説明

Fターム[2G041KA01]の内容

その他の電気的手段による材料の調査、分析 (22,023) | イオン化後の処理 (407) | 断片化させるもの、CID (363)

Fターム[2G041KA01]に分類される特許

101 - 120 / 363


【課題】質量分析計へのサンプル導入のための方法、特に、サンプルを質量分析計へと大気圧で急速に導入できる“開放型プローブ”方法を提供すること。
【解決手段】質量分析計へのサンプル導入のための開放型プローブ方法であって、分析されるべきサンプル化合物をサンプルホルダに取り込むステップ(工程)と、プローブ炉を加熱するステップと、前記サンプルホルダ内の前記サンプル化合物を前記加熱されたプローブ炉内へ導入するステップと、前記加熱されたプローブ炉内へ不活性ガスを流すステップと、炉温度および不活性ガス流の複合効果により前記加熱されたプローブ炉内で前記サンプルを気化させるステップと、前記気化されたサンプルを前記不活性ガス中に混入させるステップと、不活性ガス中の前記気化されたサンプルを質量分析計のイオン源へと移送するステップとを含み、サンプル導入中および分析中に前記加熱されたプローブ炉が環境大気へと開放されたままであり、また、前記不活性ガスが、質量分析計イオン源へ及び炉開口へと移送ラインの2つの方向で前記加熱されたプローブ炉内を流れ、不活性ガス中の前記気化されたサンプルが、加熱移送ラインを介して、質量分析計のイオン源のイオン化チャンバ内へと直接に移送される、方法が提供される。 (もっと読む)


【課題】衝突セル(24)内の不要人工イオンの形成あるいは再形成を最小にする。
【解決手段】本発明は誘導結合高周波プラズマ質量分析(ICPMS)に関し、衝突セルを用いてイオン・ビームから不要な人工イオンを反応気体と選択的に反応させることにより除去する。本発明は、膨張チャンバ(3)と、衝突セル(24)を内蔵した第二真空チャンバ(20)の間に設けた高真空の第一真空チャンバ(6)を提供する。第一真空チャンバ(6)は第一イオン光学装置(17)を有する。衝突セル(24)は第二イオン光学装置(25)を内蔵する。第一真空チャンバ(6)の設置は、プラズマ源(1)からの気体負荷に原因があると思われる衝突セル(24)内の残留圧を最小にすることにより衝突セル(24)への気体負荷を減少する。 (もっと読む)


【課題】
【解決手段】質量分析計の最初の真空室の内部にグロー放電デバイスを備える質量分析計が開示される。グロー放電デバイスは、真空室内に設けられた隔離弁15の内部に位置する管状の電極14を備え得る。試薬蒸気が、管状の電極14を通って提供され得、続いて、グロー放電によってイオン化される。結果として生じる試薬イオンは、大気圧イオン源によって発生させる分析種イオンの電子移動解離に用いられ得る。他に、グロー放電デバイスによって発生させるイオンが、分析種イオンの電荷状態をプロトン移動反応により低減するために用いられ得るか、またはロックマスイオンもしくは参照イオンとして作用し得る実施形態が考えられる。 (もっと読む)


【課題】3連4重極質量分析器を用いて物質の混合物を分析する質量分析方法に関する。
【解決手段】この方法が、a)第1分析用4重極(I)におけるイオン化によって形成されたイオンの質量/電荷比(m/z)を選択するステップと、b)衝突ガスで満たされた後続の4重極(II)において、加速電圧を印加することによってステップ(a)で選択されたイオンを断片化するステップと、c)後続の4重極(III)において、ステップ(b)の断片化プロセスによって生成されたイオンの質量/電荷比を選択するステップとを含み、ステップ(a)〜(c)を少なくとも1回実施し、(d)イオン化した結果として物質混合物中に存在するすべてのイオンの質量/電荷比を分析するステップをさらに含み、分析中に4重極(II)は衝突ガスで満たされているが加速電圧は印加されない。ステップ(a)〜(c)およびステップ(d)は、逆の順序で実行することもできる。 (もっと読む)


本発明は、前駆イオンを発生するためのイオン源と、前駆イオンからフラグメントイオンを発生するためのイオンフラグメンテーション手段と、イオンの運動エネルギー分布を収束するためのリフレクトロンと、イオン検出器とを含む質量分析計を提供し、質量分析計は、使用に際してイオンフラグメンテーション手段より後かつリフレクトロンより前にイオンに作用する軸方向空間分布の収束手段も含み、軸方向空間分布の収束手段は、分析計のイオン光軸方向におけるイオンの空間分布を縮小するように動作可能である。適切には、軸方向空間分布の収束手段は、開口または高透過率のグリッドであってもよい2つの電極(52、54)を有するセルを備える。パルス静電場は、対象前駆イオン(56、58)がパルサ(50)へと入った時点で第1の電極(52)へ高電圧パルス(60)を印加することによって発生される。この間、第2の電極(54)は0Vに保持される。
(もっと読む)


【課題】3連四重極型質量分析装置において、第1段四重極又は第3段四重極の一方又は両方でスキャンが実行される際の時間分解能を向上させる。
【解決手段】測定モードやスキャン条件を含む分析条件が設定されると、データ生成部40は各部に印加する電圧値を1組とした1スキャン分の制御データテーブルを作成し、内部RAM41に格納する。このテーブルはDMA転送によりFPGA23のテーブル保持部51に格納される。一方、m/z差算出43がスキャン開始m/zと終了m/zとの差DZを算出し、予め作成されたテーブル44を参照してスキャン間時間決定部45がスキャン間時間Tmを決める。m/z差DZが小さいほど電源の電圧安定化時間が短いため時間Tmも短い。タイミング制御部53は1回のスキャン終了時点から時間Tmだけ待ち、次のスキャンを実行するようにデータ読み出し部52を制御する。これにより、m/z差に応じて単位時間当たりのスキャン回数が変化する。 (もっと読む)


【課題】MS/MS分析のためのプリカーサの選択の自動的に行うとともにその選択の精度を上げ、未知成分の同定の効率化と精度向上とを図る。
【解決手段】目的試料に対する1回目のLC/MS分析により、m/z、強度、時間の3次元データを収集し(S1、S2)、分析終了後に予め設定されたm/z範囲のデータを用いてマスクロマトグラムを作成する(S3)。そのマスクロマトグラムに対しピーク検出を行い、ピークに対応するm/zを含むピーク情報を収集する(S4、S5)。ピーク強度が所定の閾値以上のものを抽出し、同一成分に由来するとみなせるピークを除いて、プリカーサイオンリストを作成するとともに、同一時間に出現する複数のピークに対応した成分のMS/MS分析を実行できるようにスケジュールを設定する(S7)。このスケジュールに従い目的試料に対して1回以上のLC/MS/MS分析を実行し、それにより得られたデータに基づいて成分同定を実行する(S8〜S11)。 (もっと読む)


【課題】 物質の構造に関する情報の取得効率を向上し、測定及び物質同定の時間を短縮することのできる質量分析方法を提供する。
【解決手段】 イオントラップ型質量分析装置を用いた質量分析システムにおいて、試料をイオン源でイオン化し、イオントラップ内に蓄積した全イオンに対し、高周波電圧を印加しない低フラグメント化スペクトルと、質量電荷比に依存した周波数をもつ高周波電圧を印加した高フラグメント化スペクトルを取得し、両スペクトルを比較することで、解離しやすい物質を探索することを特徴とする質量分析方法を開示する。 (もっと読む)


【解決手段】開示されるイオン源において、試料導入用キャピラリー管(2)を介して、イオン源の試料チャンバ(1)内に、気相で試料を導入する。酸化銅等の酸化剤で被覆された加熱表面(6)に導入された試料を入射することにより、試料に含まれる炭素が酸化されて、二酸化炭素が形成される。形成された二酸化炭素分子を、電子ビーム(3)を用いた電子衝撃イオン化によりイオン化する。得られたイオンを質量分析器に送り、質量分析を行なう。 (もっと読む)


【課題】タンデム質量分析法は、通常の質量分析法に比べて時間がかかるため、探知装置に求められる探知スピードが達成できなかった。
【解決手段】質量分析装置を用いた分析方法において、質量スペクトルを取得するステップ(201)と、固有のm/zのイオンが存在するか判定するステップ(202)を用いて高速でスクリーニングを行う。前記判定するステップ(202)の判定結果に応じて分析条件をデータベースから読み込み、タンデム質量分析を行うステップ(203)に切り替え、精査する。タンデム質量分析法で得られた結果から、固有のm/zのイオンが存在するか判定するステップ(204)を行う。 (もっと読む)


【課題】目的のイオンが十分な確保でき、MS/MS測定が最適化されたイオントラップ質量分析装置を提供する。
【解決手段】試料をイオン化するイオン源部と、イオン源にて生成されたイオンを、三次元四重極電界を形成することで所定の質量電荷比に従いイオンを閉じ込め、不要なイオンを排出し、目的のイオンのみを四重極電界内に閉じ込め、衝突誘起解離を行い、フラグメントイオンを生成し、そのイオンを質量分離し、検出器に輸送するイオントラップ部とイオンの量を電流値に変換する検出部とで構成される質量分析装置において、イオン捕捉操作における捕捉イオン量かつ目的イオン量をMS/MS測定を行うために最適化し、イオン選択操作および衝突誘起解離操作を行い、MS/MSスペクトルを得る。 (もっと読む)


【課題】
未知試料の同定を目的として質量分析システムにおいて、効率良く未知試料に関する情報を取得する手法を提供する。
【解決手段】
質量分析を行うことで得られたマススペクトルの各ピークに対してガウス関数を用いることで強度変化を予測し、その強度変化にもとづいて次に行うタンデム質量分析の回数および親イオンを決定する。試料の分離手段と質量分析装置から構成される質量分析システムにおいて、既に得られている質量分析のマススペクトルから、そこに出現している各ピークの強度変化を予測することで、タンデム質量分析の回数を決定することを1つの特徴とする。本発明によれば、これにより1測定中におけるタンデム質量分析の回数が増加することにより、試料における成分の多くの構造情報を取得可能となり、同定の精度が向上する。 (もっと読む)


前駆体イオンを1つ以上の関連生成物イオンと一致させる方法が記載され、本方法は、複数の注入から取得された複数の入力データ集合を提供するステップであって、複数の入力データ集合の各々が、同じ前駆体イオンおよび1つ以上の生成物イオンを含むステップと、前駆体イオンの単一の保持時間にしたがって、複数の入力データ集合を正規化するステップと、複数の入力データ集合の各々について、前駆体イオンの単一の保持時間に対して、どの生成物イオンが所定の保持時間枠内にあるかを判断するステップと、生成物イオンが複数の入力データ集合の少なくとも1つの所定の保持時間枠内にある場合に、生成物イオンが単一の保持時間を有する前駆体イオンに関連すると判断するステップとを含む。
(もっと読む)


標的アナライトをアッセイする方法であって、(a)各サンプルが他のサンプルとは異なる1つの質量標識又は質量標識の組み合わせで標識されており、前記質量標識が質量標識のセットに含まれている標識であり、各質量標識が質量スペクトルの異なる質量マーカー基を含む同重質量標識であり、その結果質量分析により前記サンプルを識別可能である、前記標的アナライトを含んでいてもよい複数のサンプルを提供する工程と、(b)前記複数の標識サンプルを混合して分析混合物を作製し、前記分析混合物を質量分析計に導入する工程と、(c)特定の数の前記質量標識で標識されている前記標的アナライトのイオンと等しい第1の質量電荷比を有するイオンを選択する工程と、(d)前記第1の質量電荷比を有するイオンを複数のフラグメントイオンにフラグメント化する工程であって、前記複数のフラグメントイオンの一部が少なくとも1つのインタクトな質量標識を含む工程と、(e)少なくとも1つのインタクトな質量標識を含む前記標的アナライトのフラグメントイオンと等しい第2の質量電荷比を有するイオンを選択する工程と、(f)前記第2の質量電荷比を有するイオンを複数の更なるフラグメントイオンにフラグメント化する工程であって、前記更なるフラグメントイオンの一部が質量マーカー基のイオンである工程と、(g)工程(f)で生成される前記更なるフラグメントイオンの質量スペクトルを作成する工程と、(h)前記質量スペクトルから各サンプル中の前記標的アナライトの量を特定する工程と、を含む方法。 (もっと読む)


前駆体イオン種をそれらのフラグメントから同定する方法が、複数の前駆体イオン種およびそれらのフラグメントの質量スペクトルを高質量精度で得るステップを含む。次いで、複数の前駆体イオン種のフラグメント化から得られたフラグメント質量スペクトルが走査され、合算した質量が前駆体イオン種の1つの質量と合致するフラグメントの対を同定する。フラグメントイオンの対が前駆体イオンに合致された後、複合のフラグメントイオンスペクトルがいくつかの部分に分解され、フラグメントの対ごとに1つの部分である。分析は、さらなる対が同定されなくなるまで続く。次いで、複合のフラグメントスペクトルの分解された区域を一体に継ぎ合わせることによって、各前駆体試料イオンごとに単純化されたフラグメントイオンスペクトルが再構成される。得られた再構成されて単純化されたフラグメントスペクトルが、サーチエンジンに送られ、サーチエンジンは、各合成フラグメントイオンスペクトルごとに有力候補のスコアソートリストを返す。
(もっと読む)


【課題】検出器の電気ノイズに時間的変動があった場合でも、このノイズを精度よく除去し質量スペクトルを作成する。
【解決手段】データ処理部では、イオントラップから各種イオンが出射されてTOF飛行空間を飛行して検出器に到達するまでの時間tと、検出器で検出された信号強度データをセットにして順次保存する。そして、測定質量範囲に対応した時間範囲T2に得られたデータをプロファイルデータとし、m/z最小のイオンが到達する前の期間T1又はm/z最大のイオンが到達した後の期間T3、に得られたデータをノイズ成分データとしてそれぞれ抽出する。ノイズ成分データからノイズレベルや標準偏差等のノイズ情報を算出し、このノイズ情報を用いてプロファイルデータからノイズを除去する。質量走査毎にノイズ成分データとプロファイルデータとがほぼ同時に得られるため、ノイズの時間的変動の影響を殆ど受けずに、的確なノイズ除去を実現できる。 (もっと読む)


【課題】特定の質量数のみの被検出ガスに対して、その成分及びそれらの成分比を測定できるようにする。
【解決手段】正電荷の金属イオンを被測定物質の分子に付着させて付着イオンを生成させる付着イオン生成部11と、付着イオンの質量分析を行う質量分析部と、を備え、質量分析部は、付着イオンのうち、特定の質量数の付着イオンを選択させる質量分離室13aと、特定の質量数の付着イオンを解離させるためのイオン化室13bと、解離させたイオンを分析する質量分析室14とを備えている。 (もっと読む)


【課題】多数の多重極やイオン輸送光学素子に印加する電圧の走査制御に関するCPUの負担を軽減する。
【解決手段】第1段四重極、コリジョンセル内に配設された多重極イオンガイド、第3段四重極などのイオン輸送構成要素にそれぞれの印加する電圧に対応した制御データを時系列的に記述したパラメータテーブルをCPUにより構成されるデータ生成部400で生成し、DMA転送で外部メモリであるテーブル保持部411に保持する。FPGAにより構成されるデータ読み出し部412は、走査開始信号を受けて時系列順に制御データの読み出しを開始する。読み出されたデータはそれぞれ対応するD/A変換部414に送られ、全てのD/A変換部414にデータが揃うと共通の同期信号により同時にラッチされ、D/A変換されたアナログ電圧が一斉に出力される。CPUは分析開始前にテーブルを作成した後、走査開始信号等を送るだけでよく、負担が少なくて済む。 (もっと読む)


【課題】任意に設定した糖鎖長及び硫酸基位置のコンドロイチン(CH)及びコンドロイチン硫酸(CS)を質量分析に付した場合に得られる、MS2スペクトルにおけるフラグメントイオンのm/z値を予測する方法を提供する。さらに、CH又はCSの糖鎖長及び硫酸基位置を、質量分析によって簡易に同定する方法を提供する。
【解決手段】CHオリゴ糖、CSAオリゴ糖及びCSCオリゴ糖について、各々のMS2スペクトルにおいて出現するフラグメントイオンのm/z値の規則性を見出し数式化する。さらに、前記数式に当てはめて予測した、糖鎖長及び硫酸基位置を設定したCH又はCSのフラグメントイオンのm/z値と、糖鎖長及び硫酸基位置が不明なCH又はCSのMS2スペクトルのm/z値の実測値が実質的に一致したときに、前記任意に設定した糖鎖長及び硫酸基位置が、前記不明であったCH又はCSの糖鎖長及び硫酸基位置であると同定する。 (もっと読む)


【課題】
現在の質量分析システムでは、価数の高いイオンでは同位体ピークのピーク間隔(1/価数)が狭まり価数判定の実施が困難である。本願の目的は、価数の高いイオンを検出した場合にも、価数の判定が可能な質量分析システムを提供することにある。
【解決手段】
本発明の特徴は、質量分析スペクトルより、同一の質量かつ異なる価数を有する同じ化合物の複数のイオン種を特定し、前記複数のイオン種のM/Z値に対して予め定めた裕度の範囲内で最小公倍数を求め、前記複数の前記化合物の質量及び各イオン種の価数を推定する質量分析システムにある。その結果、分析終了後のデータ解析精度の向上及び実験者の負担低減が見込める。さらに、タンデム型質量分析法を使用することにより、複数の成分が混在した試料の測定や、異なる価数の同一成分に対する重複分析の回避も可能となる。 (もっと読む)


101 - 120 / 363