説明

Fターム[2G042DA04]の内容

Fターム[2G042DA04]に分類される特許

81 - 100 / 101


【課題】元素分析装置における炭素・窒素安定同位体比等の検出能力を向上させることができる元素分析用前処理装置を提供すること。
【解決手段】元素分析用前処理装置2は、試料中の元素を分析装置3で分析する測定用の測定ガスを生成するための装置であり、試料を供給するオートサンプラ21と、反応ガスを供給するための酸素ガスボンベ5と、試料を酸素ガスボンベ5から供給された反応ガスによって燃焼させてガス化させる燃焼部22aと、この燃焼部22aの下流側に形成され酸化剤23を入れた酸化カラム部22bとを有する酸化管22と、試料ガスを還元させる還元剤25を入れた還元管24と、を備えている。酸化管22は、燃焼部22aの流路断面積S1を酸化カラム部22bの下流部22dの流路断面積S2より大きく形成している。還元管24は、流路断面積S3を燃焼部22aの流路断面積S1より小さく形成している。 (もっと読む)


【課題】HF炉型炭素濃度計を用いた定量分析が実行でき、またER炉炭素濃度計またはHF炉型炭素濃度計のいずれを用いても、定量分析の処理速度を大幅に向上させることが可能な定量分析方法を提供する。
【解決手段】加熱前に遊離炭素を含む炭化ケイ素の質量を測定する。続いて、マッフル炉を用いて所定温度にて所定時間、遊離炭素を含む炭化ケイ素を加熱させる。その後、加熱後の炭化ケイ素及び酸化ケイ素の質量を測定する。続いてこれらをHF炉51に投入し、これらを燃焼させ、燃焼後の炭素濃度を測定する。遊離炭素を含む炭化ケイ素を加熱させる場合に得られる第1反応方程式及び加熱後の炭化ケイ素及び酸化ケイ素を燃焼させる場合に得られる第2反応方程式に基づき導出されるモデル式へ、測定した前後の質量及び炭素濃度を代入することにより遊離炭素含有率を算出する。 (もっと読む)


【課題】試料中に計測対象がどの程度含まれているのかを即座に判定すること。
【解決手段】燃焼室10内に載置された試料6を完全燃焼させ、この後、燃焼チャンバ19に発生したガスに含まれる13Cの濃度を計測チャンバ16により計測する。 (もっと読む)


【課題】試料水の希釈部とIC除去処理部とを一体化したTOC計であって、試料水の希釈倍率が高い場合でも容易に対応することができ、かつICの除去効率が高いとともに、構造が簡単で、コストの削減を図ることが可能なTOC計を提供する。
【解決手段】内部で試料水、希釈水およびIC除去液を混合する有底筒状の希釈・IC除去槽10を備えたTOC計において、希釈・IC除去槽10の底部に試料水導入ライン14、希釈水導入ライン16、IC除去液導入ライン18および攪拌ガス導入ライン20を接続する。また、希釈・IC除去槽内に導入した試料水、希釈水およびIC除去液の混合液12の内径a(mm)と高さb(mm)との比(a:b)を1:10〜20とする。 (もっと読む)


【課題】試料水を燃焼部内に滴下したときの燃焼部内の滴下ポイントの局部的な急激な温度低下に伴う目的成分の不完全燃焼を防止することができる燃焼式水質分析装置を提供する。
【解決手段】内部で試料水を燃焼させる燃焼部30と、試料水の滴下ノズル48とを備え、滴下ノズルから試料水の液滴を燃焼部内に落下させるとともに、この落下させた液滴を燃焼部内で燃焼させて得られるガス中の成分を測定する燃焼式水質分析装置において、滴下ノズルを横方向に移動させる滴下ノズル移動手段を設ける。滴下ノズル移動手段としては、例えば、回転モータ44および回転体46によって構成され、滴下ノズルを水平面に沿って回転させるものを用いることができる。 (もっと読む)


【課題】燃焼部内に試料水を導入したときに燃焼部の内部壁面に試料水が飛散することがないとともに、燃焼部内の局部的な急激な温度低下よって生じる目的成分の不完全燃焼を防止することができる燃焼式水質分析装置を提供する。
【解決手段】内部に触媒保護材料充填層18およびその下方に触媒充填層16が設けられ、内部で試料水を燃焼させる燃焼部10と、試料水導入ノズル30とを備え、試料水導入ノズルの先端から試料水を燃焼部内に導入し、この試料水を燃焼させて得られるガス中の成分を測定する燃焼式水質分析装置であって、試料水導入ノズルの先端を触媒保護材料充填層に接触させた燃焼式水質測定装置とする。 (もっと読む)


【課題】分析用の試料を受け入れて燃焼させるための元素分析装置のための燃焼炉を提供する。
【解決手段】燃焼管のための反応物組立体が、燃焼管の開口端に封止可能でかつ取り外し可能に結合された反応物管を有し、それにより、反応物管内の反応物を使い尽くしたときに、炉を分解したり燃焼管を交換したりせずに反応物を容易に取り外すことができる。反応物管は、反応物管の取り外しを容易にするためにツイストロックキャップを有する。 (もっと読む)


【課題】酸素吸蔵材との関係での触媒金属のパティキュレート燃焼に対する適性を効率良く判定できるようにする。
【解決手段】供試材として、触媒金属を含む酸素吸蔵材(パティキュレート燃焼触媒材)と該触媒金属を含まない酸素吸蔵材とを準備し(S1,S2)、各供試材に182を吸蔵させ(S3,S6)、次いで各供試材にカーボン質粉末を混合し(S4,S7)、162含有気流中で当該混合物を昇温させていくことにより、18Oを含むCO2及び18Oを含まないCO2を生成させてそれら各種CO2量の温度変化を測定し(S5,S8)、当該両供試材の各種CO2量の温度変化を比較することにより、当該触媒材のパティキュレート燃焼に対する適性を判定する。 (もっと読む)


【課題】微粒子が均一に加熱されない為に、得られた燃焼プロファイルに幾つものピークが出現してベースラインの決定が困難となり、正確な炭素の定量値を求めることが非常に難しくなるという問題を解決し、複雑な設備を設けること無く、微粒子に含まれる炭素量を正確にかつ短時間で定量する。
【解決手段】フィルタ2に捕集した微粒子を前記フィルタ2ごと酸素気流中で加熱して、前記微粒子中の炭素を一酸化炭素および/または二酸化炭素となし、その後、前記一酸化炭素および/または二酸化炭素の量から前記微粒子中の炭素量を求める分析方法であって、前記酸素気流中での加熱時において、箔状の助燃剤1を前記フィルタ2に接するように配置する。 (もっと読む)


【課題】
真空ポンプを用いずに液体中の気体を脱気する脱気デバイスを提供する。
【解決手段】
PDMSなどの円柱型の気体溶解性の脱気デバイス1に貫通穴6をあけたものを用いる。貫通穴6の一端は、シリンジとの接合を容易にするため、テーパ形状に加工する。脱気デバイス1は予め充分脱気しておき、外面には外気と触れないようにアルミニウム膜7を形成しておく。シリンジを用いて試料液体を貫通穴6に供給してその穴の内部でPDMSに接触させることにより液体中の気体を脱気する。 (もっと読む)


【課題】簡易で正確に分析を行うことができる石炭中のフッ素の定量方法を提供する。
【解決手段】濾紙1の中央に試料2を置く。試料2は、例えば石炭の粉末、触媒及び副触媒からなる。次に、導火部を固定したまま濾紙1を縦方向に三つ折りする。その後、濾紙1を横方向に三つ折りする。その後、試料2を包含した濾紙1を燃焼フラスコの共栓部(ガラス栓)4に取り付けた白金バスケット5に入れる。また、燃焼フラスコの三角フラスコ6には、少量の吸収剤7を入れ、更に酸素を満たしておく。そして、濾紙1の導火部3に点火し、濾紙1が固定された白金バスケット5を三角フラスコ6に挿入し、内部で試料2を燃焼させる。そして、燃焼終了後に燃焼フラスコを傾斜させて2分間振盪し、その後1時間放置することにより、燃焼により発生したフッ素を吸収剤7に吸収させる。このようにして、フッ素を溶液化する。 (もっと読む)


【課題】試料ガス中の酸素や二酸化炭素量に影響されずに測定可能なTVOC計を提供する。
【解決手段】一定流量の試料ガスG1の酸素濃度を磁気式酸素計2で測定した後、試料ガスG1を燃焼触媒酸化炉3で完全燃焼させ、排出された試料ガスG2の酸素濃度を磁気式酸素計4で測定し、それぞれの測定値に比例した電気信号E1、E2を演算処理装置5に入力して酸素濃度差を求め、その酸素濃度差を演算処理して試料ガスG1の全揮発性有機化合物(TVOC)濃度を算出する。 (もっと読む)


【課題】簡易な方法で正確にVOCを測定可能な分析装置を提供する。
【解決手段】
本発明の分析装置1は燃焼装置10と、検知管30とを有しており、バッグ2の検出対象ガスは吸引装置5によって所定量が引き出され、燃焼装置10に送られる。燃焼装置10は燃焼触媒を有しており、検出対象ガスのVOCは燃焼触媒と接触して熱分解され、二酸化炭素と水になる。検出対象ガスは、更に検知管30に送られる。検知管30はアルカリとpH指示薬が含有された呈色剤を有しており、検出対象ガスの二酸化炭素は担体表面でアルカリと反応し、担体表面のpHが下がり、pH指示薬が変色する。pH指示薬が変色する境界の位置を目盛りと比べることで、検出対象ガスに含有されるVOC量が総炭素量として求められる。 (もっと読む)


【課題】大気中のベンゼンの炭素安定同位体比(13C/12C)の測定値に基づいて、前記ベンゼンの炭素源を特定する。
【解決手段】所定範囲から採取した空気に含まれるベンゼンの炭素安定同位体比(13C/12C)を測定し、この測定結果からδ13C値(国際標準物質の炭素同位体比に対する、試料中の炭素同位体比の千分率偏差)を算出し、δ13C値が「−23〜−26‰」である場合に前記ベンゼンは石炭を炭素源とするベンゼンであり、δ13C値が「−27〜−29‰」である場合に前記ベンゼンは石油を炭素源とするベンゼンであると特定する。なお、δ13Cの算出値は、ベンゼンを含有する一般大気の影響が排除された値になるようにする。図1は分析装置の一例である。 (もっと読む)


【課題】キルン焙焼に供する廃触媒中の非揮発性炭素と非揮発性硫黄の分析結果を反映させたキルン操業を可能とするために、前記分析に必要とする時間を大幅に短縮できる廃触媒中の非揮発性炭素および非揮発性硫黄の分析方法を提供する。
【解決手段】揮発性油分と非揮発性炭素分と非揮発性硫黄分を含有する廃触媒の非揮発性炭素及び非揮発性硫黄の分析方法において、従来のソックスレー法を用いずに、前記廃触媒を窒素ガス雰囲気下で、600℃以上の温度で、10分以上保持してから、酸素ガス抵抗加熱燃焼-熱伝導度法を用いた炭素、硫黄分析装置を用いて炭素及び硫黄を分析することを特徴とする。 (もっと読む)


【課題】本発明は、鉄鋼材料中の炭素を固溶炭素と析出炭素の形態別に精度良く定量する方法を提供する。
【解決手段】鋼中の析出物炭素量は、鋼のマトリックスを溶解し、無機フィルタ上にろ過捕集した鋼中析出物抽出残渣を酸素気流中で加熱して一酸化炭素と二酸化炭素の量を測定して求め、固溶炭素量は、予め求めておいた鋼中の全炭素量から前記析出物炭素量を減じて求めて鋼中炭素を形態別に定量する際、前記鋼中析出物抽出残渣を予備加熱、好ましくは300℃〜320℃以下に加熱し、混入した固溶炭素を燃焼除去した後、酸素気流中で加熱して前記析出物炭素量を定量する。 (もっと読む)


【課題】サンプルガス中のハイドロカーボン類の濃度を短時間で検出するハイドロカードン測定装置を提供する。
【解決手段】サンプルガス中のTHC濃度を検出するFID1を有し、FID1によって検出したTHC濃度からサンプルガス中のハイドロカーボンの成分比率を算出し、THC濃度と成分比率に基づいて、サンプルガス中に含まれるHC類の濃度を検出する。 (もっと読む)


【課題】 エンジン排ガス中に含まれるPMにおけるドライスート、SOFおよびサルフェートを、それらが微量であっても、個々に分別して簡便かつ精度よく測定することができるエンジン排ガス中の粒子状物質の分析方法および装置を提供する。
【解決手段】 エンジン排ガスG中に含まれる粒子状物質を捕集したフィルタ2を加熱炉1内に設け、まず、加熱炉1内に不活性ガスを流しながらフィルタ2を所定温度で加熱して粒子状物質中の炭化水素とサルフェートを気化し、気化した炭化水素を酸化してCO2 とする一方、気化したサルフェートを還元してSO2 とし、前記CO2 およびSO2 をガス分析部15で分析し、その後、前記加熱炉1内に酸素を流しながら前記フィルタ2を加熱してこのフィルタ2上に残った粒子状物質を酸化してCO2 を発生させ、このCO2 をガス分析部15で分析するようにした。
(もっと読む)


【課題】
リアルタイムにエアロゾルを分析できる装置を提供する。
【解決手段】
DMA(微分型電気移動度測定器)1は、微粒子を外部に取り出すためのスリット12を有する中心ロッド13と、微粒子供給部4と、分析対象ガス成分を含まないガスで置換するためのシースガス導入口7を備えており、帯電エアロゾルはシースガス中の微粒子となって、DMA1中の電圧によって分級する。分級された粒子は加熱装置41によって加熱され、DMA2に導入される。DMA2とDMA1によって分級された粒径分布を比較することにより、粒径分布変化を測定する。ファラデーカップ電流計14,34で電荷を測定し粒子数を計測する。加熱装置41で揮発したガスは、取出し口30からシースガスと混ざらずに外部に取り出され、分析機器43で粒子を構成していた揮発生成分を測定することができる。
(もっと読む)


試料中の所望される元素の所定の濃度について、試料の酸化物を分析的に定量化するための高速分析システム及び関連方法を開示する。本システムは、試料供給システム、酸化剤供給システム、炉システム、検出室及び上記検出室と上記炉とを相互接続する転送管を含み、上記検出室及び転送ラインは、反応室または上記転送ラインの何れにおいても水蒸気の凝縮を低減する、または防止するに足る上昇された温度に維持される。
(もっと読む)


81 - 100 / 101