説明

Fターム[2G041GA22]の内容

その他の電気的手段による材料の調査、分析 (22,023) | 装置部品 (5,630) | 流路系の構成 (399) | 排気流路 (181)

Fターム[2G041GA22]に分類される特許

1 - 20 / 181


【課題】 顕微質量分析装置は試料を観察し、測定部位を特定し、その部位にレーザー光を微小に絞り照射して顕微レーザー質量分析を行なうもので、レーザー光を分析対象である測定部位周囲にレーザー光が広がって照射しないようにして、測定部位の情報だけを的確に得る顕微レーザー質量分析装置を提供する。
【解決手段】試料観察手段とレーザー光照射手段を同じ顕微鏡対物レンズを用い観察した部位にレーザー光を照射して測定するために、焦点距離の短い対物レンズにより、レーザー光を微小にしぼり、その対物レンズのセンター部に孔を開け、金属細管からなる微細イオン輸送管を挿入したイオン輸送管内蔵対物レンズを用いて微小部の顕微MALDIの測定を可能とする。また、イオン輸送管は高分子イオンの通過率を向上させるために加熱機能を備えている。 (もっと読む)


【課題】ガスクロマトグラフィと連結された質量分析計を含む質量分析計に関し、質量分析計を調整して、その性能を改善または回復させる。
【解決手段】質量分析計またはガスクロマトグラフ/質量分析計システムにおいて、水素等の調整ガスを添加して、イオン源等の質量分析計の1つ以上の構成要素または領域を調整または洗浄する。調整ガスは質量分析計の上流、試料入口またはクロマトグラフカラムの中に添加されてもよく、または質量分析計の中に直接添加されてもよい。調整ガスは質量分析計が試料を分析していないとき、オフラインで添加されてもよく、または試料分析中にオンラインで添加されてもよい。オンラインで添加されるとき、調整ガスはヘリウム等のキャリアガスと混合されてもよい。別の実施形態では、調整ガスはまたカラムを通るキャリアガスとして機能し、ヘリウムなどの別のガスがキャリアガス流に添加されてもよい。 (もっと読む)


【課題】メンテナンス作業後、及び、装置稼動前に行う装置性能の校正作業を迅速に安価に行えるようにする。
【解決手段】(1)イオン源8に流入させる試料ガス流量を常に一定にするため、イオン源、及び、質量分析部を有する真空チャンバー13に設けた真空計20a,20bの真空度変化からバルブ6の絞り部径、オリフィス15の径などを求め、基準値との差分を補正するため、試料導入部、イオン源、真空チャンバーの真空度を変化させる手段を有する。
(2)イオン源でのプラズマ生成状態を一定にするため、放電電圧、放電電流、プラズマ発光強度を計測し、現状の状態を把握し、基準値との変化分を補正するため、放電電圧などの放電条件を変化させる手段を有する。
(3)質量分離部に流入するイオン量を常に一定にするため、オリフィス径の変化分を補正するため放電時間などの放電条件を変化させる手段を有する。 (もっと読む)


【課題】試料ガス中のキセノンガス等の測定対象ガスを、バックグランド放射能の影響を受けずに高感度で測定し、しかも、試料ガスの制約を少なくする。
【解決手段】試料ガス中の、キセノンガス、クリプトンガス及びラドンガスのうちの少なくとも1つのガスである測定対象ガスを測定する測定装置1は、前記試料ガスとアルゴンガス及び/又はヘリウムガスとを混合して混合ガスを得る混合手段34と、混合手段34により得られた前記混合ガスから不活性ガス以外の成分を選択的に低減させる低減手段33と、低減手段33により前記成分が選択的に低減された前記混合ガスが導入され、当該導入されたガスの質量分析を行う大気圧イオン化質量分析装置2と、を備える。 (もっと読む)


【課題】イオントラップで質量分析を行なう場合に、空間電荷の影響を補正し、感度とダイナミックレンジを両立する。
【解決手段】イオン源で試料をイオン化する工程と、イ
オントラップにイオンを蓄積する工程と、前記イオント
ラップから質量選択的にイオンを排出して検出器で検出
し、質量スペクトルを取得する工程を有し、前記質量ス
ペクトルの質量軸を、各イオンが排出される時点で前記
イオントラップ内に蓄積されているイオン量に基づいて
補正する。 (もっと読む)


【課題】本発明では、噴霧された試料溶液を効率良く気化させることにより、微細な帯電液滴を生成させ、試料のイオン化効率を向上させ、イオン強度の高く、大きな液滴を軽減させることにより、検出感度の高い質量分析装置を提供することを目的とする。
【解決手段】本発明は、試料溶液を成分毎に分離する液体クロマトグラフ分離手段と、液体クロマトグラフ分離手段で分離されて溶出する試料溶液を液滴として噴霧する試料噴霧部と、液滴に帯電(帯電液滴)させてイオンを生成するイオン化生成手段と、イオンを導入して質量分離する質量分析部と、帯電液滴に含まれる溶媒を除去する脱溶媒部と、を有する液体クロマトグラフ質量分析装置において、脱溶媒部が帯電液滴が流通する脱溶媒流通室と、脱溶媒流通室を加熱する加熱手段と、脱溶媒流路室に設けた螺旋状の液滴案内流路を有することを特徴とする。 (もっと読む)


【課題】固体試料中に存在する成分を、良好な検出下限で高い確度および高い精度で定量できるようにする。
【解決手段】ステップS103で、第1測定既知濃度信号に対する第2測定既知濃度信号の関係により第1昇温脱離分析の測定結果に対する第2昇温脱離分析の測定結果の関係を示す感度補正係数を求め、ステップS104で、標準固体試料と同じ材料から構成されて未知の濃度で成分が含まれている測定対象の測定対象固体試料に対して第1昇温脱離分析を行い測定未知濃度信号を得、ステップS105で、測定未知濃度信号と感度補正係数とにより補正未知濃度信号を求める。次に、ステップS106で、第2測定既知濃度信号に対する既知の濃度の関係をもとに、補正未知濃度信号から測定対象固体試料に含まれている成分の濃度を求める。 (もっと読む)


【課題】各段の四重極の間の空間のイオンの通過効率を向上させることにより分析感度の改善を図る。
【解決手段】第1段四重極15を出射したイオンが効率良く第2段四重極17に入射するように、第1段四重極15の出射端面におけるイオンのエミッタンス特性と第2段四重極17の入射端面におけるイオンのアクセプタンス特性とを一致させる。この一致は、四重極15、17に印加する高周波電圧の周波数を同一にし、位相差を質量電荷比に応じた適宜の関係に設定することで実現させる。 (もっと読む)


【課題】試料の構成成分の本来の分布情報を保持しつつ、感度良く検出できる試料分析方法および装置を提供する。
【解決手段】試料に一次イオンビームを照射し、該試料から放出される二次イオンを質量分析法によって分析する試料分析方法であって、チャンバー内に配置した試料を冷却する工程と、前記チャンバー内に水または水溶液を放出し、冷却された前記試料の表面に氷の層を形成する工程と、前記氷の層が形成された状態で、前記試料表面に前記一次ビームを照射する工程とを有し、前記氷の層を形成する水の量が0.1ng/mm以上20ng/mm以下であることを特徴とする分析方法。 (もっと読む)


【課題】本発明の好ましい実施形態では、真空チャンバは、ターボ分子ポンプで排気され、フォアライン排気は、隔膜ポンプによって提供される。そして、回転ポンプの使用を避けることによって、システムの全体のサイズおよび重量は、かなり低減でき、加えて、衝突冷却として周知の現象が、期待されるよりもはるかに低い圧力で、小型イオンガイドで高効率で生じる。
【解決手段】大気圧イオン化源に結合できる小型質量分析計が、表現される。イオンは、大気圧または低真空の領域から小さなオリフィスを通り抜け、それらが非常に短い差動排気イオンガイドを通過するとき、効率の良い衝突冷却を受ける。低エネルギーイオンの狭いビームは、小さな開口を通り抜けて、質量分析器を含む別個のチャンバに入る。 (もっと読む)


【課題】イオンを効果的に輸送する。
【解決手段】質量分析計の圧力の高い領域と低い領域との間でイオンを輸送するためのイオン移送装置は、イオン移送導管60を含んでいる。導管60は、相対的に圧力の高いチャンバ40に向いて開いている吸込口と、相対的に圧力の低いチャンバに向いて開いている排出口70とを備えている。導管60はまた、イオン移送チャネル115を取り囲む、少なくとも1つの側壁も備えている。側壁は、イオン移送チャネル115内から、導管60の側壁の外側の、圧力の低い領域へガスが流れるよう、側壁の長手方向に形成した複数の開口部140を含んでいる。 (もっと読む)


【課題】ネブライザーガスによる液滴の微細化をより効率的に行うことができる質量分析装置用イオン化装置を提供する。
【解決手段】本発明に係る質量分析装置用イオン化装置では、イオン化プローブ12のキャピラリ121Aがキャピラリ内管1211とキャピラリ外管1212の二重管構造を有し、キャピラリ内管1211をネブライザーガスが、キャピラリ外管1212を試料液が、それぞれ流れる構造を有する。このような構造を有することにより、ネブライザーガスにより直接剪断される試料液の表面積が増加すると共に、噴出後の試料液の幅が従来よりも狭くなり、ネブライザーガスが試料液の内部にまで作用しやすくなる。 (もっと読む)


【課題】レーザー脱離イオン化質量分析法において、測定試料を壊さずに脱離させてイオン化する。
【解決手段】有機分子の自己組織化単分子膜を表面に有する金属ナノ微粒子を分散あるいは2次元最密充填固着した基板の表面上に、測定試料を付着させる。そこに、金属ナノ微粒子に固有の波長のレーザー光を照射する。そして、金属ナノ微粒子に表面プラズモンを励起させて、有機分子を金属原子との化合物として金属ナノ微粒子の表面から脱離させる。この離脱のエネルギーにより、測定試料を脱離イオン化する。 (もっと読む)


【課題】CIDガスの供給に問題が生じていることや加熱キャピラリの目詰まりなどの装置不具合を事前に検知して分析者に知らせる。
【解決手段】中間真空室4内及びコリジョンセル12が配設された分析室10内にそれぞれ真空計31、32を設置し、ガス圧判定部34は分析に先立って真空計31、32で検出したガス圧がそれぞれ閾値以下であるか否かを判定し、閾値以下である場合に警告を出す。コリジョンセル12内へのCIDガスの供給が滞ると分析室10内に流出するCIDガス量が減るため、分析室10内の真空度が高くなり過ぎる。一方、加熱キャピラリ3が目詰まりすると大気圧雰囲気であるイオン化室1から中間真空室4内へ流れ込むガス量が減るため、中間真空室4内の真空度が高くなり過ぎる。従って、いずれもガス圧が低過ぎることを検知することで、不具合を認識することが可能である。 (もっと読む)


【課題】高解像、高質量分解能の質量分析イメージング画像を、その情報を極力損なうことなく圧縮して保存することを可能とする。
【解決手段】試料の光学顕微画像上では同一生体組織が類似した色を持つ。そこで、領域分割判別処理部23はカラー光学顕微画像の色を対象としたクラスター分析を実行し、測定範囲を生体組織に対応した複数の小領域に分割する。画像圧縮/伸張部25は分割された小領域内で完結するようなブロックを設定し、質量分析イメージング画像に対するブロック単位でDCTを用いた画像圧縮を実行する。同一生体組織においてはイオン強度の変化は小さいので、DCTによる変換後の高周波成分は少なく、データ量を削減しても情報の損失を抑えることができる。 (もっと読む)


【課題】 試料から脱離した分析対象のガスのみを高精度に分析できる昇温脱離ガス分析装置を提供する。
【解決手段】 赤外線発生ランプ32により試料ステージ30を介して試料を加熱し、試料から脱離したガスを四重極質量分析計60および四重極質量分析計72によって分析する。四重極質量分析計60では、試料からの脱離ガスを高感度に測定する。四重極質量分析計72では、測定室12からバルブ44および固定オリフィス70を介して一定量の脱離ガスが、銅筒104の冷却機能により、80〜130Kの任意の温度になり、水がトラップされ、銅筒104内には開口部104aを介して水以外の試料の脱離ガスのみが流入する。そのため、銅筒104内の四重極質量分析部102によって、水の影響を除去して試料の脱離ガスのみを高精度に分析される。 (もっと読む)


【課題】低周波バリア放電を用いた放電イオン化電流検出器において、試料導入量に対する検出感度の直線性を改善する。
【解決手段】上部ガス流路4の下端に接続された下部ガス流路10の下端から、下向きのプラズマガスの流れと対向するように上向きに希釈ガスを供給する。イオン収集用電極11とバイアス電圧印加用電極12との間に、プラズマガス、希釈ガス、試料ガスを排出するためのガス排出路15を接続する。キャピラリ管16を通して導入された試料ガスはプラズマガスと希釈ガスとの衝突により生じる乱流によりそれらガスと混じり、試料成分は濃い試料成分による光遮蔽の影響を受けずに、プラズマからの光により効率的にイオン化される。また、そのイオン生成領域は電極11、12に近いので、直流電場の作用で迅速に短い距離を移動して、寿命がつきる前にイオン収集用電極11に到達する。 (もっと読む)


【課題】各部のパラメータ調整を所定の手順に沿って順次実行するオートチューニング機能を有する質量分析装置において、全箇所のチューニングを行うのに長時間を要することがある。
【解決手段】質量分析装置において、パラメータ調整が必要な箇所をブロック単位に分けて考え、予め定められたブロック順にチューニングを実行する。各ブロックにおいては、まず該ブロックの代表部のチューニングを行い、その結果を過去のチューニング結果と比較する。両者の値が所定の範囲内に収まっている場合には、そのブロックに含まれる他の箇所のチューニングを省略する。 (もっと読む)


【課題】 外部電源が無い場所や移動しながらでも、環境負荷ガスを高感度に検出する。
【解決手段】 バッテリーボックス20と環境測定装置30をワンボックスカー10に載せる。環境測定装置30は、一つのフレームにより車内に固定される。環境測定装置30は、バッテリー21又は外部電源からの電力の供給を受けて動作する。環境測定装置30では、レーザー発生部31で発生した紫外光35を真空紫外光発生部33で真空紫外光37に変換してイオン化部38に導入する。イオン化部38には大気ガス導入部50で取り込まれた測定対象ガスも導入する。イオン化部38に導入された測定対象ガスは真空紫外光37によりイオン化され、飛行時間型質量分析部34でイオン73の質量スペクトルを測定する。 (もっと読む)


【課題】熱分析法で、正確な温度の較正が容易に行えるようにする。
【解決手段】分析対象の物質とは異なり、常温〜1000℃の範囲で気体を生じる指標物質を試料に加えた内標準試料を作製する。次に、内標準試料を昇温脱離分析法で分析することで、指標物質より生じた指標気体の昇温脱離スペクトルを取得する。なお、この昇温脱離分析法の分析においては、指標気体の分析とともに分析対象の物質の分析も行う。試料(内標準試料)に分析対象に物質が含まれていれば、指標気体の昇温脱離スペクトルとともに分析対象の物質の昇温脱離スペクトルも得られる。次に、得られた指標気体の昇温脱離スペクトルより、指標物質から指標気体が発生した計測温度を求める。 (もっと読む)


1 - 20 / 181