説明

ウオーターズ・インベストメンツ・リミテツドにより出願された特許

71 - 80 / 80


HPLCシステムの実用流路内の流体のナノスケールの流量を監視し、制御するための方法および装置。第1の流量センサが、第1の分流器と流体T字管の間の第1の流路に配置される。第2の流量センサが、第2の分流器と流体T字管の間の第2の流路に配置される。第1の再循環流量制限機構が、第1の分流器と流体連絡する第1の再循環流路に配置される。第2の再循環流量制限機構が、第2の再循環通路に配置される。各再循環流量制限機構の透過率は、それぞれの流路で所望される流量をもたらすように選択されることが可能である。各流路内でポンプの出力を制御する第1の流量センサおよび第2の流量センサの出力信号。 (もっと読む)


バルブ11が、軸受け17A、17Bを支持する第1のハウジング13を備え、その軸受けが流体伝達通路57を収容するステータ51に対して回転可能なロータ19に取り付けられた回転シャフト15を支持する。ロータ19は、一連のベルビルワッシャタイプのばね25によって押し付けられ、その力は、シャフト15を支持するスラスト軸受け65に、スパイダワッシャ79を押し付けるねじ山付きの荷重ナット87によって調整可能である。ロータ19は、キーピン117によってシャフト15に堅牢に連結され、そのピンは制止部129と協働して、ロータ19の回転を制限する。ロータ19の位置感知は、シャフト15に固定されたエンコーダディスク143、および第2のハウジング131に固定されたエンコーダチップ145によってもたらされる。
(もっと読む)


本発明は、多孔質シリコン(「DIOS」)上脱離/イオン化チップなどの多孔質吸光性半導体の表面上に向けて、能動的または受動的に空気をサンプリングするための装置、システム、および関連する方法を提供する。検体が吸着すると、この表面を、レーザー脱離/イオン化飛行時間型質量分析によって直接分析することができる。レーザー脱離/イオン化方法および引き続く質量検出方法には高温は不要であるので、検体の熱劣化が回避される。
(もっと読む)


本発明は、1つまたは複数の流体導管を連通して取り付けるための端末装置、およびそのような端末装置の製造方法を含む。本発明は、近位および遠位端を有する流体を移送するための導管、ならびに軸方向穴および近位面を有する実質的に円筒状のハウジングを備え、導管の近位端は、それらの軸を並行に軸方向穴内に格納され、軸方向穴は、熱可塑性ポリマー、最も好ましくはPEEKによって埋め戻され、導管が封止面を破り、熱可塑性ポリマーが導管およびハウジングを接着するように液状化されかつ冷却される。 (もっと読む)


分離装置2は、第1直径を備えるチャンバ16を囲む円筒壁11をもつ第1管10から形成され、装置は流体放出用の第1端部18をもつ。少なくとも2つの固定相の担体が、分離フリット24を担体の間にもつチャンバ11に充填される。第1管の10の内面に固定された少なくとも1つの端部フリット要素22が、チャンバ11のセクションに担体を含み、担体から形成されたベッド30、32を形成し充填することを可能にする。そのように組み立てられた分離装置2がガードベッドをもつナノカラムを形成するとき、ナノカラムの耐用寿命を延ばすために、ガードベッドを分離装置2から切断することができる。そのように組み立てられた分離装置2が2つの分析セクションと複数のガードベッドとを含むとき、複雑な分析を、耐用寿命が延ばされたカラムで行うことができる。 (もっと読む)


1つまたは複数の関心対象があるかどうかを判定するために同位体間の質量強度値、同位体比、および厳密な質量差が得られ、分析され得る。1つの実装では、この方法は質量強度値のなかから関心対象のピークを探す。どの質量が関心対象であるかを判定するために、同位体の組成を表す質量強度値が基準と比較される。本発明はそれに限定されるものではないが、このような基準の例には、特定の閾値以上の質量強度値、別の質量強度値の一定比率内の質量強度値、および/または質量自体の間の分離が含まれる。オプションとして、基準に許容差を付与してもよい。質量が関心対象であることが判明すると、LC−MS−MS、GC−MS−MSおよびMALDI−MS−MSシステムのような分析システムが使用される場合、関心対象である質量の1つまたは全てについてMS/MSが自動的に起動される。 (もっと読む)


本発明の実施形態は、多孔質シリコン上でイオン化脱離を実施するための基板、このようなイオン化脱離を実施するための方法およびこれらの基板の製造方法を対象とする。シリコン上でイオン化脱離を実施するための基板を対象とする一実施形態は、式(I);または式(II)の式を有する表面を有する基板を含む。上の式で、XはHもしくはYであり、Xの少なくとも25モルパーセントはYであり、Yは、ヒドロキシルまたは−O−RまたはO−SiR,R,Rであり、R、RおよびRは、CからC25の線状、環状または分岐状のアルキル、アリールまたはアルコキシ基、ヒドロキシル基またはシロキサン基からなる群から選択され、R、RおよびRの基は、置換されていないか、または1つまたはそれ以上の基(例えば、ハロゲン、シアノ、アミノ、ジオール、ニトロ、エーテル、カルボニル、エポキシド、スルホニル、陽イオン交換体、陰イオン交換体、カルバメート、アミド、尿素、ペプチド、タンパク質、炭水化物、および核酸官能基)で置換されている。

(もっと読む)


一つ以上の所定のオリフィス(14)を有するカバースリップ(12)を備えるプラットフォームの表面に沿う、流体の交差汚染を防止するように設計された装置が開示されている。
(もっと読む)


真のクロマトグラフィおよびMSピークがメタボノミクスで使用するために識別されるように、収集されたLC−MSまたはLC−MS/MSデータの集合を縮小する方法が開示されている。識別されたピークは、マスタエンティティリストに表示される1バッチの試料に対するLC/MS、GC/MS、DIOS−MS、またはMALDI−MS信号および応答のリストを作成するために使用される。試料はマスタエンティティリスト内にある。その後、マスタエンティティリストに載っている試料は、バイオマーカーを自動的に識別するためにケモメトリクスを適用するのに先立って同位体クラスタ分離および付加体除去を受ける。PLS−DAまたはPCA分離に関与するものとして識別された信号についてLC−MS/MSまたはLC/MS、GC/MS、DIOS−MSまたはMALDI−MS収集リストが生成される。LCまたはGC保持時間、正確な質量およびMS/MSスペクトルを知られている化合物のデータベースと比較し、生物学的指標に関連する識別された化合物を新しい化合物データベースに格納することができる。
(もっと読む)


クロマトグラフィー分離用の新規材料、それらの調製方法、ならびに前記クロマトグラフィー材料を含む分離装置。特に、第2の材料の表面と化学的に相互作用できる支持骨格官能基を含み重合した支持骨格ナノコンポジット(PSN)を備えるハイブリッド無機/有機モノリス材料が記載される。このハイブリッド無機/有機材料では、従来技術のモノリス材料に比べて、壁との付着性が向上し、収縮に対する耐性が向上している。モノリスの付着性が向上したことにより、内径(I.D.)≧50μmをもつキャピラリカラムの作製が可能である。
(もっと読む)


71 - 80 / 80