説明

カール ツァイス マイクロスコピー ゲーエムベーハーにより出願された特許

1 - 10 / 71


【課題】スリット絞りに付随する深さ解像度の低下なしに、速い撮像を可能にする。
【解決手段】査型レーザ顕微鏡が提供され、この顕微鏡は、照明用放射線源(105)から放出された照明用放射線経路(B)内の照明用放射を試料(103)に向けるビーム・スプリッタ(113)を備えており、ビーム・スプリッタ(113)は、試料(103)で鏡面反射された照明用放射を検出器機構(104)へは通過させず、そのために照明用放射線経路(B)の瞳内に配置されており、かつビーム・スプリッタ面上の、光軸(OA)の突破点を中心とする円上にある少なくとも3つの点で照明用放射のためにミラー・コーティングされたビーム・スプリッタ面(122)を有することによって、部分的にミラー・コーティングされており、これにより、試料(103)一面に周期的に分布する照明スポットの形の干渉パターンが試料(103)内に生じる。 (もっと読む)


【課題】大表面半透明物体(1)の透過特性及び/又は反射特性を判定するための光学測定方法を提供する。
【解決手段】方法は、特に表面を被覆された基板(1)の製造時のプロセス監視及び品質検査に用い得る。本発明は更に本方法を適用する光学測定装置に関する。本発明によれば、透過特性及び反射特性は、連続して、物体(1)の第1の大表面(3)が第1の照明装置(9)により照明され、光検出器(14)が全透過率を測定し、第1の大表面の反対側に第1の大表面と平行に位置する物体(1)の第2の大表面(2)が第2の照明装置(7)により照明され、光検出器(4)が拡散透過率を測定し、任意選択で、物体(1)の第1の大表面(3)が第1の照明装置(9)により照明され、光検出器(4)が反射率を測定し、及び/又は物体(1)の第2の大表面(2)が第2の照明装置(7)により照明され、光検出器(14)が反射率を測定するという方法で測定される。 (もっと読む)


【課題】測定装置を較正するため、較正位置に移動した場合にも、より高い正確性で較正できる較正方法を提供する。
【解決手段】光出口開口部17を含む中空体3と光検出器4,5および光源6は、測定位置から較正位置へスイッチするため、回転可能である。中空体は、その内部に拡散散乱層15があり、光源から発せられる光は、中空体の内部で全方向に拡散され、この拡散光の一部は、光出口開口部を通して中空体を出る。測定装置の位置に応じて、その後、試料X(測定位置)へ、又は、参照基準7(較正位置)へ通過する。そこから、少なくとも部分的に、光出口開口部を通って中空体の中へ送り戻される。第1光検出器4は両位置において光出口開口部を通って中空体の中に入射する光を受信するよう整列され、第2光検出器5は両位置において拡散散乱層による散乱光を受信するよう整列される。 (もっと読む)


【課題】レーザ走査顕微鏡およびその動作方法を提供する。
【解決手段】少なくとも2つの検出チャネルを備えるレーザ走査顕微鏡およびその動作方法であって、該レーザ走査顕微鏡は、50:50の分割比とは異なる分割比で試料光を分割する少なくとも1つのビームスプリッタ(ST)、および検出チャネルでの分割比が50:50の場合には増幅率が異なって調整された検出器(DE)のうちの少なくとも一方を有し、または光分割比が同じ場合には少なくとも1つの検出チャネルに光減衰器を有する。 (もっと読む)


【課題】顕微鏡光学系の光学誤差の調整を容易に行う。
【解決手段】光源10と、走査装置S及び対物レンズ4を通る、空間的に限定された、好ましくは点状の照明光点によってプローブ5を照明する照明ビーム光路と、前記対物レンズ及び前記走査装置を通って検出ビーム光路に達するプローブ光を検知する検出ビーム光路とを備えるレーザ走査顕微鏡において、検出ビーム光路には、空間的に限定された検出光点へのプローブ光を1つの面に焦点調節する焦点調節手段が設けられており、この面には、調整可能なピンホールをシミュレーションするために、個々に読み取り可能な受光素子エレメントのマトリクス形式の配列が設けられている。 (もっと読む)


【課題】連続スキャン・モードでサンプルを撮影するとき、そのサンプルが受ける負荷を軽減すること。
【解決手段】走査しつつサンプル上を案内される照射光分配機能を持ち、走査から生じて検出されるサンプル光から該サンプルの像が撮影されるレーザ走査型顕微鏡であって、該サンプルが毎秒画像X枚のフレーム率で走査され、機器パラメータ設定モードでは、走査速度が等しい状態で、好ましくはサンプル保護のため、スキャナ18による走査時のフレーム率を小さくしてX,Y>1の比率X/Yとするレーザ走査型顕微鏡。 (もっと読む)


【課題】偏光状態を切り換える顕微鏡および顕微鏡検査法を提供する。
【解決手段】ある部分領域でその断面に沿って変調周波数で位相変調される少なくとも1つの照明光線と、照明光線を試料に集束するための顕微鏡対物レンズと、検出光路と、少なくとも1つの復調手段とを有する顕微鏡であって、少なくとも1つの偏光変更要素が照明光路内に設けられており、その偏光変更要素に、位相影響度が異なる少なくとも2つの領域を有する位相板が後置されている顕微鏡。第2の実施形態は、少なくとも1つの照明光線と、該照明光線を試料に集束するための顕微鏡対物レンズと、少なくとも1つの変調器を備える検出光路とを有する顕微鏡であって、照明光線が、少なくとも2つの光路に交互に分配され、第1の光路とは異なる場モードを形成するための要素が光路の1つに設けられており、異なる場モードを有する2つの光路が焦点で重畳される顕微鏡に関する。 (もっと読む)


【課題】データ取得及び/又はデータ処理のプロシージャが複雑である場合でも、種々の調整可能パラメータの影響についての情報をユーザに提供する。
【解決手段】顕微鏡システムは、データ取得のための顕微鏡(5〜11)と、データ取得の際の顕微鏡の制御及び顕微鏡により取得された生データのデータ処理を実行するように構成された計算装置2とを備える。顕微鏡及び計算装置2は、複数の調整可能パラメータの各々にそれぞれ設定された値に基づいて、データ取得及び/又はデータ処理を実行するように構成されている。計算装置2は、光出力装置3を介して、上記複数の調整可能パラメータから選択された調整可能パラメータに応じて、グラフィック・データ16を選択的に出力する。グラフィック・データ16は、データ取得及び/又はデータ処理の基礎となるプロシージャの少なくとも1つのステップにおける、上記選択された調整可能パラメータの影響を表している。 (もっと読む)



Notice: Undefined index: from_cache in /mnt/www/gzt_applicant_list.php on line 189

2次元または3次元の物体位置調整のための高解像度顕微鏡および方法は、以下の方法ステップa)からo)の少なくとも1つを含む。a)アナモルフィックレンズ、好ましくは結像中の円柱レンズを使用して、オリエンテーションおよび形状により、結像された粒子または分子の垂直(Z)ポジションが検出されること、b)検出ビーム経路内で、異なった光学的経路長を備えた少なくとも2つの検出部分ビーム経路が分割され、検出器上でずらして検出されること、c)活性化または切り替えを、多光子励起プロセス、好ましくは2光子励起によって行うこと、d)点スキャンニングの活性化または切り替えを行うこと、e)ラインスキャニングの活性化または切り替えを行うこと、f)試料の励起および試料光の検出を広視野モードで行うこと、g)手動または自動であらかじめ定められた試料範囲が活性化されるまたは切り替えられること、h)活性化または切り替えをAOTFまたはSLMまたはDMDによって行うこと、i)スペクトル分割要素、好ましくは格子によってレーザパルスが活性化または切り替えのためにスペクトル分割されること、j)SLMまたはDMDがビーム路内の格子の後ろで、分割されたレーザパルス部分の制御された選択を行うこと、k)レーザ広視野励起は、SLMまたはDMDによってもたらされること、l)ROIがSLMまたはDMDによって選択されること、m)多光子切り替えまたは活性化をマイクロレンズアレイ、好ましくは円柱レンズアレイによって行うこと、n)切り替えおよび/または励起をラインスキャナによって行うこと、o)ライン検出を、空間分解センサによって行い、その際それぞれ複数のセンサから成る、少なくとも2つのセンサ列を備えたスリット絞りの調整によって、試料光に照らされること。 (もっと読む)


1 - 10 / 71