sn基合金)とNb基フィラメント5との界面にNbSn化合物層が生成される。これにより、NbSn超電導線が製造される。
【0032】
(実験)
上記製法により複数の超電導線材を製造した。そして、各超電導線材の、0.2%耐力と、臨界電流密度とを測定した。
【0033】
0.2%耐力は、液体ヘリウム中(温度4.2K)に超電導線材を浸漬して、この超電導線材の引張試験を行うことで測定した。本実験での0.2%耐力の合格基準は、325(MPa)以上である。
【0034】
臨界電流密度は次のように測定および算出した。液体ヘリウム中(温度4.2K)で、16T(テスラ)の外部磁場の下で四端子法にて臨界電流を測定した。この電流値を、超電導線材の全断面積で割って臨界電流密度を算出した。本実験での臨界電流密度の合格基準は、125(A/mm)以上であり、本実験での好ましい合格基準は150(A/mm)以上である。
【0035】
表1に示すように、試料a〜fの超電導線材を用意した。試料a及びbは比較例である。試料c〜fは本発明の実施例である。試料a〜fの条件は以下の通りである。補強部材8は、純Taで形成した(補強部材8を備えない試料aを除く)。中間層9は、純Nbで形成した。超電導線材の軸直角断面に占める、超電導マトリックス部2及び補強部材8の「面積率A+面積率B」は約80%に統一した。Nb基フィラメント5の直径は約4μmに統一した。なお、Nb基フィラメント5の直径D5と補強部材8の等価直径D8との比率「D5/D8」は、実施例である試料c〜fについては、上述した範囲である0.001〜0.015に含まれる。線高(超電導線材の軸直角断面の短辺側長さであり、前駆体におけるHに対応)は1.04mmに統一した。線幅(超電導線材の軸直角断面の長辺側長さであり、前駆体におけるWに対応)は1.56mmに統一した。その他の条件は表1に示す。表1中の「Ta面積率」は、補強部材8の面積率Aである。同「Sn濃度」は、ブロンズマトリックス部4中のSnの濃度である。
【0036】
【表1】

【0037】
実験結果を、表1および図2に示す。図2は、補強部材8(図1参照。以下、上述した各部分については図1参照)の面積率Aと、0.2%耐力(図中右側の縦軸)との関係を示すグラフである。0.2%耐力の測定結果を「■」(試料a〜d)及び「□」(試料e及びf)で示す。また、図2は、補強部材8の面積率A(図中横軸の「Ta面積率」)と、全断面積当たり臨界電流密度(図中左側の縦軸)との関係を示すグラフである。臨界電流密度の測定結果を「◆」(試料a〜d)及び「◇」(試料e及びf)で示す。実験結果は以下のようになった。
【0038】
(0.2%耐力)
補強部材8の面積率Aが大きくなるほど、0.2%耐力が大きくなった。この結果から、0.2%耐力と補強部材8の面積率Aとの関係は、近似直線L1(破線)で表せる。補強部材8の面積率Aが15%以上の試料c〜fでは、0.2%耐力が合格基準の325MPa以上となった。補強部材8の面積率Aが15%未満である試料a及びbでは、0.2%耐力が上記合格基準より小さくなった。
【0039】
(臨界電流密度)
Sn濃度が14質量%の試料a〜dの臨界電流密度は以下のようになった。補強部材8の面積率Aが大きくなるほど、臨界電流密度が小さくなった。この結果から、臨界電流密度と補強部材8の面積率Aとの関係は、近似直線L2(二点鎖線)で表せる。補強部材8の面積率Aが25%以下の試料a〜dでは、臨界電流密度は合格基準である125(A/mm)以上となった。補強部材8の面積率Aが25%より大きい場合、臨界電流密度は上記合格基準より小さくなる場合があると近似直線L2から予想できる。
【0040】
Sn濃度が15質量%の試料e及びfの臨界電流密度は以下のようになった。補強部材8の面積率Aが大きい試料fの方が、試料eよりも臨界電流密度が小さくなった。この結果から、試料a〜dの場合と同様に、臨界電流密度と補強部材8の面積率Aとの関係は、近似直線L3(L2より細い二点鎖線)で表せる。補強部材8の面積率Aが等しくSn濃度が異なる試料cとeとを比べると(試料dとfとを比べると)、Sn濃度が大きい試料e(f)の方が臨界電流密度が大きくなった。補強部材8の面積率Aが25%以下の試料e及びfでは、臨界電流密度は好ましい合格基準である150(A/mm)以上となった。補強部材8の面積率Aが25%より大きい場合、臨界電流密度は上記の好ましい合格基準より小さくなる場合があると近似直線L3から予想できる。
【0041】
また、上記のように、Sn濃度が大きい方が臨界電流密度が大きくなった、すなわち、Sn濃度が小さいほうが臨界電流密度が小さくなった。このことから、試料c及びdのSn濃度を小さくすれば、具体的にはSn濃度を13.5質量%未満にすれば、臨界電流密度は上記合格基準より小さくなる場合があると予想できる。
【0042】
(効果)
次に、図1に示す前駆体1の効果を説明する。前駆体1は、NbSn超電導線材の製造に用いられる。前駆体1は、純NbまたはNb基合金からなる複数本のNb基フィラメント5がブロンズマトリックス部4(Cu−Sn基合金)中に配置された超電導マトリックス部2と、超電導マトリックス部2の外周に配置された拡散障壁層6と、拡散障壁層6の外周に配置された安定化銅層7と、超電導マトリックス部2内に配置され純TaまたはTa基合金からなる補強部材8と、を備える。
【0043】
(効果1−1)
そして、補強部材8は、前駆体1の軸直角断面に占める面積率Aが15〜25%である。よって、前駆体1を用いて製造された超電導線材は、面積率Aが15%未満の前駆体を用いて製造された従来の超電導線材に比べ、強度が高い(図2参照)。また、前駆体1を用いて製造された超電導線材は、面積率Aが25%より大きい前駆体を用いて製造された超電導線材に比べ、臨界電流密度が高い(図2参照)。
【0044】
(効果1−2)
超電導マトリックス部2のブロンズマトリックス部4(Cu−Sn基合金)中のSn濃度は、13.5質量%以上である。よって、Sn濃度が13.5質量%未満の場合に比べ、臨界電流密度を高くできる。すなわち、補強部材8の面積率Aを大きくすることによる臨界電流密度の低下を抑制できる。
【0045】
この効果の詳細は次の通りである。前駆体1の軸直角断面に占める補強部材8の面積率Aを大きくすると、前駆体1の軸直角断面に占める超電導マトリックス部2の面積率が減る。すなわち、Cu−Sn基合金(ブロンズマトリックス部4)とNb基フィラメントとの接触領域が減る。よって、補強部材8の面積率を単に増やすだけでは、臨界電流密度が小さくなってしまう。そこで、ブロンズマトリックス部4(Cu−Sn基合金)中のSn濃度を13.5質量%以上とする。すると、Sn濃度が13.5質量%未満の場合に比べ臨界電流密度を高くできるので、補強部材8の面積率Aを大きくすることによる臨界電流密度の低下を抑制できる。
【0046】
(効果2)
補強部材8は、超電導マトリックス部2の軸直角断面の中央に集中配置される。よって、補強部材8を超電導マトリックス部2内に分散配置する場合に比べ、前駆体1を容易に作製できる。さらに詳しくは、上記の二次多芯ビレットを作製する第2工程において、補強部材8を容易に配置でき、その結果、前駆体1を容易に作製できる。
【0047】
(効果3)
前駆体1は、軸直角断面が矩形状である。よって、前駆体1を用いて製造された超電導線材をコイルの巻線として用いる場合、軸直角断面が円形状の超電導線材に比べ、超電導線材間のデッドスペースを少なくできる。その結果、このコイルの電流密度を上げることができ、このコイルを用いた超電導マグネットをコンパクト化できる。
【0048】
(効果4)
本発明の超電導線材(NbSn超電導線材)は、前駆体1に対して、NbSn生成熱処理を施してNbSn系超電導相を形成させることで製造される。この超電導線材は、上記(効果1)〜(効果3)の効果を奏するものである。
【0049】
(他の効果)
前駆体1は、補強部材8と超電導マトリックス部2との間に配置された中間層9を備える。中間層9の硬さ(ヴィッカース硬度。以下の「硬さ」についても同様)は、超電導マトリックス部2のブロンズマトリックス部4(Cu−Sn基合金)の硬さと、補強部材8の硬さとの中間の硬さである。よって、補強部材8とブロンズマトリックス部4との間の変形抵抗差を小さくできる。したがって、前駆体1製造時の減面加工の際に、補強部材8が不均一変形することを抑制できる。
【0050】
(変形例1)
図3に変形例1の前駆体11を示す。図1に示すように、上記実施形態の前駆体1の補強部材8は、超電導マトリックス部2の軸直角断面の中央に集中配置された。一方、図3に示すように、超電導マトリックス部2中に補強部材18を分散配置しても良い。以下、この相違点をさらに説明する。
【0051】
前駆体11は、図1に示す前駆体1の補強部材8に変えて、超電導マトリックス部2中に分散配置された補強部材18を備える。例えば、図1に示す前駆体1の複数の多芯部3の一部を、図3に示す補強部材18に置き換えることで、補強部材18が分散配置される。この場合、前駆体11の軸直角断面に占める、全ての補強部材18の合計の面積率Aを15〜25%とする。なお、図3では、複数の補強部材18(黒く塗りつぶして示す)のうち一部にのみ符号を付している。
【0052】
(変形例2)
また、図1に示す前駆体1の補強部材8と、図3に示す前駆体11の補強部材18とを組み合わせても良い。すなわち、前駆体1(11)は、超電導マトリックス部2の軸直角断面の中央に集中配置された補強部材8(図1参照)と、超電導マトリックス部2中に分散配置された補強部材18(図3参照)と、の両方を備えても良い。この場合、前駆体1(11)の軸直角断面に占める、全ての補強部材8および補強部材18の合計の面積率Aを15〜25%とする。
【符号の説明】
【0053】
1、11 前駆体(NbSn超電導線材製造用前駆体)
2 超電導マトリックス部
4 ブロンズマトリックス部4(Cu−Sn基合金)
5 Nb基フィラメント
6 拡散障壁層
7 安定化銅層
8、18 補強部材


【特許請求の範囲】
【請求項1】
NbSn超電導線材の製造に用いられる前駆体であって、
純NbまたはNb基合金からなる複数本のNb基フィラメントがCu−Sn基合金中に配置された超電導マトリックス部と、
前記超電導マトリックス部の外周に配置された拡散障壁層と、
前記拡散障壁層の外周に配置された安定化銅層と、
前記超電導マトリックス部内に配置され、純TaまたはTa基合金からなる補強部材と、を備え、
前記補強部材は、前記前駆体の軸直角断面に占める面積率が15〜25%であり、
前記超電導マトリックス部の前記Cu−Sn基合金中のSn濃度は、13.5質量%以上である、NbSn超電導線材製造用前駆体。
【請求項2】
前記補強部材は、前記超電導マトリックス部の軸直角断面の中央に集中配置される、請求項1に記載のNbSn超電導線材製造用前駆体。
【請求項3】
軸直角断面が矩形状である、請求項1または2に記載のNbSn超電導線材製造用前駆体。
【請求項4】
請求項1〜3のいずれか1項に記載のNbSn超電導線材製造用前駆体に対して、NbSn生成熱処理を施してNbSn系超電導相を形成させることで製造される、NbSn超電導線材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−51082(P2013−51082A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2011−187637(P2011−187637)
【出願日】平成23年8月30日(2011.8.30)
【出願人】(502147465)ジャパンスーパーコンダクタテクノロジー株式会社 (56)
【Fターム(参考)】