説明

Fターム[2F067RR12]の内容

波動性又は粒子性放射線を用いた測長装置 (9,092) | 信号処理、電源関連 (1,540) | 信号の変換をおこなうもの (297) | A/D変換、多値化、2値化 (176)

Fターム[2F067RR12]に分類される特許

161 - 176 / 176


【課題】
電子線を照射し、その二次電子などを検出する検出系では高速で検出するには検出器の面積が重要なファクタである。現在の電子光学系、検出器の技術では一定以上の面積の検出器が必要で、面積に逆比例する周波数で制約を受け、200Msps以上の検出は実質的に困難である。
【解決手段】
例えば必要面積4mm角、4mm角時の速度を150Mspsとして400Mspsで検出するには、単体の高速な2mm角の検出器を4個並べ、それらを増幅後、加算してA/D変換する。又は、二次電子偏向器で順次8mm角の検出器に二次電子を入射させ、100Mspsで検出、A/D変換後並べる。いずれも、4mm角の面積と400Mspsの速度を達成可能である。
(もっと読む)


【課題】
計測パターン形状ごとに,計測寸法差の評価,すなわち合わせ込みに必要なパラメータの算出と,該算出パラメータを用いた計測寸法差の合わせ込みを行う必要があった。
【解決手段】
走査型電子顕微鏡を用いてパターンの寸法を計測する方法において、表面にパターンが形成された試料に収束させた電子線を照射して走査し、収束させた電子線の照射により試料から発生する2次電子を検出して試料表面に形成されたパターンの画像を取得し、予め記憶手段に記憶しておいた装置間での画像プロファイルの特徴量を合わせこむためのフィルタパラメータ(関数)を読み出し、読み出したフィルタパラメータを用いて取得したパターンの画像から画像プロファイルを作成し、作成した画像プロファイルから前記パターンの寸法を計測するようにした。 (もっと読む)


【課題】高スループットでしかも高い信頼性で試料資料の検査、評価が可能な検査方法、検査装置の提供。
【解決手段】電子線装置は、荷電粒子線を発生する荷電粒子線発生手段71と、前記一次荷電粒子線を複数本走査させて前記基板に照射する一次光学系72と、前記荷電粒子線の照射により前記基板から放出された二次荷電粒子線が投入される二次光学系74と、前記二次光学系に投入された二次荷電粒子線を検出して電気信号に変換する検出器を有する検出系76と、前記電気信号に基づいて基板の評価を行う処理制御系77と、を備え、前記パターン形成面を複数の領域に分割して、領域毎にパターンを形成することにより全体のパターン形成が行われるパターン形成面の評価において、上記分割した領域のつなぎの領域を選択して上記評価を行う。 (もっと読む)


【課題】半導体試料等の表面に形成されたパターン等の体積減少を抑制、或いは減少に関わらず正確な測長を行う。
【解決手段】荷電粒子線を試料上で走査し、試料より放出された二次電子に基づいて、試料上に形成されたパターン等の線幅等を測長する荷電粒子線装置において、試料の物性に基づいて決定される照射密度を上回らないように前記荷電粒子線の走査線間隔を設定する。或いは予め記憶された近似関数に基づいて測長値を演算する。 (もっと読む)


【課題】走査型電子顕微鏡の撮像画像の画質を向上させる。
【解決手段】1次電子ビーム108を試料ウェハ106に照射する電子源101、加速電極102、集束レンズ103、偏向器104、対物レンズ105等と、試料ウェハ106から発生する放出電子信号109をサンプリングしてデジタル画像を取得する検出器110、デジタル化手段111等と、取得した前記デジタル画像の記憶、表示もしくは処理を行う画像メモリ116、入出力部118、画像生成部115、画像処理部114等とを備えた走査型電子顕微鏡に、前記記憶、表示もしくは処理されるデジタル画像の画素サイズよりも細かい間隔で放出電子信号109をサンプリングするサンプリング手段と、サンプリングされた放出電子信号109を元に画素サイズを大きくしてデジタル画像を生成する画像生成処理手段とを設ける。 (もっと読む)


【課題】 比較的簡単なソフトを用いて、電極等の尖頭部の位置を正確に検出することのできるX線透視装置を提供する。
【解決手段】 透視対象物Wを透過したX線を検出するX線検出器2の出力に基づくX線透視像を画像処理する画像処理装置7に、透視対象物Wの尖頭部の座標を計測する機能を持たせ、その機能においては、X線透視像の輝度情報から粒子解析に基づいて透視対象物の端点を検出して、尖頭部の直交座標のうちの一方の座標を決定し、その座標情報に基づくエッジ検出により、他方の座標を決定する。 (もっと読む)


【課題】X線透過法を用いて走行状態の被測定シートの単位面積当り重量および/または厚みを精度良く簡単に測定する。
【解決手段】被測定シート10の走行パスの両側に配置されたX線源11とX線検出器12の相対位置を維持し、走行パスの幅方向に幅方向外側を含む範囲内で往復走査させ、走行状態の被測定シートの単位面積当り重量および/または厚みをほぼ連続的に測定する際、X線源のX線照射位置が走行パスの外側にずれた状態の時にX線ビームを直接にX線検出器で検出した照射X線量のデータと、シートがX線源およびX線検出器の対向間隔部を走行する時にX線ビームがシートを透過した透過X線をX線検出器で検出した透過X線量のデータおよび規定値データを演算部30で処理する。この際、演算部は、X線源およびX線検出器の1回の片道走査毎に得られた照射X線量のデータにより照射X線量のデータを自動的に更新する。 (もっと読む)


【課題】 スペクトルの半値幅を用いずに,スペクトルの面積に基づいて被解析層の厚さを解析することにより,解析処理の迅速化,解析処理にかかる時間の短縮化,解析精度の向上を図ること。
【解決手段】 単層或いは複数層からなる試料にイオンビームが照射されることによって上記試料で散乱した散乱粒子のエネルギースペクトルに基づいて,上記試料の深さ方向の組成分布の解析を行うよう構成されており,被解析層に相当するエネルギースペクトルが単独で出現するときの散乱角度(特定散乱角度)へ散乱した散乱粒子のエネルギーを実測し,この実測により得られた実測エネルギースペクトルに単独で出現する上記被解析層の単独エネルギースペクトルを抽出し,そして抽出された上記単独エネルギースペクトルの波形で囲まれたスペクトル面積に基づいて上記被解析層の厚さを算出する。 (もっと読む)


油圧アセンブリ(10)のシリンダ(12)内のピストン(14)の位置がマイクロ波パルスを用いて測定される。マイクロ波パルスは、ピストン(14)またはシリンダ(12)に接続された導体(22)に沿って送り出される。スライド部材(40)は、導体(22)にスライド可能に結合され、ピストンまたはシリンダと共に移動する。位置は、導体の端部およびスライド部材からの反射の関数として測定される。
(もっと読む)


【課題】農作物の等級をより正確に判別する。
【解決手段】農作物Aの内側の良否と農作物Aの外側の良否とを総合して等級を判別する。 (もっと読む)


【課題】 回転ステージの回転振れを測定するため、SEM等で拡大観察可能な測定円の描画を好適に行って回転同期振れRROの測定を高精度に行い、描画補償により描画真円度を高める。
【解決手段】 回転ステージ41に載置した基板11に偏向制御したビームEBを照射して所定パターンの露光を行う露光装置40において、回転ステージ41を回転させつつ基板11上の回転中心付近にビームEBを照射し、基板11上に全体がSEM等で拡大観察可能な小径の測定円5を描画し、該測定円5の計測より回転同期振れRROを測定し、実描画に反映する。 (もっと読む)


【課題】フォトマスク又はウェハのパターンを電子顕微鏡(SEM)から撮像し、得られたパターン画像を計測する方法において、そのパターン画像特有のチャージアップやフォーカスのボケによるパターン計測の信頼性の低下を防ぎ、パターン計測結果の信頼性を高めることを目的とする。
【解決手段】計測対象のパターンのSEM画像を取得し、計測するパターンを輪郭線を抽出処理し、該輪郭線の各点の近傍領域の濃度値から判別分析処理を行い判別分析処理によって算出したη値を統計解析処理し、画質の定量化し、信頼度の判定処理することにより、前記パターン計測の結果の信頼度を向上させるが可能となるパターン画像計測方法。 (もっと読む)


【課題】
SEMの2次電子画像信号量の傾斜角依存性を利用して平坦な面や垂直に近い面についても高精度な立体形状計測を可能にしたSEMによる立体形状計測方法およびその装置を提供することにある。
【解決手段】
本発明は、被計測対象パターンにおいて傾斜角変化に対して感度が低い領域(平坦部領域)a、c1については、チルト像取得部1521で観察方向φ(2)からチルト像(チルト2次電子画像)I(2)を取得し、形状計測部1523,1524で取得されるチルト像を用いて勾配(表面傾斜角)を推定し、該推定された勾配推定値(表面傾斜角推定値)を積分することによって立体形状S2a、S2cの計測を行うことで、高精度な3次元プロファイル(立体形状)の計測を可能にすることにある。 (もっと読む)


本発明は、高周波送信器(24)によりギガヘルツ周波数帯域の測定信号(28)を検査すべき建築資材(10)に少なくとも一回侵入させ、高周波受信器(38)により検出するようにした建築資材侵入性の材料強度測定の方法、とりわけ、壁、天井、および床の厚さを測定する方法に関する。
本発明によれば、高周波送信器(24)および/または高周波受信器(34)の異なる位置(20,22)で測定された測定信号の少なくとも2つの伝播時間から建築資材(10)の材料強度(d)が求められる。
さらに、本発明は上記の方法を実行する装置システム(12,40,140,240,340)にも関している。
(もっと読む)


本発明は画像内にあるオブジェクトをスケーリングする画像処理装置に関する。前記画像処理装置は、マーカの実際の寸法と、画像内にあるこのマーカのピクセル単位での寸法との間の関係から得られる較正係数に基づいて前記オブジェクトをスケーリングするキャリブレータを有し、ここでキャリブレータはさらに、前記画像内において識別される複数の異なる配向のマーカを使用して得られる複数の較正係数を生成する。画像(I)は、解剖学的構造(2)対してこれらオブジェクトの異なる位置合わせとなる、空間において異なって配向される複数のオブジェクト(3、8、9)を有する。前記オブジェクト(3)は計測ツールにリンクされ、これは前記オブジェクト(3)のピクセル単位での長さを計測し、マーカ(A)から決められる較正係数を使用して、前記オブジェクト(3)の実際の寸法を計算する。前記マーカは空間においてオブジェクト(3)と同様に位置合わせされる。画像(I)はさらに、計測ツールにリンクされるオブジェクトを有し、これは、これらオブジェクトのピクセル単位での夫々の長さに基づいてこれらオブジェクト(8、9)の実際の長さ、及び前記マーカ(B)を使用して決められる較正係数を計算する。好ましくは、別々のマーカに対応するオブジェクトがグループ化され、較正グループを形成し、これにより、較正係数の更新が同じ較正グループ内にある全てのオブジェクトに対する実際の寸法の自動更新となる。好ましくは、各較正グループはユーザの便宜に対し別々に識別される。本発明はさらに、画像内にあるオブジェクトのスケーリングを可能にするためのイメージングシステム、コンピュータプログラム及び方法にも関する。
(もっと読む)


【課題】 従来の半田付け状態を検査するためにサブトラクション処理を行うと、吸収係数の差の情報が画像化されるために、信号成分が小さくなり相対的にノイズが大きくなる。そこで、このノイズを軽減するためには、長時間撮影による積算が有効であるが、検査時間が長くなるといった問題があった。
【解決手段】 撮影条件を変えて同一部分におけるプリント基板上の実装部品の第1、第2のX線画像からエネルギーサブトラクション処理によって第3の画像を得、前記第1または第2の画像から第3の画像を差し引いて回路パターンのみの第4の画像を得、該第4の画像を平滑化フィルタ処理を行ってノイズを除去して第5の画像を得、前記第1または第2の画像から第5の画像を差し引いて半田のみの第6の画像を得、この第6の画像から半田の良否を判定するようにしたプリント基板の半田検査方法である。 (もっと読む)


161 - 176 / 176