説明

Fターム[2F067AA51]の内容

Fターム[2F067AA51]の下位に属するFターム

Fターム[2F067AA51]に分類される特許

41 - 54 / 54


【課題】部品が両面に実装された基板を検査するための検査装置を提供する。
【解決手段】基板の検査装置が実行する処理は、片面のみに電子部品が実装された基板の第1の光学画像とX線透過画像との各位置確認マークを一致させて、電子部品の基準画像を生成するステップ(S820)と、両面に電子部品が実装された基板の第2の光学画像と第2のX線透過画像との入力を受けるステップ(S830)と、第1の光学画像と第2の光学画像とを比較して位置ずれ量を算出するステップ(S840)と、位置ずれ量を用いて第1の光学画像を補正して第3のX線透過画像を作成するステップ(S850)と、第2のX線透過画像から第3のX線透過画像を差し引いて第4のX線透過画像を導出するステップ(S860)と、第4のX線透過画像に基づいてはんだ付け部の合否を判定するステップ(S870)とを含む。 (もっと読む)


【課題】微細ラインパターン上のエッジラフネスのうち、デバイスの作成上あるいは材料
やプロセスの解析上特に評価が必要となる空間周波数の成分を抽出し、指標で表す。
【解決手段】エッジラフネスのデータは十分長い領域に渡って取得し、パワースペクトル
上で操作者が設定した空間周波数領域に対応する成分を積算し、測長SEM上で表示する。
または、十分長い領域のエッジラフネスデータを分割し、統計処理と理論計算によるフィ
ッティングを行って、任意の検査領域に対応する長周期ラフネスと短周期ラフネスを算出
し測長SEM上で表示する。 (もっと読む)


【課題】物品の質量検査と形状検査とを同一装置内で実現可能なX線検査装置を得る。
【解決手段】質量推定部40は、X線検出部8によって検出された透過X線のX線量に基づいて検査対象物12の質量を推定する。質量判定部41は、質量推定部40から入力されたデータS1に基づいて検査対象物12の質量の正常/異常を判定する。画像作成部42は、X線検出部8によって検出された透過X線のX線量に基づいてX線透過画像を作成する。形状判定部43は、検査対象物12の形状の正常/異常を判定する。不良判定部44は、質量判定部41及び形状判定部43による各判定結果の少なくとも一方が異常である場合に、検査対象物12が不良品であると判定する。 (もっと読む)


【課題】製品の3次元的内外面形状を測定し、測定したデータから設計、製造に必要なCADデータを作成し、製品を再現化する3次元形状測定方法および3次元形状測定装置を提供する。
【解決手段】本発明に係る3次元形状測定方法は、対象物の表面形状および内部形状のそれぞれを撮像し(St−1、St−2)、撮像した内部形状を点群データに変換し、変換した点群データを基準マーカを基点に重ね合わせて合成する内部形状合成工程(St−3)と、撮像した表面形状を点群データに変換し、変換した点群データを基準マーカを基点に重ね合わせて合成する表面形状合成工程(St−4)と、前記内部形状合成工程(St−3)で作成した内部形状合成点群データと前記表面形状合成工程(St−4)で作成した表面形状合成点群データとを合成して一体化する内部表面データ合成工程(St−5)と、この内部表面データ合成工程(St−5)で作成したデータをCADデータに変換する3次元形状変換工程(St−6)とを備える。 (もっと読む)


【課題】フォトマスク又はウェハのホール及びドットパターン形状のラフネスを計測する際に、測定者が計測する箇所を指定する必要がなく、迅速かつ高精度なラフネス計測が可能となるパターン形状計測装置及びパターン形状計測方法を提供する。
【解決手段】計測対象パターンを入力する計測対象パターン入力部11と、計測対象パターンの輪郭線を抽出する輪郭線抽出部12と、輪郭線の重心を算出する重心算出部13を有する。また、輪郭線と重心との距離を算出する距離算出部14と、計測対象パターンと比較するためのリファレンスパターンの輪郭線とそのリファレンスパターンの輪郭線の重心との距離を算出する距離算出部15と、距離算出部14が算出した距離と距離算出部15が算出した距離との差分を算出する差分算出部16と、差分からラフネス値を算出するラフネス値算出部17とを有する。 (もっと読む)


【課題】
いかなるタイプのパターンであっても、その断面形状を順テーパから逆テーパまで、非破壊的に、正確かつ定量的に計測し得るパターン測定技術を提供する。
【解決手段】
走査型顕微鏡の制御系ないし隣接する端末から反射電子ないしは2次電子強度の分布を処理し、エッジ近傍を表わす領域の形状を数値化しそれらの結果からテーパ傾向を算出する。走査型顕微鏡で得られた上空写真の画像データから、パターンエッジ近傍の領域の形状を数値化することによって断面形状のテーパ傾向を評価する。上空観察結果のみから逆テーパ、垂直、順テーパなどのエッジの傾向を評価することが可能になる。 (もっと読む)


【課題】 短時間でかつ高い精度でパターンの形状評価及び位置合わせを行なう。
【解決手段】 検査パターンの輪郭データと設計パターンの距離変換データとの演算により距離輪郭データを生成し、この距離輪郭データに基づいて形状一致度を算出する。 (もっと読む)


【課題】プログラム可能な反射板アレイを使用して捕捉されたマイクロ波画像のバックグラウンドノイズを最少にするシステムを提供すること。
【解決手段】マイクロ波源と、マイクロ波受信器と、各アンテナ素子が、ターゲットにマイクロ波放射を反射し、前記ターゲットから反射されたマイクロ波照明を前記マイクロ波受信器の方に反射するように位相ずれをプログラムされた反射板アンテナアレイと、前記複数のアンテナ素子に第1の位相ずれと第2の位相ずれをプログラムすることができ、前記それぞれの複数のアンテナ素子の前記第1の位相ずれと前記第2の位相ずれが180度異なるプロセッサとを具備し、前記プロセッサが、さらに、前記第1のマイクロ波画像と前記第2のマイクロ波画像の組み合わせからノイズを最小にするように動作可能である、マイクロ波画像形成システム。
(もっと読む)


【課題】 非導電性材料からなる球体の表面に導電膜が被覆されてなる導電性粒子の表面被覆の欠陥を迅速にかつ高精度に検出することを可能とする表面検査方法を提供する。
【解決手段】 非導電性材料からなる球体の表面を導電膜で被覆してなる導電性粒子3の表面欠陥を検査するにあたり、複数の導電性粒子3を重なり合わないように配置し、複数の導電性粒子3をX線カメラ6で撮影し、X線による画像を得、複数の導電性粒子3を撮影した画像における導電性粒子3の濃度に基づき、導電性粒子の表面の欠陥を検出する各工程を備え、上記表面被覆の欠陥を検出する工程において、表面被覆に欠陥が存在しない場合の導電性粒子の画像に対応した基準データと、X線カメラで撮影された導電性粒子の画像データとを比較することにより、表面欠陥の有無を検出する、導電性粒子3の表面検査方法。 (もっと読む)


【課題】ノイズの多い微細ラインパターンのSEM観察像からエッジラフネスの程度を精確かつ迅速に評価するために、計測されるエッジラフネスの指標のうち、装置のランダムノイズの寄与を1枚の画像データをもとに計算する。またエッジラフネス指標の計測値から装置起因のラフネスを差し引いて、パターンに実際に存在するラフネスの程度を計算する。
【解決手段】エッジ位置のゆらぎのうち、ランダムなノイズに起因する量(分散値)は統計的にみて、エッジ位置データをN個平均したときに1/Nに減少する。この性質を利用し、1枚の画像に対してさまざまなパラメータSの値で画像を縦方向に平均化したのち、エッジラフネス指標を求める。エッジラフネス指標のS依存性を分析し、分散値が1/Sに比例する項をノイズ起因とする。 (もっと読む)


【課題】 プラスチックシートに貫通形成された微小孔の形成状態の良否判断を行う場合、電子顕微鏡等を用いての高倍率での観察が必要である。この場合、観察が容易でなく、また良否判断をするには形成状態を熟知している必要がある。
【解決手段】 穿孔前のプラスチックシートに薄膜を設け、プラスチックシートに穿孔して微小孔を貫通形成する。この後、プラスチックシートの薄膜を設けた面を観察面として、穿孔して貫通形成された孔部の周辺の皺や亀裂を観察することにより、微小孔の形状の検査をする。 (もっと読む)


【課題】計測されるべき対象物(210)をマイクロ波放射線を使用して計測する解決策を提供する。
【解決手段】フィードバック結合された能動ユニット(100)によって発振エネルギを発生する。この解決策は、少なくとも一つの発振器で共振を発生することを含む。各発振器は、少なくとも一つの開放共振器(200)を含み、各共振器は、計測されるべき対象物(210)を共振器の機能的部分として使用することによって、少なくとも一つの能動ユニット(100)に連結され、計測されるべき対象物(210)により、計測されるべき対象物(210)の表面(212)の位置に応じた共振周波数を各発振器で発生する。計測部分(420)は、計測されるべき対象物(210)の少なくとも一つの特性を各発振器の共振周波数に基づいて決定する。 (もっと読む)


【課題】農作物の等級をより正確に判別する。
【解決手段】農作物Aの内側の良否と農作物Aの外側の良否とを総合して等級を判別する。 (もっと読む)


【課題】走査電子顕微鏡において、観察視野の選択時に有効である異種倍率像の同時表示機能では、広い領域の走査に必要な高い感度の偏向コイルをそのまま用いて高倍率とするために走査信号の振幅を縮小していたので、高倍率像走査時には、偏向コイル駆動電流のS/N比が低下し、倍率比の大きな異種倍率像を得る事が困難であった。
【解決手段】高感度偏向コイルと低感度偏向コイルを使用し、低倍率像は、高感度偏向コイルを走査し、高倍率像は低感度偏向コイルを走査することで、S/N比低下の問題を解決し、倍率比の大きな異種倍率像を得る事が可能である。
【効果】倍率比の大きな異種倍率像を表示できるので、効率良く視野選択ができ、操作性を向上する効果がある。 (もっと読む)


41 - 54 / 54