説明

Fターム[2G040HA06]の内容

熱的手段による材料の調査、分析 (9,035) | 信号処理、データの取扱い一般 (618) | 基準データとの比較 (237) | 同一環境下の基準試料 (61)

Fターム[2G040HA06]に分類される特許

41 - 60 / 61


【課題】加熱又は冷却を繰り返し行ったとしても安定した熱流路を維持することができ、被測定試料の測定を高精度に行うこと。
【解決手段】被測定試料と基準物質とを収納する収納室2と、収納室を加熱するヒータ3と、被測定試料と基準物質との温度差を熱流差信号として出力する示差熱流検出器4と、所定の温度に冷却制御される冷却ブロック5と、冷却ブロックと収納室とを機械的に接続すると共に両者の間の熱流路を形成する熱抵抗体6と、冷却ブロックに対して熱抵抗体を一定の弾性力で付勢しながら押し付けて固定する第1の固定手段8と、熱抵抗体に対して収納室を一定の弾性力で付勢しながら押し付けて固定する第2の固定手段9とを備えている示差走査熱量計1を提供する。 (もっと読む)


【課題】基板上に製膜された薄膜または自立した薄板を対象とした、酸化度、窒化度、熱伝導率および組成比の測定を安価に行うことができ、特に、熱伝導率の測定では、測定感度と同程度以下の熱伝導率の測定が可能となる、酸化度、窒化度、熱伝導率および組成比の測定方法を提供する。
【解決手段】基板上に製膜した薄膜または自立した薄板の諸特性を測定する方法であって、被測定対象材料を被測定対象材料より高い既知の熱伝導率を有する材料に添加させた部材を用いて、被測定対象材料の酸化度、窒化度、熱伝導率または組成比を測定する。 (もっと読む)


【課題】材料の異なる製品毎に「熱履歴と物性値の関係式」あるいは「熱履歴とDSC吸熱ピーク温度との関係式」を求める必要がなく、さらに履歴評価の製品にダメージを与えずに、自動車エンジンルーム内の樹脂製品、ゴム製品の熱履歴を推定する方法を提供する。
【解決手段】融点が150℃以上の結晶性樹脂で作成した所定サイズのインジケーターを、エンジルーム内に設置されている樹脂製品やゴム製品に貼付け、所定時間経過後に回収・サンプリングし、DSC分析から熱履歴を推定する。 (もっと読む)


【課題】 温度制御が簡易であり、且つ迅速に試料の温度を設定温度に制御でき、素早く且つ正確に測定することができる熱物性測定方法及び装置とする。
【解決手段】 温度制御可能な熱電モジュール1上に平板状のヒータ2を設置して、熱電モジュール1により冷却しつつヒータ2により試料を周期加熱する。ヒータ2と同一位置またはヒータ2から一定距離の位置に設置した温度センサ4により試料3の温度応答を求め、それにより試料3の熱拡散率、比熱容量、熱伝導率の少なくともいずれかを求める。このときヒータ2の平均発熱量と等しい吸熱を熱電モジュール1により行わせ、試料3の平均温度を一定に保つ。その際、ヒータ2の代わりヒータと温度センサとを兼ねたヒータ兼温度センサ5を用いても良く、物性値が既知の標準試料と共に測定することにより、熱容量を求めることもできる。 (もっと読む)


【課題】
薄膜試料測定上の特徴を有する熱物性顕微鏡、すなわち薄膜試料熱物性測定装置の操作をより簡便にして使い勝手をよくする。
【解決手段】
可変の加熱周波数に対する熱反射信号との位相差を模式的に示す曲線であって、該曲線が変曲部分を持つ参照用の加熱周波数−加熱周波数に対する熱反射信号の位相差を示す画面が基板における既知の熱浸透率に対し熱浸透率の小さい薄膜試料,熱浸透率の大きな薄膜試料および熱浸透率の不確定な薄膜試料のいずれかを画面上の指定項目で指定することによって指定に対応してそれぞれ表示され、かつ該画面には試料名,基板名,変曲点,熱浸透率,熱伝導率および単位体積当たりの熱容量が表示される画像表示装置を備える。 (もっと読む)


【課題】ベースライン安定性と応答性を向上させた示差走査熱量計を提供すること。
【解決手段】熱溜1からセンサー板4への熱流路に頸状部を作り安定性を確保すると同時に、試料ホルダー5aへの2次元熱流路を確保する構成とした (もっと読む)


ガスサンプル中の1種または複数のガスを検知するためのガスセンサーが提供される。このガスセンサーには、基材と、二酸化炭素を検出するための、酸化ランタンを含む固体電解質層と、その固体電解質層に熱的に結合された加熱要素と、加熱要素および固体電解質層に接続されたコントローラとが含まれる。そのコントローラが加熱要素を加熱して、固体電解質層が動作温度に達するようにする。二酸化炭素および湿分を検出する方法もまた開示されている。 (もっと読む)


【課題】 熱に敏感で繊細な高分子物質の構造や性質を反映した結晶長分布を、X線解析装置及び高純度の安息香酸を用いることなく、DSCデータに基づいて算出する。
【解決手段】 複数の所与の温度で熱処理したときの高分子物質のDSCデータから得られる複数の融解開始温度及び融解終了温度からこの物質のTmxとTb0を求める。これらのTmxとTb0を用いて、仮想融解ピークBのピーク点におけるヒートフロー(dQ/dt)pを求め、更に仮想融解ピークBの立ち上がり勾配Cを求める。次に前記融解ピークAの曲線と温度軸線で囲まれた吸熱量Qに相当する面積∫TbTe(dQ/dt)dTを求め、TbからTeまでの各温度でのΔQ/Qに相当する(dQ/dt)/∫TbTe(dQ/dt)dTを求める。各温度は上記立ち上がり勾配Cで補正する。高分子結晶の結晶長の一般式より、結晶長ζを求め、F(ζ)=(ΔQ/Q)/ζに上記ΔQ/Qとともにζを代入してF(ζ)から結晶長分布を求める。 (もっと読む)


【課題】複数の試料について,同時にX線回折測定と熱分析測定を実施できるようにする。
【解決手段】集中法によるX線回折測定の際には,第1アーム20と第2アーム22を互いに逆方向に,同じ角速度で連動回転する。Z方向に細長いライン状のX線ビーム30について,入射側のソーラースリット26でZ方向の発散を制限してから,このX線ビーム30を粉末試料14,16に同時に照射する。試料14からの回折X線と,試料16からの回折X線を,受光側のソーラースリット32でZ方向の発散を制限してから,少なくともZ方向に位置感応型のX線検出器34で,区別して検出する。また,X線回折測定と同時に,二つの試料14,16について,熱分析測定を実施する。 (もっと読む)


【課題】 試料と標準物質との両方を所定の測定位置へ搬送することをロボットアーム等といった搬送装置や、テーブル等といった試料支持装置等の移動形態を複雑にすることなしに、短時間に且つ正確に実現できる熱分析装置を提供する。
【解決手段】 試料Sと標準物質Rとを試料取出し位置P0において並置状態で支持するターンテーブル52と、試料Sと標準物質Rとを測定位置31b,31aに並置した状態でそれらを同時に加熱しながら標準物質Rに対する試料Sの変化を測定する測定装置2と、試料取出し位置P0に並置された試料S及び標準物質Rを同時に把持して測定位置31b,31aまで搬送する搬送装置3とを有する熱分析装置である。搬送装置3は把持部材6s、6sを備えた把持機構と、把持部材6r,6rを備えた把持機構とを有する。把持部材6s、6sによって試料Sを把持し、同時に、把持部材6r,6rによって標準物質Rを把持する。 (もっと読む)


【課題】
昇温過程での冷媒液の消費とエネルギーの無駄を省くとともに、昇温過程での熱分析データの乱れを防ぐ。
【解決手段】
測定制御部30には液面センサ8により検出される液面高さにある冷媒がポンプ5による冷媒供給停止から蒸発によりなくなるのに要する待機時間が設定される。測定制御部30は、冷却過程での測定を行なうときは液面センサ8の信号を基にして冷媒槽2内での冷媒の液面レベルが一定になるようにポンプ5の駆動を制御し、昇温過程での測定を行なうときはポンプ5の駆動を停止した後、待機時間の経過時に炉体1のヒータ14への通電を開始するようになっている。 (もっと読む)


【課題】 生体・化学物質の反応を評価する手法として、反応熱の計測は直接的な使いやすい手法であるが、微量な試料に対応した反応熱分析装置が現在存在していない。多少試料を多く使えば反応熱を検出することは可能であるが、構造的に大きくなるとともに外部からの熱進入が問題となっている。
【解決手段】 サーモモジュールを用いたサンプル熱流センサとリファレンス熱流センサと、それぞれの片面に接する2つの反応容器と、反対面に接する第1のヒートシンクと、第1のヒートシンクの温度を測定する温度センサと、第1のヒートシンクの下面に接する精密温度制御用のペルチェ素子と、ペルチェ素子の下面に接する第2のヒートシンクと、2つの熱流センサを内包する断熱シールドを有しており、断熱シールド外部から間接的なエネルギー供給により、反応容器内部において所定の試薬を混合する混合装置を有する熱量計を提供する。 (もっと読む)


本発明は、物質が励起に晒されそれに対応する応答が観察される物質を分析するための方法に関するものである。次いで、励起と応答の間の相関についてのパラメトリックモデルを前もって決定するように評価が行われる。モデルパラメータが、時間領域において、励起の値および応答の観測値から決定される。これらのモデルパラメータから、周波数範囲において、伝達関数が計算され、これらの伝達関数から、物質の特徴的な量が直接に計算されるようになっている。 (もっと読む)


【課題】 任意の測定データを抽出して以前に得られた解析データと同一の解析データが得られることを証明できる分析装置を提供する。
【課題を解決するための手段】 画像を表示する表示装置4と、測定データを記憶する測定データファイル21と、測定データファイル21に記憶された測定データに対して解析を行う解析ソフト18と、解析によって得られた解析データを記憶する解析データファイル22と、解析に関する解析条件を記憶する解析データファイル22と、解析データファイル22に記憶された解析条件を表示装置4に表示させる解析条件表示ソフト19と、解析データファイル22に記憶された解析条件に基づいて解析ソフト18によって解析を行わせる解析再現ソフト20とを有する分析装置1である。既に存在する解析データと同一の解析データを再現でき、さらに同一であることを証明できる。 (もっと読む)


【課題】炭酸水素ナトリウム結晶粒子に関する高精度の組成分析方法を提供する。
【解決手段】炭酸水素ナトリウム結晶粒子を二酸化炭素を含まない乾燥したガス中、一定速度で昇温し、示差走査熱量分析装置により、温度と吸熱量の関係を測定し、本関係より含有するウェグシャイダー塩又は炭酸ナトリウム一水塩及びセスキ炭酸ナトリウムの各成分の加熱分解による吸熱量をそれぞれ求め、吸熱量から前記各成分の含量をそれぞれ定量する。一方、炭酸水素ナトリウム結晶粒子を無水メタノール中で攪拌して得られた抽出液を滴定し、炭酸水素ナトリウム結晶粒子中の炭酸ナトリウム無水塩、炭酸ナトリウム一水塩、及びセスキ炭酸ナトリウムの各成分の総量を定量する。この各成分の総量から、上記の示差走査熱量分析装置を用いて測定した炭酸ナトリウム一水塩とセスキ炭酸ナトリウムの2成分の定量値を減じることにより炭酸ナトリウム無水塩を定量する。 (もっと読む)


【課題】 ナノグラムオーダーの微量な試料を高速かつ高分解能で熱分析できる微小熱分析用プローブおよび微小熱分析装置ならびに微小熱分析方法を提供することを目的とする。
【解決手段】 基板と、前記基板上に微細加工法によって形成された熱分析部を備える微小熱分析用プローブであって、前記熱分析部は、前記基板上に形成された試料加熱部と、前記試料加熱部に近接して形成された薄膜状発熱体からなる主加熱ヒータ部と、前記試料加熱部と主加熱ヒータ部との間に介設された薄膜状熱電対からなる温度測定部と、を含むことを特徴とする微小熱分析用プローブ。 (もっと読む)


【課題】熱物性顕微鏡を用いて試料の熱反射信号を測定し、試料表面の微小領域及び薄膜の単位体積あたり熱容量、熱浸透率、熱拡散率を高い空間分解能により測定すること。
【解決手段】 モリブデンを成膜した参照試料表面を加熱用レーザビームにより加熱し、この加熱位置に加熱用レーザ径より小さな測温用レーザを照射し、検出したサーモリフレクタンス信号光に基づいて参照試料表面の温度変化の振幅を測定する。振幅を測定し表面のレーザに対する吸収量とサーモリフレクタンス信号の温度係数を求める。モリブデンを成膜した測定試料表面の温度変化の振幅の測定値を代入した式1と測定試料の位相の測定値を代入した式2とから薄膜の熱拡散率α及び熱浸透率bを求める。熱伝導率λ及び単位体積あたり熱容量Cを求める。 (もっと読む)


【課題】 液化窒素を用いた冷却装置と電気冷却装置の接続機構を共有化し、冷却装置の切替えを簡便化し、温度範囲を容易に切り替えられる示差走査熱量計を提供することを課題とする。
【解決手段】 測定試料と基準物質を収納するヒートシンク1と、ヒートシンク1を加熱するヒーター4と、ヒートシンク1の底板上に固定されている示差熱流検出器とを有する示差走査熱量計において、ヒートシンク1の底板下に固定された冷却機構51を有し、冷却機構51には冷却ガス導入用の冷却ヘッドあるいは電気冷却ヘッドを装着するための挿入穴7と、挿入穴7と導通する冷却ガスのガス流路10を設ける。 (もっと読む)


物質を励起に晒して、その励起に対する応答を観測する物質の分析方法であって、評価は、励起とその応答との間の関係を模倣する数学モデルのパラメータを求めた後で、該モデルの時系列推定値から物質の特性を演算するという概念に基づいて行われる。 (もっと読む)


【課題】 コーティング層の減肉、緻密化などに起因する遮熱性能の低下を非破壊測定により定量的に、しかも短時間で正確に測定・評価する。
【解決手段】 基準熱抵抗材の測定加熱条件でのコーティング層の熱抵抗Rと検出温度Tとの相関関係を求め、熱抵抗の変化を測定しようとするコーティング層を、コーティング層側から加熱し、そのときの当該コーティング層の表面温度の変化を測定し、この測定値と基準熱抵抗材の同じ条件で測定した表面温度の変化とを比較し、その温度変化の差から、コーティング層の熱抵抗Rと検出温度Tの相関関係を用いてこのコーティング層の熱抵抗変化量を算出し、基準熱抵抗材の熱抵抗値をもとにコーティング層の熱抵抗Rを求めるようにしている。 (もっと読む)


41 - 60 / 61