説明

Fターム[2G041GA08]の内容

その他の電気的手段による材料の調査、分析 (22,023) | 装置部品 (5,630) | 質量分析部 (4,146) | イオントラップ (577)

Fターム[2G041GA08]に分類される特許

81 - 100 / 577


質量分析によって検出するために生体分子を標識するための反応性質量標識体であって、チオール基又はカルボニル基を標識するための反応性官能基を含む反応性質量標識体。また、質量分析によって検出するために生体分子を標識するための反応性質量標識体であって、以下の構造を含む質量標識体を提供する。
X−L−M−S−Re
(式中、Xは、質量マーカー部分であり、Lは、開裂可能リンカーであり、Mは、質量正規化部分であり、Sは、以下の基:式(I)を含む質量系列修飾基であり、Reは、前記質量標識体を前記生体分子に結合させるための反応性官能基である



式(I)
(式中、JはC=Oであり、KはNHであり、且つnは2であるか、又はJ及びKは両方ともCHであり、且つnは1であり;mは、少なくとも1である)) (もっと読む)


【課題】質量分析による分子の検出方法の提供。
【解決手段】本発明は、サンプル中の少なくとも1種の標的分子を質量分析によって検出するための方法であって、
a)上記サンプルの上記分子をイオン化する工程と、
b)以下の工程(i)及び(ii):
(i)上記工程で得られたイオンを少なくとも1種、上記標的分子に基づいて質量分析計において選択する工程、及び、
(ii)こうして選択されたイオンを断片化セルにおいて断片化する工程
をn回(nは0、1、2、3又は4)行う工程と、
c)nが0の場合には工程a)で、又は、nが0でない場合には工程b)で得られた少なくとも2種類の異なるイオンであって、上記標的分子に特有の質量電荷比m/zを有する少なくとも2種類のイオンを質量分析計において捕捉する工程と、
d)こうして捕捉された特有のイオンを上記質量分析計から放出する工程と、
e)こうして放出された特有のイオンを検出器で検出する工程と
を含む方法に関する。本発明の方法は、上記特有のイオンが、工程d)において同時に放出され、工程e)において同時に検出されることを特徴とする。 (もっと読む)


エレクトロスプレーイオン化を用いて、検体から第1の極性のイオンを生成すること;試薬から第2の極性のイオンを生成すること;第1の極性のイオンと第2の極性のイオンとがチャンバ中で相互作用して第2の極性を持つ検体イオンを形成するように、第1の極性のイオンと第2の極性のイオンとを質量分析計のチャンバ中に順に注入すること;および第2の極性の検体イオンの質量スペクトルを分析することを含む、質量分析計を用いた試料のための装置および方法が記載される。所望の質量対電荷比を持つ第2の極性の検体イオンを優先的に生じさせるように、ポリアミドアミン(polyamidomine)のような試薬が選択される。
(もっと読む)


【課題】イオン発生時やイオントラップへのイオン導入時ではなくイオントラップにイオンを導入した後にイオン数の調整を可能とすることで、イオントラップ内の空間電荷効果の影響を低減して分析性能を高める。
【解決手段】イオントラップ2内にイオンを捕捉した後に、ソレノイドコイル26に電流を供給して直流磁場Bを形成すると共に捕捉用高周波電場を解除し、エンドキャップ電極22、24には反対極性の電圧を印加する。捕捉されていたイオンのほぼ半数は磁力線に沿って入口側エンドキャップ電極22に向かい消滅する。残りの約半数のイオンは磁力線に沿って出口側エンドキャップ電極24に向かい、電場により反射される。反射されたイオンが入口側エンドキャップ電極22に到達する前に直流磁場Bを解除して捕捉用電場を復活させることにより、イオンを約半分に減らすことができる。この操作の繰り返しによりさらにイオン数を減らすこともできる。 (もっと読む)


複数の標的イオン特性および電荷減少量が受信される。複数の標的イオン特性のそれぞれの特性に対応する試料のイオン化分子の一部が、第1の位置から第2の位置に伝送され、複数の選択されたイオン化分子を産生する。試薬イオンが、選択されたイオン化分子の荷電状態を減少させるために、第2の位置に伝送される。選択されたイオン化分子の荷電状態減少は、荷電状態減少量で停止され、第2の位置に複数のパーキングした標的イオンを産生する。標的イオン特性は、移動度または質量電荷比を含むことができる。検体定量情報は、複数の標準物質について標的イオンパーキングを行い、キャリブレーション関数を生み出し、試料について標的イオンパーキングを行い、試料中の検体の濃度を決定するためにキャリブレーション関数を用いることにより得ることができる。
(もっと読む)


【課題】測定対象分子を含む試料が少量であっても分析可能で、簡便に信頼性の高い情報を得ることができる分析方法を提供し、微量な生体試料由来の分子又は生体試料中の分子に適用して、その機能解明や病態の解明に有用な情報を得ることもできる分析方法を提供すること。
【解決手段】試料支持部材上の誘導体化した測定対象分子を分析する方法であって、該測定対象分子を含む試料及び誘導体化剤を試料支持部材上に載せて反応させ、反応後の試料支持部材上を、誘導体化剤と反応後の測定対象分子を実質的に溶解せず、誘導体化剤を溶解する洗浄用溶媒で洗浄した後に分析することを特徴とする分析方法。 (もっと読む)


【課題】簡素化したGC−MS装置を提供する。
【解決手段】セクションGCとセクションMSとを含むGC−MS分析装置であって、このGC−MS分析装置には、セクションGCとセクションMSとにつながっており、分析物がたどる経路方向に従ってセクションGCの下流かつセクションMSの上流に位置する境界セクションが設けてあり、前記境界セクションは、少なくとも1つの膜を含んでおり、この膜は、膜の上流に位置する領域内の圧力pが膜の下流に位置する領域内の圧力pよりも高いような圧力差を前記膜が受けるとき、前記膜を通して前記セクションGCから前記セクションMSに移動する分析物内に分子流状態を確立できる少なくとも1つのオリフィスを有する、GC−MS分析装置。 (もっと読む)


【課題】実用的なプロテオーム解析用質量分析装置を提供する。
【解決手段】直交加速型イオントラップ結合飛行時間型質量分析計において、イオントラップから射出されたイオンの速度分布を縮小する手段を設けることにより、一度に分析できる質量対電荷比範囲を拡大する。
【効果】プロテオーム解析におけるタンパク同定の効率が向上される。 (もっと読む)


【課題】サンプルに対し略垂直上方からレーザ光を照射することにより、発生・収集されるイオン量を増加させるとともに収集されたイオンを無駄なく質量分析器に輸送することでイオンの利用効率を高め、最終的に分析感度を改善する。
【解決手段】サンプルプレート3表面に直交する中心軸Cに沿って、イオンレンズ5、6などのイオン輸送光学系、イオントラップ7、検出部9などの質量分離・検出部を配置し、イオン光軸と中心軸Cとを一致させる。レーザ光源10、レンズ12、13、14を含むレーザ照射部10は中心軸C上で、サンプルSから最も離れた部位である検出部9よりもさらに離れた位置に配置され、レーザ光の光軸と中心軸Cとも一致させる。長焦点のレンズ14から出て徐々に光束径が絞られるレーザ光は出射口75、入射口74などを通過し、遮られることなくサンプルSに当たる。また、サンプルSから放出されたイオンは屈曲されることなくイオントラップ7に導入され質量分析に供される。 (もっと読む)


【課題】未知成分の試料でも各成分を最適なMS/MS条件で開裂させ、一回の分析操作で低分子量成分から高分子量成分まで種々の構造的特徴を持つ分析対象成分のMS/MS測定を可能とし、対象成分の詳細な構造情報を簡便に取得できる質量分析装置を提供する。
【解決手段】試料中の分析目的成分をイオン化する手段と、生成された該イオンの精密質量数を検知するイオン検出器と、生成された該イオンと衝突ガスとの衝突誘起開裂反応を行う衝突セルと、該イオンと衝突ガスとの衝突誘起開裂反応における衝突誘起開裂エネルギーを調節するための制御手段と、生成されたイオンの精密質量を検出するイオン検出部と、検出された該イオンの質量より分子組成を演算する演算部を備え、演算部は、検出された該イオンをその構造上の特徴により分類可能である。 (もっと読む)


式Iの化合物およびその代謝産物は炎症反応の強力なメディエーターであり: (I)の式中、a、b、c、d、e、f、V、W、X、Y、Ra、Ra'、Rb、Rb'、Rc、およびRc'は本明細書中で定義される。特に、本発明の化合物は炎症症状を治療するための薬物候補である。
【化1】
(もっと読む)


【課題】待機状態から分析を開始するに際し、リング電極へ印加する矩形波電圧の振幅の僅かな変動を防止することにより、イオントラップからのイオン排出の時間ドリフトを軽減する。
【解決手段】或る分析終了時から次の分析までの待機期間中に、待機時周波数決定部72は、予め温度制御用データ記憶部73に格納されているデータを参照して、次に実行する分析の分析条件に対応した安定温度を求め、その安定温度を維持する駆動パルスの周波数f1を算出する。制御部7の制御の下に、タイミング信号発生部6は周波数f1の駆動パルスを生成してスイッチング素子43、44を交互にオンするように駆動する。このスイッチング動作により主電源部4の温度は次の分析時の安定温度に近い状態に維持されるため、次の分析が開始されても温度の変化は殆ど生じず、温度変化に起因するイオン排出の時間ドリフトは軽減される。 (もっと読む)


【課題】正イオンと負イオンの両方を高いイオン利用効率で測定する。
【解決手段】イオン源と、イオンガイドと、イオントラップとを有する質量分析装置において、イオントラップから質量選択的にイオンを排出している間に、イオンガイド部に、イオントラップにトラップされているイオンと逆極性のイオンを導入する。 (もっと読む)


【課題】従来のイオントラップでは、十分な擬電位ポテンシャルを確保しつつCIDに十分な運動エネルギーをプリカーサイオンに与えるような駆動条件を設定した場合、低m/zのプロダクトイオンが安定捕捉領域を外れて観測できなくなる。
【解決手段】プリカーサイオンの選別を行う際には、リング電極31に高周波高電圧を印加し、エンドキャップ電極32、33に共鳴励振用の交流電圧を印加する。それに引き続くCID時には、リング電極31ではなくエンドキャップ電極32、32に高周波高電圧を印加することで、プリカーサイオンと開裂により生成されたプロダクトイオンとを捕捉する。その際には、イオン選別時の高周波高電圧よりも周波数を高くするとともに振幅も大きくし、q値を小さくする一方、擬電位ポテンシャルを大きくする。これにより、低m/zのプロダクトイオンが良好に捕捉され、そうしたイオンも観測できるようになる。 (もっと読む)


高いサンプル利用度で質量スペクトルを測定する方法は、第1の所定の範囲の質量電荷比を持つ質量スペクトルから第1の群の前駆イオンを質量フィルタするステップを含む。第1の群の前駆イオン中の少なくとも1種類の前駆イオンが、次に選択的にフラグメント化される。第1の群の前駆イオン中のフラグメント化された前駆イオンの第1のフラグメント質量スペクトルが測定され、一方では第1の所定の範囲内の質量電荷比の他の前駆イオンが保持される。第2の所定の範囲の質量電荷比を持つ第2の群の前駆イオンが質量スペクトルから質量フィルタされる。第2の群の前駆イオン中で、少なくとも1種類の前駆イオンが選択的にフラグメント化される。第2の群の前駆イオン中でフラグメント化された前駆イオンの第2のフラグメント質量スペクトルが次に測定される。
(もっと読む)


【課題】低真空での動作が可能であり、小型、安価、簡便なイオントラップを提供し、それを用いて計測精度を低下させることなく質量分析を行う技術を提供する。
【解決手段】イオン源でイオンを生成し、円筒電極に導入する。この円筒電極の直流電圧によるポテンシャルと交流電圧によるポテンシャルとにより形成された1次元ポテンシャルにイオンを捕捉する。印加する直流電圧及び交流電圧の少なくとも一方を変化させることにより、捕捉したイオンを、円筒電極の中心に配置される電極に衝突させて電流値として検出する。 (もっと読む)


2次元の実質的に四重極の電場を提供する。電場は、振幅A2の四重極高調波と、振幅A4の八重極高調波とを備え、A4は、A2の0.01%よりも大きく、A4は、A2の5%未満であり、電場に存在する振幅Anを有する任意の他の高次高調波について、nは、4を除く2よりも大きい任意の整数であり、A4は、Anの10倍よりも大きい。線形イオントラップの中においてイオンを処理する方法であって、該方法は、a)2次元の実質的に四重極の電場を確立し、維持することであって、該電場は、振幅A2の四重極の高調波と、振幅A4の八重極の高調波とを備え、A4は、A2の0.01%よりも大きく、A4は、A2の5%未満であり、該電場に存在する振幅Anを有する任意の他の高次高調波について、nは、4を除く2よりも大きい任意の整数であり、A4は、Anの10倍よりも大きい、ことと、b)イオンを該電場に導入することとを含む、方法。
(もっと読む)


【課題】メタボローム解析を利用した、微生物が生産する新規化合物の同定方法を提供する。
【解決手段】(a)被検菌株を、同定対象の化合物の生産量に影響するように操作された培養条件、及びそのような操作がされていない点でのみ異なる培養条件にて培養するステップと、(b)各培養条件にて培養された各培養菌株の抽出物又は培養上清を質量分析に供するステップと、(c)各質量分析結果を比較して、生産量が異なる成分を検出するステップと、(d)検出された前記成分の質量分析データに基づいて該成分の分子式及び/又は化学構造を決定するステップとを含む、微生物が生産する新規な化合物を同定する方法。 (もっと読む)


【課題】エンドキャップ電極に矩形波電圧を印加することによりイオンを共鳴励起排出する場合に、共鳴励起条件を理想状態に近づけることで質量分解能を改善する。
【解決手段】励起共鳴電圧直流電位算出部71は共鳴励起排出に先立って、パルス電圧発生部51で生成される矩形波電圧の周期、パルス幅、電圧値などを用いて、時間平均電位がゼロとなるような直流電位シフト量を算出する。共鳴励起排出の実施時に、可変直流電圧発生部52は直流電位シフト量に応じた直流電圧を発生し、電圧重畳部53、54において矩形波電圧はその直流電圧分だけシフトされる。それにより、各エンドキャップ電極22、24に印加される矩形波電圧の時間平均電位はともにゼロとなり、イオントラップ2空間内で中心軸に沿った方向の直流的な電位勾配がなくなる。その結果、捕捉されているイオンの軌道中心がトラップ2の幾何学中心に一致し、共鳴励起条件が理想に近くなる。 (もっと読む)


【課題】液体試料の被検体をMS被検体として質量分析計に提示する方法を開示する。
【解決手段】この方法は、(a)(i)液体試料を、マイクロ流体デバイスのマイクロチャンネル構造(I)であって、MS−ポートをも含む構造の試料引入れポート(I)に適用し、(ii)マイクロチャンネル構造(I)において液流により被検体を輸送することによって、被検体をMS被検体に変換させ、そして(iii)MSポートを介して質量分析計にMS被検体を提示する工程を含み、そして(b)慣性力を用いてマイクロチャンネル構造(I)の少なくとも一部内で液流を作り出すことを特徴とする。(a)ディスクの面に垂直な対称軸、(b)引出しポートよりも短い半径距離のところに内部適用領域を含み、MSポートおよび試料引入れポート(I)を含むマイクロチャンネル構造(I)を含むマイクロ流体ディスクを開示する。 (もっと読む)


81 - 100 / 577