説明

Fターム[2F056KC12]の内容

温度及び熱量の測定 (5,497) | 保護管入熱電対の構造 (264) | 熱接点部について記載されるもの (14)

Fターム[2F056KC12]に分類される特許

1 - 14 / 14


【課題】混練操作中の高粘度材料等の温度の計測に適した、測定対象物の温度変化を迅速に感知する高粘度材料用熱電対温度検出器を提供する。
【解決手段】この熱電対温度検出器1は、熱起電力を生ずる2種の異なる組成の金属線2a,2bの一端同士を溶着して構成される熱電対エレメント2を保護管5内に収容し、先端の感温部3を残して保護管の外周を断熱性の絶縁膜筒10で被覆する。この保護管を測温材料処理機の機体に挿入して強固に固定するために、それにシール管12を被せて二重管構造とし、保護管の周囲の絶縁膜筒と上記シール管との間の空隙11により断熱層を形成させ、上記測温材料処理機の機体と保護管との間の熱移動を抑止する。シール管12から突出した保護管の感温部において、流動する高粘度材料の温度を検出する。 (もっと読む)


【課題】温度測定対象物との接触安定性を保つと共に、温度測定対象物の変動温度への応答性が良好な温度センサおよびその温度センサを用いた温度測定装置を得る。
【解決手段】シース熱電対1は、シース部1aおよび補償導線部1bからなり、熱電対接点がシース先端からある程度距離を置いたところに位置するように構成されている。熱電対の正極側1cと負極側1dが絶縁物1eで固められ、シース先端からある程度距離を置いたところに位置する熱電対接点が温度検知部1fを構成している。そして、シース熱電対1のシース部先端付近と先端からある程度距離を置いた位置を、シース熱電対支持手段2の第1固定部2aおよび第2固定部2bで固定して温度センサ3を構成している。 (もっと読む)


タイヤ温度測定装置および方法が開示されている。該装置は、測定接点と一対の第1および第2の導電性リードとを有する熱電対を含む。測定接点はタイヤに設けられた通路に取り付けられる。一対の第1および第2の導電性リードはタイヤ内の通路を通って延び、界面でタイヤから抜け出る。パッチは界面でタイヤに取り付けられる。一対の第1および第2の導電性リードは、界面からパッチに設けられた通路内へと延びる。第1および第2の導電性リードは、第1および第2の導電性リードがタイヤの表面から抜け出る界面でパッチによって取り囲まれる。 (もっと読む)


【課題】 赤外線ランプを備えた加熱炉にて温度測定に用いられても、保護管が失透することがなく、高い精度でかつ再現性よく温度測定できる温度センサを提供する。
【解決手段】2本の異種金属からなる熱電対52と、熱電対を収容する透明な保護管51とを備える。熱電対の測温部が所定の金属部材53で覆われ、保護管に屈曲部51aが形成され、この屈曲部に、保護管の一方に挿通された熱電対の測温部を位置させると共にこの屈曲部が加熱炉F内で処理対象物Wに近接配置されるように構成される。そして、保護管の一端から所定の気体を供給してその他端から排出するように気体を流す気体供給手段6を設けている。 (もっと読む)


温度測定を提供するための改善された熱電対アッセンブリが提供される。熱電対アッセンブリは、測定チップを有するシースと、シース内に収容される支持部材と、支持部材内に収容された第1線及び第2線とを含む。第1線及び第2線の各端部が互いに融合されてそれらの間に電熱対ジャンクションを形成する。凹部領域が支持部材の遠位端に形成され、電熱対ジャンクションが、凹部領域がシースの測定チップに対して実質的に固定された位置に電熱対ジャンクションを維持するように凹部領域のベースに固定的に配置される。 (もっと読む)


【課題】
熱応答が速く、かつ耐腐食性等の長期信頼性を兼ね合わせた内燃機関の各部ガス温度センサーを実現する。
【解決手段】
熱電対をLTCCを接着剤として、同一部材より成る基板に挟み込みサンドイッチ構造とすることで達成させる。特には、熱電対、特に白金と白金−ロジウムの合金から成る熱電対の先端を溶接し、この熱電対を、同一部材から成る無機基板でサンドイッチ状に挟み込む構造となる。同一部材から成る、基板を固定する方法として、LTCC,ガラスシート,無機接着剤で前記の同一部材から成る基板を固定する。特にLTCCを用いる場合は、LTCCのグリーンシートをあらかじめ、熱電対を基板上に設置する形状に抜いておくことで、熱電対の接触防止構造を兼ねることができ、作業性に優れたサンドイッチ型の温度センサーを形成できうる。 (もっと読む)


半導体処理リアクタ内で使用される熱電対について記載される。熱電対は、端部に測定先端と、他端に開口部と、を有する、シースを含む。長さに沿って形成されるボアを有する支持部材は、シース内に配置される。異種金属から形成される一対のワイヤは、ボア内に配置され、ワイヤの端部は、融合され、接点を形成する。ワイヤは、ボアの長さに沿って延在する。ワイヤが、ボアから延出するにつれて、空間的または物理的に分離され、その間の短絡を防止する。また、ボアから延出するワイヤの両端は、長手方向に自由に熱膨張し、それによって、ワイヤが微量の滑動によって故障する潜在性を低減または排除する。
(もっと読む)


【課題】 耐久性と測温応答性に優れた温度センサを提供する。
【解決手段】 温度センサ5はアルミナなどのセラミックス製保護管11内に熱電対20を装着して構成される。セラミックス製保護管11は射出成形にて成形され、厚みが一定厚の基部12と、この基部12に連続するとともに厚みが先端に向かって徐々に薄くなるテーパ部13と、このテーパ部13に連続するとともに最も厚みが薄くなった先端部14と、前記基部12とテーパ部13の境界部付近に設けられるフランジ部15からなり、前記熱電対20はW−Re素線21,21と、この素線21,21の結合部を被覆抱持するガラス玉22と、コネクタ23からなる。そして、ガラス玉22はシリコーン樹脂(SiO)を主体とした充填材24にて前記セラミックス製保護管11の先端部14内に押し込められて固定されている。 (もっと読む)


【課題】マイクロ流路を流れる流体の温度を迅速且つ正確に測定することのできる温度測定デバイスを提供すること。
【解決手段】マイクロ流路(7)を形成する流路形成体(2)と、マイクロ流路(7)を流れる流体の温度を感熱部(31a)により検出する温度センサ(3)とを備えた温度測定デバイス(1)において、流路形成体(2)が低熱伝導性の材料により構成されると共に、温度センサ(3)はマイクロ流路(7)を流れる流体に直接に感熱部(31a)が接するように流路形成体(2)に設けられたことを特徴とする。 (もっと読む)


【課題】簡単な構造で、かつ低コストで、検出温度のバラツキを抑える。
【解決手段】温度を検出する複数の熱電対と、この熱電対を内部に納める保護管とを備えた多点温度センサである。前記各熱電対を支持した状態で前記保護管内に挿入されて固定される支持部材と、当該支持部材に設けられ、前記各熱電対を前記保護管内の設定位置で前記支持部材に固定する固定部とを備えた。前記固定部は、各設定位置の周囲に前記熱電対の2本の金属線をかける切り欠きや、各設定位置に前記熱電対の2本の金属線を通す2つの孔等を備えた。 (もっと読む)


【課題】熱電対素線の温接点の位置がドローイング時に大きくズレることがなく、X線による確認を省略することも可能となり、コストを大幅に削減できるとともに、破断や弱部発生を未然に防止でき、高品質を維持できるシース熱電対を提供せんとする。
【解決手段】温接点がシース軸方向途中部に位置し且つ温接点よりプラス側およびマイナス側の各素線がシース両端に向けて互いに反対の側に延びる単軸型熱電対素線を設けるとともに金属シースの隙間を埋めるための無機絶縁物を設け、金属シースの両端側をそれぞれ支持したものであり、温接点外周面を一方の素線の端部外周から他方の素線の端部外周に向けてなだらかに連続する形状とし、前記単軸型熱電対素線と無機絶縁物を前記金属シース内に組み込んだ状態でドローイング加工により所定径に縮径させて構成した。 (もっと読む)


本発明は、保護管及び前記保護管内に設けられるケーブル又はワイヤの形態の温度測定手段を備えた温度測定装置であって、前記温度測定手段は、ケーブル又はワイヤ線上に温度感知センサー部が存在し、前記温度測定手段の両端に張力を印加することで、保護管内で前記張力により温度感知センサー部を保護管の軸方向に移動させることができることを特徴とする温度測定装置;前記温度測定装置が反応管内に軸方向に並設された反応管;及び前記温度測定装置又は前記反応管を一つ以上備えた反応器を提供する。
(もっと読む)


【課題】 高温で長期間使用すると熱電対芯線が劣化し、熱起電力が減少して測定値に誤差が生じ、また、シャントエラーと言われる高温において絶縁材の抵抗値の低下に起因し、(+)側熱電対芯線と(−)側熱電対芯線との間に漏れ電流が発生し、測定値に誤差が生じるという問題点を解決することを目的とする。
【解決手段】 金属製のシース内に絶縁材を介在させてニッケル及びクロムを主とした合金の(+)側熱電対芯線と、ニッケルを主とした合金の(−)側熱電対芯線とを収容したシース型K電対において、高温で長期間使用すると熱電対芯線が劣化し、熱起電力が減少して測定値に誤差が生じる問題を解決するために、(+)側熱電対芯線径をシース外径の15〜22%、(−)側熱電対芯線径をシース外径の23〜27%に形成したシース型K熱電対とした。
また、シャントエラーの問題を解決するために、(+)側熱電対芯線径をシース外径の23〜27%、(−)側熱電対芯線径をシース外径15〜22%に形成したシース型K熱電対とした。 (もっと読む)


【課題】 応答速度を速くし、熱容量を小さくし、優れた可撓性を有し、ロボットなどの狭い箇所への配置を可能とするシース型熱電対の提供を目的する。
【解決手段】 SUS316、SUS310SあるいはNCF600の金属製のシース内にN熱電対素線、E熱電対素線、J熱電対素線、T熱電対素線あるいはK熱電対素線の芯線を、アルミナ(Al2 3 )あるいは酸化マグネシウム(MgO)の絶縁材を介在させて収容し、芯線と絶縁材を収容したシースを全長にわたり縮径させ、捩れを防止してシースを巻取り、シースの外径を0.1mm以下とした極細シース熱電対とした。 (もっと読む)


1 - 14 / 14