説明

Fターム[2F103EB16]の内容

光学的変換 (13,487) | 発光部、受光部 (3,027) | 受光部 (976) | 複数の受光部 (498)

Fターム[2F103EB16]に分類される特許

1 - 20 / 498


【課題】スライダとインデックススケールとの間のギャップをより正確に検出できるリニアエンコーダを提供する。
【解決手段】リニアエンコーダは、発光素子12と、スケール10と、スケール10に対して相対変位するインデックススケール13aと、スケール10およびインデックススケール13aを透過した光を電気信号に変換する受光素子14aと、を備えている。スケール10には、互いに異なるピッチの主格子目盛16および補助格子目盛17が設けられている。リニアエンコーダのギャップ検出部は、補助格子目盛17から得られる信号振幅に基づいて、主格子目盛16から得られる信号振幅に対する温度の影響量を取得し、この温度の影響量を除去した信号振幅に基づいてスケール10とインデックススケール13aとの間のギャップ量を求める。 (もっと読む)


【課題】エンコーダの検査を高精度且つ容易に行うことが可能なサーボモータを提供する。
【解決手段】エンコーダ100は、シャフトSHに連結され、複数の反射スリット111からなるスリットアレイSAが円周方向に沿って形成された円板状のディスク110と、スリットアレイSAに光を照射する点光源121、及び、点光源121から照射されスリットアレイSAで反射された光を受光する受光アレイ122を備えた光学モジュール120と、光学モジュール120が設けられる基板130と、モータMのハウジング10に固定され、ディスク110を内部に収容しつつ、光学モジュール120がスリットアレイSAと対向するように基板130を支持する、円筒状の支持部材140と、を有する。 (もっと読む)


【課題】光学式エンコーダにおいて、スケールと受光部とが周期パターンの周期方向に直交する方向に相対変位しても、良好な精度で位置検出を行えるようにする。
【解決手段】エンコーダは、光を反射または透過する光学部が第1の方向に第1の周期で形成された周期パターンを有するスケール2と、該スケールとの第1の方向での相対移動が可能であり、光源1から射出されて光学部を介した検出光を光電変換して第1の周期に応じた変化周期を有する信号を出力する受光部3とを有する。光学部は、第2の方向にて隣り合う複数の部分e〜hが互いに第1の方向にシフトしたパターン形状を、第2の方向に第2の周期tで有する。光源の第2の方向での幅wが、w=(a+b)/b・ntなる条件を満足する。nは自然数であり、光源から周期パターンまでの距離と周期パターンから受光部までの距離との比をa:bとする。 (もっと読む)


【課題】複数の検出用導光部材に光を好適に分配し得る光学式センサを提供する。
【解決手段】光学式センサは、光源10と、光源10に光学的に結合された光ファイバー20と、光ファイバー束40と、光ファイバー20から光ファイバー束40に光を分配する光分配部30と、光ファイバー束40によって導光された光を分離して検出する光分離検出器50を有している。光ファイバー束40は、複数の光ファイバー41A,41B,41C,41D,41E,41Fを有している。光ファイバー41A〜41Fは、それぞれ、物理化学状態に応じて光学特性が変化する特性検出部42A,42B,42C,42D,42E,42Fを有している。 (もっと読む)


【課題】回折格子を用いて相対移動量を計測する際に、格子パターン面の法線方向の絶対位置を検出する。
【解決手段】原点検出装置11Xは、第1部材6に設けられ、X方向を周期方向とする反射型の回折格子12Xと、第1計測光MX1を回折格子12Xに第1の入射角で入射させ、回折光と第1参照光MR1との第1干渉光を検出する第1干渉ヘッド14Xと、第3計測光MX3を回折格子12Xにその第1の入射角と異なる第2の入射角で入射させ、回折光と第3参照光MR3との第3干渉光を検出する第2干渉ヘッド15Xと、その第1、第3干渉光の検出信号からZ方向の相対位置を求める第3演算部41Cと、を備える。 (もっと読む)


【課題】スケールからの反射光による像のコントラストを高くし光検出器の誤検出を防ぐ。
【解決手段】下地部材に第1領域と第2領域とが交互に配置された反射型光学式スケールであって、下地部材に第1領域と第2領域とが交互に配置され、第1領域は、波長λの光の反射率が第2領域よりも高く、第1領域は、下地部材の上に配された反射部材と、反射部材の上に配された第1材料で構成された層と、第1材料で構成された層の上に配された第2材料で構成された層と、で構成され、第2領域は、下地部材の上に配された第2材料で構成された層で構成され、第1材料および第2材料は、光について透過性を有し、第1材料は、反射部材および第2材料よりも光の屈折率が低く、第2材料は、下地部材よりも光の屈折率が低く、第1材料および第2材料の光学膜厚は、第1領域の方が第2領域よりも光の反射率が大きくなるように設けられている。 (もっと読む)


【課題】安価に光学系の歪みをキャンセルしてスケールの位置情報の検出精度を向上させる。
【解決手段】光電式エンコーダは、発光素子11と、スケール12と、レンズ13と、PDA14と、信号処理演算回路20とを備える。信号処理演算回路20は、歪みテーブル21と、歪み補償回路22と、信号解析回路23とを備える。歪みテーブル21は、例えば予めレンズ13等の光学系の設計値から歪みシミュレーションによって得られた歪み情報Δeに基づき算出されている。歪み補償回路22は、歪みテーブル21を参照すると共に、PDA14の各PD41の位置情報に基づいて、各PD41の位置xを仮想的にx−Δeの位置に配置変更して光学系の歪みを除去し、PDA14からの明暗信号を補正する。位置解析回路23は、この補正された明暗信号に基づいて、スケール12の位置を解析する。 (もっと読む)


【課題】リサージュ信号の検出を停止した場合にも、測定精度の低下を抑制可能なエンコーダを提供する。
【解決手段】エンコーダは、スケールと、前記スケールに光を照射すると共に供給される電流に応じて光量を変化させる光源と、前記スケールにより反射された光を受光すると共に位相のずれた2相正弦波状信号を出力する受光部とを備えるエンコーダであって、前記2相正弦波状信号によって形成されるリサージュ波形に含まれる理想的リサージュ波形からの振幅誤差を含む誤差を検出し、検出された誤差を累積演算して新たな補正値とすることで、動的に前記補正値を更新する誤差検出部と、前記振幅誤差に基づく補正値に応じて前記光源に供給する電流を調整する光源駆動処理部とを備える。 (もっと読む)


【課題】容易且つ安価に構成でき、高精度な目盛の測定誤差の校正を可能とする。
【解決手段】光電式エンコーダ100は、スケール10、検出ユニット20、演算部30を有する。検出ユニット20は、少なくとも3つの検出部21〜23を有する。各検出部は、第1検出部21及び第2検出部22間の測定点の間隔が、物理的に配置可能な最小間隔dとなるように配置され、第2検出部22及び第3検出部23間の測定点の間隔が、最小間隔dよりも大きな間隔となるように配置される。第1検出部21の測定点の出力を1ステップ前の他の検出部の測定点に合わせるように制御しつつ検出ユニット20をステップさせてサンプリングを行う。各検出部の測定点の間隔がすべてd以上となるにもかかわらず、d以下のサンプリング間隔で測定誤差を算出し、自律校正曲線を得てスケールの位置情報を補正することができる。 (もっと読む)


【課題】エンコーダにおいて、三角関数演算の回数を削減する。
【解決手段】エンコーダは、周期パターン11が設けられたスケール10と、スケールとの相対移動が可能であり、周期パターンを読み取って、それぞれ周期パターンに応じた変化周期を有し、かつ互いに位相が異なる複数のアナログ信号を出力するセンサ20と、該センサから出力された複数のアナログ信号を時分割でアナログ−デジタル変換して複数のデジタル信号を生成するA/D変換部30と、複数のデジタル信号から位相を検出する位相検出部60と、スケールとセンサとの相対移動速度と位相検出部により検出された位相とを用いて補正値を算出し、該補正値と位相検出部により検出された位相とから補正位相を算出する補正部70と、該補正位相を用いて、スケールとセンサとの相対移動方向での位置を求める位置検出部80とを有する。 (もっと読む)


【課題】複数の周期パターンに対する検出部による検出周期を切り替えるエンコーダにおいて、位置検出の遅れを回避する。
【解決手段】エンコーダは、第1の周期パターン11および第2の周期パターン12が設けられたスケール10と、該スケールとの相対移動が可能な検出部22とを有する。検出部22は、第1の検出状態と第2の検出状態との切り替えが可能であり、第1の検出状態にて第1の周期パターンに応じた第1の信号を出力し、第2の検出状態にて第2の周期パターンに応じた第2の信号を出力する。処理部30,40は、検出部から取り込んだ第1および第2の信号の双方を用いて第1の絶対位置を算出する第1の処理を行った後、該検出部から取り込んだ一方の信号を用いて相対移動量を算出する。処理部は、第1の処理において最後に設定した検出状態と同じ検出状態の検出部から一方の信号を取り込む。 (もっと読む)


【課題】原点検出精度を向上させた信頼性の高いエンコーダシステムを提供する。
【解決手段】エンコーダシステム100は、複数のマークを備えた担持体11と、担持体11の移動方向に第1の距離だけ互いにずらして設けられ、複数のマークを読み取り可能なセンサ12、13と、センサ12、13の検出信号を演算処理する演算処理部14とを有し、演算処理部14は、担持体11がセンサ12、13に対して相対移動している際に、複数のマークのうち一つのマークが第1の距離だけ移動するのに要する第1の時間、および、複数のマークのうち隣接する二つのマークがセンサ12またはセンサ13による検出位置を通過するのに要する第2の時間を演算し、第1の時間および第2の時間から算出された第1の指標が原点位置を特徴付ける第2の指標に相当する場合、第1の指標の算出に用いられたマークパターンを原点マークパターンであると判定する。 (もっと読む)


【課題】製造を容易にしつつ小型化することが可能な、光全周エンコーダ及びモータシステムを提供すること。
【解決手段】回転軸AX上に位置する発光部111が一面側に配置された基板110と、基板110の他面側において回転軸AX周りに回転可能に配置され、回転軸AXを中心とし複数の回転スリットS2,S3を有する2つの回転トラックT2,T3を有するディスク140と、発光部111から照射された光を、ディスク140の外周方向のほぼ全域に向けて放射状に導き、回転トラックT2,T3に導く導光部120とを有し、導光部120は、回転トラックT2に間接的に対向する略リング状の照射入光面126を有し、該面126から回転トラックT2に向けて出射するために光を放射状に導くインクレ用第1導光部123等と、放射状に導いた光の一部を回転トラックT3に導くアブソ用第2導光部1293と、を有する。 (もっと読む)


【課題】モータ軸の回転量を検出するための検出ユニットにおいて、エンコーダとしての信頼性を簡便に高める。
【解決手段】入射光の光量に対応した出力信号を出力する複数の受光素子が所定方向に配置されている受光素子アレイと、符号版の少なくとも一部に光を照射する光源と、を備え、複数の受光素子は、光の光量分布に応じて所定方向と垂直な幅方向における実効領域の幅が変更されてそれぞれ設けられている。 (もっと読む)


【課題】本発明は、受光手段により検出された変位信号の高調波成分を、従来より少ないスリットパターン数で、変位信号の振幅低下を低減しつつ、より効果的に除去することができる光学式エンコーダ装置を提供する。
【解決手段】本発明による光学式エンコーダ装置は、第2のスリットに設けられているスリットパターンが、2つのスリットパターンを有し、各パターン部の透過部は互いに第1のスリットのピッチの1/3の透過スリット幅をもち、かつ互いに1/12の位相差をもち、高調波成分を効果的に除去されるように配置されていることを特徴とする光学式エンコーダ装置。 (もっと読む)


【課題】 遮光手段を用いずに光源からの発散光がパッケージの外界との境界面で全反射して、受光素子に入射することを防止する。
【解決手段】 光線L0は発光素子23から出射した光線のうち、境界面53で屈折して透過し反射スケール21で反射し、最後に受光領域S2に導かれる光線群であり、この光路がセンサ信号を得るための有効光となる。光線Laは境界面53で全反射してパッケージ内を伝搬する光線であり、この光線Laはセンサ信号光とは無関係なノイズ光であり、受光すべきでない光線である。この光線Laが受光領域S2に入射すると、センサ信号のS/Nが低下してしまうことになる。また、光線Lbは境界面53を挿通し反射スケール21に至ることなく、外方に出射してしまうので、精度等に対する影響は殆どない。不要な光線Laが受光素子24の受光領域S2に入射しないように、発光素子23の発光領域S1を基準として、受光領域S2を決定する。 (もっと読む)


【課題】中心射影方式に基づく回転式位置測定装置について、検査光路上における個々の構成部材間の最適でない間隔についてより影響度を抑え、及び/又は検査すべき被検査物の汚れの影響を極力受けないようにすること。
【解決手段】光源10と、被検査物20を備えたスリット板と、検出装置30とを備える構成とするとともに、スリット板を光源10及び検出装置30に対して回転軸Rを中心として回転可能とし、相対回転時に回転角度に応じた位置信号を検出装置30によって検出可能であり、回転軸R上の光源10を被検査物20から第1の距離uだけ離間させて配置し、検出装置30を、第1の距離uとは異なる第2の距離vだけ被検査物20から離間させて配置した。 (もっと読む)


【課題】ABS/INC統合パターンから、簡単な処理回路を用いて高速でアブソリュートパターン信号とインクリメンタルパターン信号を分離する。
【解決手段】アブソリュートパターン12Aとインクリメンタルパターン12Bを統合したABS/INC統合パターン12Cを有する絶対測長型エンコーダにおいて、前記アブソリュートパターン12A由来の明暗信号と前記インクリメンタルパターン12B由来の明暗信号とに振幅差が生じるように設計された撮像光学系(レンズ14)と、前記ABS/INC統合パターン12Cからの受光信号を、前記振幅差を利用してアブソリュートパターン信号とインクリメンタルパターン信号に分離する信号処理系(比較器20)と、を備える。 (もっと読む)


【課題】光学エンコーダの利得とオフセットを動的に調整する。
【解決手段】光学エンコーダにおける利得とオフセットを動的に調整する方法は、回折格子を含むエンコーダ・ディスクを提供する段階と、前記エンコーダ・ディスクに光を照射する段階と、前記回折格子から回折された光を検出しかつ第1の細カウント・チャネルを出力するように構成された検出器を提供する段階と、前記第1の細カウント・チャネルの第1のターゲット利得と第1のターゲット・オフセットを計算する段階と、前記第1のターゲット利得と第1のターゲット・オフセットに基づいて、前記第1の細カウント・チャネルからサンプリングされたデータに補正を適用する段階と、を含む。 (もっと読む)


【課題】十分に平行に配設された二つのプレート間で、高精度で干渉計方式により間隔測定するための機構を提供する。
【解決手段】光源3.1から発せられた光束が、第一プレート1にある分光器要素1.2に傾斜して当たり、そこで反射される参照光束と透過する測定光束に分割される。測定光束は第二プレート2にあるリフレクタ要素2.2に当たり、そこで第一逆反射を受ける。参照光束は第一屈折要素3.2aを、測定光束は第二屈折要素3.2bを通過し、二つの光束は引き続いて、それぞれ関連配置された逆反射器3.3を通過して、測定光束は第三屈折要素3.2cを、参照光束は第四屈折要素3.2dを通過する。そして参照光束は第一プレート1で反射を、測定光束は第二プレート2のリフレクタ要素2.2で第二逆反射を受け、それにより二つの光束が、共直線で検知ユニット3の方向に伝播し、そこで位相がずれた複数の走査検知信号を生成することができる。 (もっと読む)


1 - 20 / 498