説明

Fターム[2G001CA10]の内容

放射線を利用した材料分析 (46,695) | 試料出射粒子(意図外、直接分析外を含む) (4,357) | プリセッション(粒子の種類) (156)

Fターム[2G001CA10]に分類される特許

1 - 20 / 156


【課題】 イメージングプレートの取付け精度の良否によらず、測定対象物の残留応力を精度よく測定できるようにする。
【解決手段】 コントローラCTは、残留応力が0である基準物体BOB及び測定対象物OBに、X線出射器13からのX線をそれぞれ照射して、イメージングプレート28上に基準物体BOB及び測定対象物OBの回折環をそれぞれ撮像する。そして、コントローラCTは、前記撮像した両回折環の形状をそれぞれ検出し、測定対象物OBの回折環の形状を、基準物体BOBの回折環の形状を用いて補正して、イメージングプレート28のテーブル27に対する取付け誤差の影響を少なくする。 (もっと読む)


【課題】液体の蒸発に無関係な微量液滴の体積の測定を、精度良くかつ正確に実現する。
【解決手段】基板上に複数の空間を形成し、空間の一部に標識物質を含む測定用液体を分注するとともに、他の一部の空間に標識物質のみの液体を入れ、分注した測定用液体中の標識物質の物性を検出するとともに、標識物質のみの液体の物性を検出し、両検出値により分注後の測定用液体の体積を測定する。前記空間は前記基板とは別体に形成した隔壁の上下に貫通する複数の通孔とし、開口上下端の周囲に形成した溝にはOリングを設ける。また、前記空間の一部を液体を入れない空間とし、前記標識物質の液体の物性検出時の参照用空間として用いる。また、隔壁の空間を密封する蓋を備え、標識物質のみを入れる空間には標識物質を全て充填して蓋により密封して光路長を規定しても良い。 (もっと読む)


【課題】 X線回折測定装置において、誤ったイメージングプレートの使用を避ける。
【解決手段】 コントローラCTは、測定対象物にて回折したX線による回折環をイメージングプレート28に記録して、回折環を記録したイメージングプレート28にレーザ光を照射して回折環を測定する。新たなイメージングプレート28には、製造日を含む識別データがX線により記録されており、新たなイメージングプレート28への交換後には、識別データが読取られ、その後、識別データがイメージングプレート28から消去される。これにより、新たなイメージングプレート28への交換後に識別コードが読取れなかった場合には、コントローラCTは、使い古しのイメージングプレート28がセットされたと判定する。また、コントローラCTは、製造日を用いて使用期限の切れたイメージングプレート28のセットも判定する。 (もっと読む)


【課題】鮮明な高倍率断層画像を取得することができるX線CT装置を提供する。
【解決手段】本発明によれば、テーブル2の載置位置のファントムを撮影するプレ撮影を行ったあと、テーブル2および検出器3をプレ撮影と同じ様式で移動させて試料を撮影する実撮影を行って断層画像を再構成する構成となっている。再構成部10は、実撮影X線画像Qの撮影時におけるテーブル2の移動の様式を考慮することができる。しかし、テーブル2がプレ撮影と実撮影で全く同じように移動するとは限らない。そこで、本発明によれば、テーブル2のウラ面のマーカを撮影し、実撮影マーカ画像Nとプレマーカ画像Mとによってプレ撮影と実撮影との間で生じたテーブル2の位置ズレを認識する。結果として高解像度の断層画像を取得可能なX線CT装置が提供できる。 (もっと読む)


【課題】X線回折測定装置において、高精度で回折環を検出できるようにする。
【解決手段】コントローラCTは、測定対象物にて回折したX線による回折環を記録した回折光受光器28にレーザ光を照射して回折環を測定する。コントローラCTは、レーザ光が照射されている位置の半径値が増加するに従って大きくなる回折X線の減衰量の変化を補正するように、半径値を用いてレーザ光強度を計算して、計算したレーザ光強度のレーザ光を回折光受光器28に照射する。また、コントローラCTは、前記半径値が増加するに従って大きくなる測定対象物にX線を照射した際の回折X線が受光される面積の変化を補正するように、前記半径値を用いてフォーカス制御値を計算して、前記計算したフォーカス制御値に応じて対物レンズによるフォーカス位置を制御して、回折光受光器28に形成されるレーザ光のスポット径を制御する。 (もっと読む)


【課題】線質の異なるX線が検出段階で干渉することを防止することができるX線異物検出装置を提供すること。
【解決手段】被検査物Wを搬送路上で搬送する搬送部2と、搬送路上を搬送される被検査物に複数本のX線を照射するX線発生器9と、X線発生器9から照射され被検査物Wを透過するX線に応じた検出データを出力するX線検出器10と、X線発生器9とX線検出器10との間に配置されて回転軸周りに高速回転し、X線を遮蔽する遮蔽部71とX線を透過する透過部72とが回転方向に交互に設けられ、回転軸を中心に高速回転することでX線発生器9からの複数本のX線を時間分離し、該複数本のX線の何れかを順次透過する回転板70と、X線検出器10の出力する検出データに基づいて被検査物W中の異物の有無を判定する判定部48と、を備えた。 (もっと読む)


【課題】軽量かつ設置が容易で、さらにX線被爆なく、直線状の被検査物をその場で非破壊に多方向からのX線透過像を取得し、被検査物の劣化状況等を高精度で検査できるX線非破壊検査装置を提供する。
【解決手段】上記課題を解決するため、直線状の被検査物をその場で非破壊検査するX線検査装置であって、前記被検査物を挟み対峙する1組のX線源及び2次元検出器を3組以上搭載し、前記被検査物に沿って手動或いは自動的に移動させながら、前記X線源からパルス状のX線を順次発生させ、前記2次元X線検出器でX線透過像データを検出することにより、前記被検査物の全周を長い距離にわたって検査することを特徴とするX線非破壊検査装置の構成とした。 (もっと読む)


【課題】輝度ムラを低減して、被検体のハンドリングが容易なX線断層撮像装置を提供すること。
【解決手段】
プリント基板51にX線を照射するX線照射器2、3とプリント基板51を透過したX線を検出するFPD5、6とで構成される複数組の照射ユニット7、8と、各照射ユニット7,8の各X線照射器2、3とFPD5,6との間にプリント基板51を平行移動させる搬送器4と、少なくとも1つの照射ユニット8のX線中心軸がプリント基板51の搬送方向に傾斜しており、少なくとも1つの他の照射ユニット7のX線中心軸がプリント基板51の搬送方向の逆方向に傾斜している。 (もっと読む)


【課題】荷電粒子線を試料表面に対して、所望の領域に広範囲の角度で照射可能な荷電粒子線装置を実現する。
【解決手段】イオンビームカラム201aの中心軸の延長線に沿う方向の位置、直交する方向の位置)や傾斜角度(イオンビームカラム201aの中心軸の延長線と直交する面に対する傾斜角度)を調整可能な電極を有する電極部204を、試料室203内に配置し、電極等により、曲げられたイオンビーム201bを試料202の表面に照射するように構成する。イオンビーム201bを試料202の表面の所望の領域に、試料表面に対して広範囲の角度で照射可能となる。 (もっと読む)


【課題】複数の信号を用いた高精度な寸法測定を実現することを可能にする。
【解決手段】本実施形態は、走査顕微鏡を用いて対象物の寸法測定を行う寸法測定方法であって、前記対象物の測定に関する始点および終点となる測長点を定義する工程と、前記対象物にビームを入射して走査することにより、同時刻における前記対象物からの複数の信号を検出する工程と、前記対象物の測長点の定義に基づいて、前記複数の信号から測長点を決定する工程と、前記対象物において決定された測長点の間の距離を算出する工程と、を備えている。 (もっと読む)


【課題】
X線マイクロビーム分析装置において、より簡便な方法でX線マイクロビームの試料上での照射位置を目視観察しながらX線マイクロビーム分析を行えるX線分析装置を提供することを目的とする。
【解決手段】
X線源とX線が照射される試料台との間にX線透過部を有する反射ミラーを有し、前記X線源と反射ミラーの間に、X線集光用光学素子を有するX線分析装置。 (もっと読む)


【課題】コンクリート構造物の内部状態を効率良く非破壊検査する検査線発生装置を提供する。
【解決手段】フェムト秒レーザパルスを発生するフェムト秒レーザ発生装置1aと、該フェムト秒レーザ発生装置1aから入射したフェムト秒レーザパルスを第1の方向あるいは第2の方向に択一的に出射する可動ミラー1bと、該可動ミラー1bによって第1の方向に出射したフェムト秒レーザパルスをテラヘルツ光に変換し、検査線として外部に出射する光伝導アンテナ1jと、上記可動ミラー1bによって第2の方向に出射したフェムト秒レーザパルスに基づいて所定元素のイオン線を発生するイオン線発生器1nと、該電子線発生器1nから入射したイオン線に基づいて中性子線を発生し、検査線として外部に出射する中性子線発生器1sとを具備する検査線発生装置により、効率的な非破壊検査が可能となる。 (もっと読む)


【課題】試料3の幅方向位置の測定精度を向上させ、試料測定範囲(厚さの範囲や材質など)の広範囲化を図った放射線測定装置を提供する。
【解決手段】被測定物(試料)を搬送させながら放射線を用いて前記試料の物理量の測定を行う放射線測定装置において、前記試料の搬送方向に略直角に配置されたラインセンサと、前記試料の上方に配置され前記試料を介して前記放射線を前記ラインセンサに照射する複数の放射線源からなり、前記複数の放射線源からの放射線は前記試料の搬送方向に略直角方向に扇状に出射されると共に前記ラインセンサの同一線上を照射するように構成した。 (もっと読む)


【課題】カソードルミネッセンスを用いた半導体基板中の結晶欠陥の評価において、半導体基板表面のクリーニングをせずに高精度に結晶欠陥を評価することを可能にする。
【解決手段】欠陥検査装置100は、半導体基板2を支持するステージ3と、電子線照射部7と、CL検出器14と、X線検出器19と、データ処理部22とを備える。電子線照射部7は、半導体基板2に電子線を照射する。CL検出器14は、半導体基板2の検査箇所に電子線が照射されることによって検査箇所の結晶欠陥から発生したカソードルミネッセンス光を検出する。X線検出器19は、検査箇所に電子線が照射されることによって検査箇所の表面に付着する有機化合物から発生した炭素の特性X線を検出する。データ処理部22は、検出された炭素の特性X線の強度に基づいて、検出されたカソードルミネセンス光の有機化合物による減衰を補正する。 (もっと読む)


【課題】荷電粒子線を高い効率で「水の窓」領域を含む0.6〜6nmの波長領域の軟X線に変換すること及び荷電粒子線の試料内での拡散範囲を狭く抑えて試料へのダメージを抑制すること。
【解決手段】
本発明の試料支持部材(11)は、窒化シリコン膜またはカーボン膜の試料支持膜(11a)の一方主面に、電子線照射により0.6〜6.0nmの波長領域の特性X線を放射する金属膜(11b)が設けられている。これは、電子線の照射を受けた金属膜(11b)から軟X領域の特性X線を高効率(高強度)で放射させるためであり、このような高強度の特性X線を試料(10)に照射させることにより、観察画像のSN比を向上させることができる。また、金属膜(11b)には、試料支持膜(11a)内での電子の拡散範囲を抑制するという効果もあるため、入射電子線の加速電圧を高めることが可能となり、SN比の向上のみならず分解能の向上にも効果がある。 (もっと読む)


【課題】 異物起因のコントラストのみを明確に判別して過検出及び誤検出を防ぐこと。
【解決手段】 測定対象元素のX線吸収端より低いエネルギーの第1の特性X線を試料Sに照射する第1のX線管球11と、元素のX線吸収端より高いエネルギーの第2の特性X線を試料に照射する第2のX線管球12と、第1の特性X線及び第2の特性X線が試料を透過した際の第1の透過X線及び第2の透過X線を検出する第1のX線検出器13及び第2のX線検出器14と、第1の透過X線の第1の透過像と第2の透過X線の第2の透過像との差分からコントラスト像を得る演算部15と、を備え、試料と第1のX線管球との間に第1の特性X線よりも高いエネルギーのX線吸収端を有する元素の第1のフィルタF1を配すると共に、試料と第2のX線管球との間に第2の特性X線よりも高いエネルギーのX線吸収端を有する元素の第2のフィルタF2を配する。 (もっと読む)


【課題】原子炉構造物での亀裂の検出等、表面形状の解析が、クラッド等で覆われた場合であってもより高い精度で行える放射線検査装置を提供する。
【解決手段】対向する検査部位6からの放射線の強度を検出位置と対応させて検出する二次元放射線検出器2と、この二次元放射線検出器2の出力信号から放射線強度の二次元位置分布を算出する信号処理部3と、この信号処理部3での処理結果を記憶する情報記憶部4と、この情報記憶部4に記憶された情報に基づく解析を行い検査部位6の表面形状についての解析結果を出力する演算解析部5を備えるもので、信号処理部3が、放射線の強度を放射線の個数に換算する演算手段を備えており、演算された放射線個数による放射線強度の二次元位置分布を算出するものである。 (もっと読む)


【要約書】 エミッタ支持ブロックと、支持ブロック上に設けられ電子を放出する電子放出領域と、電子放出領域と電流源とを電気的に接続するように構成された電気コネクタと、支持ブロックを加熱するように構成された加熱手段とを備えたX線スキャナ用の電子源 (もっと読む)


【課題】絶縁性樹脂中に存在する最大長が50μm以上の金属粉異物を検知・判別することができ、且つインライン化が可能な金属粉異物の検知方法を提供する。
【解決手段】絶縁性樹脂組成物中に異物として存在する金属粉を、少なくとも1台のX線管2,3を有するX線透視装置を用いて、X線照射角度を変化させることにより検知した後、画像処理装置8を用いて自動的に該金属粉を画像認識することを特徴とする絶縁性樹脂組成物中の金属粉異物の自動検知方法である。 (もっと読む)


【課題】微量の元素の分析を効率よく行う。
【解決手段】X線検出器11〜1Nの出力パルスは、それぞれパルス時刻検出回路(時刻検出部)21〜2Nに入力される。パルス時刻検出回路21〜2Nは共通のクロックで動作し、それぞれX線検出器11〜1Nの出力パルスが入力された到着時刻をそれぞれ認識する(出力A〜A)。N個のX線検出器11〜1Nからの独立した出力パルスにおいて、ほぼ同時、すなわち、到着(出力)時刻の時間差が予め設定されたある一定の短い間隔(例えば100ns)内である2つの出力パルスが出力パルス組として取り出される。この出力パルス組の抽出は、OR回路、時間差判定回路、抽出回路からなるパルス組抽出部でなされる。 (もっと読む)


1 - 20 / 156