説明

Fターム[2G042FA04]の内容

化学的手段による非生物材料の調査、分析 (9,632) | 試薬 (1,426) | 酸化剤 (76)

Fターム[2G042FA04]に分類される特許

1 - 20 / 76


【課題】石炭火力発電所における脱硫排水に代表される試料水に含まれる水溶性セレンを、高精度に分析することのできるフロー方式のセレン分析システムを得る。
【解決手段】試料水に含まれる有機物を分解する第一処理を行う第一処理部と、第一処理部から送液される第一処理済み試料水に含まれる6価セレンを4価セレンに還元する第二処理を行う第二処理部と、第二処理部から送液される第二処理済み試料水に含まれる4価セレンをセレン化水素ガスに還元気化する還元気化部と、還元気化部からガス導入管を介して送り込まれるセレン化水素ガスをセレン化水素ガス検知器で検出して得られる信号値に基づいて試料水の水溶性セレン濃度を分析する分析部とを有するものとした。 (もっと読む)


【課題】セレン化水素ガス検知器を利用してセレン化水素ガスの測定を行うことにより、試料水(分析用試料)の水溶性セレン濃度の分析を行う方法において、試料水に含まれ得る硫黄化合物に起因する硫化水素ガスの発生を回避して、正確な分析値を得る。
【解決手段】試料水に対し、有機物分解剤として過マンガン酸カリウムを添加して加熱する第一前処理と、6価セレンを4価セレンに還元する還元剤として塩酸を添加して加熱する第二前処理とを順に実施した後、試料水に含まれる4価セレンをテトラヒドロホウ酸ナトリウムと反応させてセレン化水素ガスを発生させ、このセレン化水素ガスをセレン化水素ガス検知器に導いて、セレン化水素ガス検知器により検出された信号値に基づいて、試料水の水溶性セレン濃度を分析する方法において、第一前処理の際にさらに硫酸を添加して、試料水に含まれる有機物と共にテトラヒドロホウ酸ナトリウムと反応して硫化水素ガスを生成し得る硫黄化合物を分解するようにした。 (もっと読む)


【課題】試料を汚染することなく、試料の色の濃淡変化を短時間で高感度に検出することができる、コンパクトな還元気化水銀測定装置を提供する。
【解決手段】試料前処理装置1で試料Sの前処理を行ったのちに、還元気化法により各試料中の水銀を測定する還元気化水銀測定装置であって、試料前処理装置1は、試料Sが収容された複数の試料容器10のそれぞれに少なくとも過マンガン酸カリウム溶液を含む複数の試薬を注入する試薬分注装置2と、発光素子として緑色LED71を有し、試料容器10に対して移動される反射型光センサ7とを備え、反射型光センサ7が、試料容器10の開口部の直上で、試料容器10内における試薬の過マンガン酸カリウム溶液の色の濃淡変化を非接触で検出するとともに、試料容器10を非接触で検出する。 (もっと読む)


【課題】転炉出鋼後に採取した溶鋼あるいは二次精錬中の溶鋼のS濃度を迅速かつ精度よく分析することによって、高い精度で鋼のS濃度を制御することを可能とする溶鋼の脱硫方法、およびその脱硫方法を用いた溶鋼の製造方法を提案する。
【解決手段】転炉出鋼後の溶鋼あるいは二次精錬中の溶鋼から試料を採取してS濃度を分析し、その分析値に基づいて、Sの合否判定および/またはその後の脱硫処理条件を決定する溶鋼の脱硫方法において、上記S濃度を、試料を純酸素雰囲気下で高周波誘導加熱により酸化させて、溶鋼中のSをSOとする高周波誘導加熱工程と、上記高周波誘導加熱工程で生成したSO含有ガスを、紫外蛍光法で分析して試料中のS濃度を定量する分析工程を含む方法で分析することとを特徴とする溶鋼の脱硫方法および製造方法。 (もっと読む)


【課題】亜硝酸イオンによるジアゾ化反応を利用し、ハロゲン化物イオンを含む検査水の全窒素を簡単かつ安全な作業により高濃度の領域まで定量できるようにする。
【解決手段】検査水の全窒素の定量方法は、ハロゲン化物イオンを含む検査水へペルオキソ二硫酸のアルカリ金属塩を添加し、アルカリ性下で加熱する工程1と、工程1を経た検査水へ亜りん酸およびその塩並びに次亜りん酸およびその塩のうちの少なくとも1種を添加し、酸性下で加熱する工程2と、工程2を経た検査水に対し、塩化バナジウム(III)と、亜硝酸イオンとの反応によりジアゾニウム塩を生成可能なジアゾ化試薬とを添加し、酸性下で加熱する工程3と、工程3を経た検査水について、ジアゾ化試薬による着色の吸光度を測定することで亜硝酸イオン濃度を測定する工程4とを含む。ジアゾ化試薬として、オルト位若しくはパラ位にケトン基若しくはニトロ基を有する芳香族第一級アミン化合物を用いる。 (もっと読む)


【課題】水溶液中の有機物の指標としてTOCを光触媒酸化方式によって測定するTOC測定装置は、有機物の酸化分解によって生成された全CO2ガスが流路内に留まり、無駄なくNDIRの信号に変換され出力される。一方、測定終了後は、流路内に残ったCO2ガスは次の測定に備えるために、流路内から排出しもとのベースラインのレベルまで戻す必要がある。このことは、測定終了後余分な待ち時間を必要とされることになる。開放送気光触媒酸化方式でTOC分析を短時間で分析することができる分析方法および測定可能な装置を提供する。
【解決手段】オートサンプラー、リアクタ、NDIRを備えた光触媒酸化方式TOC測定装置において、前記リアクタの出口側に前記NDIRを直接的に接続し、前記NDIRの出口側を大気に開放した。 (もっと読む)


【課題】亜硝酸イオンによるジアゾ化反応を利用し、検査水の全窒素を簡単かつ安全な作業により高濃度の領域まで定量できるようにする。
【解決手段】検査水の全窒素の定量方法は、検査水へペルオキソ二硫酸のアルカリ金属塩を添加し、アルカリ性下で90℃から沸騰温度までの温度で加熱する工程1と、工程1を経た検査水へ亜りん酸及びその塩並びに次亜りん酸及びその塩のうちの少なくとも1種を添加し、ハロゲン化物イオンが存在する酸性下で加熱する工程2と、工程2を経た検査水に対し、塩化バナジウム(III)と、亜硝酸イオンとの反応によりジアゾニウム塩を生成可能なジアゾ化試薬とを添加し、酸性下で加熱する工程3と、工程3を経た検査水について、ジアゾ化試薬による着色の吸光度を測定することで亜硝酸イオン濃度を測定する工程4とを含む。ジアゾ化試薬として、オルト位又はパラ位にケトン基又はニトロ基を有する芳香族第一級アミン化合物を用いる。 (もっと読む)


【課題】亜硝酸イオンによるジアゾ化反応を利用し、検査水の全窒素を簡単な操作で高濃度の領域まで定量できるようにする。
【解決手段】検査水の全窒素の定量方法は、検査水へペルオキソ二硫酸のアルカリ金属塩を添加し、アルカリ性下において90℃から検査水の沸騰温度までの温度で加熱する工程1と、工程1を経た検査水に対し、塩化バナジウム(III)と、亜硝酸イオンとの反応によりジアゾニウム塩を生成可能なジアゾ化試薬とを添加し、酸性下において加熱する工程2と、工程2を経た検査水について、ジアゾ化試薬による着色の吸光度または生成したジアゾニウム塩による着色の吸光度を測定することで亜硝酸イオン濃度を測定する工程3とを含んでいる。ジアゾ化試薬として、ケトン基若しくはニトロ基を有する芳香族第一級アミン化合物群および3−アミノ−2−シクロヘキセン−1−オン骨格含有化合物群からなる群から選ばれた化合物を用いる。 (もっと読む)


【課題】既存のバラスト型CHN(S)有機物測定器の範囲と性能を拡張した新しいバラストシステムを使用する分析装置を提供する。
【解決手段】燃焼炉を備えた分析装置が、弁を介して双方向バラストチャンバ10に結合された燃焼副生成物の流路を備え、燃焼中にチャンバの両側において燃焼副生成物の充填と排出を交互に行うために弁が順次作動される。或いは、複数の低容積バラストチャンバが使用される。試料中の元素の濃度を測定する方法は、試料を燃焼させる段階と、双方向バラストの両側において燃焼副生成物ガスの充填と排出を交互に行う段階とを含む。双方向バラストチャンバは、チャンバを画定する外側壁と、壁の両側に密封されたエンクロージャと、チャンバ内に位置決めされた可動ピストンと、ピストンの両側にチャンバと関連付けられたガスポートとを有する。 (もっと読む)


【課題】亜硝酸イオンによるジアゾ化反応を利用し、検査水の全窒素を簡単な操作で高濃度の領域まで定量できるようにする。
【解決手段】検査水の全窒素の定量方法は、検査水に含まれる窒素化合物を酸化分解により硝酸イオンへ変換した後にさらに還元して亜硝酸イオンへ変換するための工程1と、工程1を経た検査水に対し、亜硝酸イオンとの反応によりジアゾニウム塩を生成可能なジアゾ化試薬を添加し、酸性下において反応させる工程2と、工程2を経た検査水について、ジアゾ化試薬による着色の吸光度または生成したジアゾニウム塩による着色の吸光度を測定することで亜硝酸イオン濃度を測定する工程3とを含んでいる。ジアゾ化試薬として、ケトン基若しくはニトロ基を有する芳香族第一級アミン化合物群および3−アミノ−2−シクロヘキセン−1−オン骨格含有化合物群からなる群から選ばれた化合物を用いる。 (もっと読む)


【課題】燃料ガス中のシクロヘキセンの濃度を簡易且つ迅速に測定することを可能とする燃料ガス中のシクロヘキセン検知方法及び装置を得る。
【解決手段】
下記(a)〜(f)の構成を含む燃料ガス中のシクロヘキセン検知方法及び装置。(a)検知管を酸化剤などに耐薬品性をもつガラス等の材料によりチューブ状に構成する。(b)前記検知管にシクロヘキセンを特異的に吸着する吸着剤を充填して両端に蓋をして密閉する。(c)前記密閉した検知管の蓋をはずし、測定対象の気体を前記検知管に吸引させて吸着剤に通気させ、対象物であるCHを捕集する。(d)空気を吸引して測定対象以外の成分を前記検知管外に排出させる。(e)前記検知管に酸化剤の入ったカートリッジを取付け、前記カートリッジ中の溶液を吸引し、吸着剤に含浸させる。(f)吸着剤表面に吸着したCHと酸化剤が反応して色が変色し、比色によってCH濃度を測定する。 (もっと読む)


【課題】固体物中に含まれる硫化物の量を判定可能な硫化物の検出方法を提供する。
【解決手段】固体物中に含まれる硫化物の検出方法であって、前記固体物内の硫化鉄と過酸化水素水とを酸化反応させて3価の鉄イオンと硫酸イオンとに分解する酸化分解工程と、分解された前記3価の鉄イオンを、還元剤を用いて2価の鉄イオンに還元する還元工程と、前記還元工程後に1,10−フェナントロリン溶液により前記2価の鉄イオンの有無を確認することにより間接的に硫化物を検出する検出工程と、を有する。 (もっと読む)


【課題】マイクロ波によって複数の試料を簡易かつ迅速に加熱することができるとともに、試料間の加熱むらを小さくすることができる加熱補助器具、加熱装置及び加熱方法、並びに、複数の試料水について簡易かつ迅速に加熱することができるとともに、試料間の測定精度のばらつきを小さくすることができる化学的酸素消費量の測定方法を提供する。
【解決手段】複数の試料容器をそれぞれ位置決めし、同一円上に配置されている複数の位置決め部16,17と、前記複数の位置決め部が配置されている円の中心C1と前記複数の位置決め部のそれぞれとの間に配置されているマイクロ波反射部9と、を有する加熱補助器具4。 (もっと読む)


【課題】、窒素分析の前処理として試料の燃焼分解により窒素を抽出する試料の処理方法および処理装置であって、分析コスト及び労力を低減できる窒素分析用試料の処理方法および処理装置を提供する。
【解決手段】窒素分析用試料の処理方法においては、窒素酸化物、余剰酸素が含まれる試料ガスをグラファイトに接触させ、余剰酸素を一酸化炭素および二酸化炭素に変換した後、銅に接触させて窒素酸化物を窒素に変換し、かつ、生成される酸化銅を試料ガス中の一酸化炭素で銅に再生する。また、窒素分析用試料の処理装置は、試料を燃焼分解して窒素酸化物、余剰酸素が含まれる試料ガスを生成する加熱装置1と、グラファイト72により試料ガス中の余剰酸素を一酸化炭素および二酸化炭素に変換する酸素除去装置2と、銅73によって試料ガス中の窒素酸化物を窒素に変換し、生成される酸化銅を試料ガス中の一酸化炭素で銅に再生する還元装置3とを備えている。 (もっと読む)


【課題】
希釈水容器2の転倒を防止する機構を設ける。その際、希釈水容器2をTOC計本体1から取り外し易い構造にすると共に、TOC計に希釈水を運ぶチューブ3を希釈水容器2に挿入し易い構造にする。
【解決手段】
希釈水容器格納スペース16に格納された希釈水容器2が転倒しそうになった場合、傾いた希釈水容器2が押さえ部14に接触することで希釈水容器2の転倒を防止する。また、希釈水容器2を希釈水容器格納スペース16から取り出し易いように、TOC計本体1と希釈水容器2の間には指で希釈水容器2を掴んだり押さえたりして容器を取り出せるように、希釈水容器2周辺に指を挿入することができるスペース15を設ける。そして、スペース15は、希釈水容器格納スペース16に格納した希釈水容器2の容器口にチューブ3を挿入する作業を行うために指でチューブ3を握ることができるように、指を挿入する空間としての役割も兼ね備えている。 (もっと読む)


【課題】検査水の全りんを安全に短時間で定量する。
【解決手段】検査水中のりん化合物をりん酸イオンへ変換した後にりん酸イオンを定量することで検査水の全りんを定量する方法は、検査水に対してペルオキソ二硫酸のアルカリ金属塩を含みかつアルカリ性に調整された第1水溶液と硫酸とを添加し、65℃〜沸騰温度で加熱する工程1と、工程1を経た検査水へ炭素数5のアルドース、炭素数6のアルドース若しくは炭素数6のケトース又はこのような単糖を分解により生成可能なオリゴ糖を含む第2水溶液を添加して引き続き加熱する工程2と、工程2を経た検査水へ七モリブデン酸六アンモニウム又はモリブデン酸のアルカリ金属塩およびアンチモンの価数が3であるアンチモン化合物を含む第3水溶液を添加し、65℃以上に維持する工程3と、工程3を経た検査水について、600〜950nmの範囲における任意の波長の吸光度を測定する工程4とを含んでいる。 (もっと読む)


【課題】 鉱山廃水などに含まれることがある低濃度の砒素を短時間で検出する。
【解決手段】 りん酸とシリカイオンが存在する試料液中の希薄な砒素濃度を、モリブデン酸アンモニウムを使ったフローインジェクション分析に基づいて測定する方法であり、前記試料を酸化剤、又は還元剤と反応させる第一段階と、前記反応させた試料を発色剤と反応させる第二段階とからなる。発色剤との反応温度は約70℃、反応時間は約1.4分間である。試料液、標準液、酸化剤、及び還元剤溶液はキャリア(水)によって測定用の管路へ運び、発色剤溶液及びキャリアにドデシル硫酸ナトリウムを溶解添加する。 (もっと読む)


【課題】検査水の全りんを安全に短時間で定量する。
【解決手段】検査水に含まれるりん化合物を分解してりん酸イオンへ変換し、検査水のりん酸イオンを定量することで検査水の全りんを定量する方法では、検査水へペルオキソ二硫酸のアルカリ金属塩と硫酸とを添加し、65℃から沸騰温度までの温度で所定時間加熱する。そして、検査水へヒドロキシカルボン酸類およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解によりこれらの単糖のいずれかを生成可能な単糖生成化合物からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムを含む発色剤を添加して65℃以上で所定時間加熱した後、検査水について600から950nmの範囲における任意の波長の吸光度を測定する。 (もっと読む)


【課題】検査水の全りんを安全に短時間で定量する。
【解決手段】検査水に含まれるりん化合物を分解してりん酸イオンへ変換し、検査水のりん酸イオンを定量することで検査水の全りんを定量する方法では、検査水へペルオキソ二硫酸のアルカリ金属塩と硫酸とを添加し、65℃から沸騰温度までの温度で所定時間加熱する。そして、検査水へソルビトール等の水酸基含有化合物とイソマルツロース等の糖類化合物とを溶解した第1水溶液を添加して引き続き所定時間加熱し、さらに、検査水へメタバナジン(V)酸ナトリウム等のバナジウム化合物、酒石酸アンチモニルカリウム三水和物等のアンチモン化合物およびモリブデン酸カリウム等のモリブデン化合物を溶解した第2水溶液を添加して65℃以上に所定時間維持した後、検査水について600から950nmの範囲における任意の波長の吸光度を測定する。 (もっと読む)


【課題】検査水の全りんを安全に短時間で定量する。
【解決手段】検査水中のりん化合物をりん酸イオンへ変換し、検査水のりん酸イオンを定量することで全りんを定量する方法は、検査水へペルオキソ二硫酸のアルカリ金属塩又はペルオキソ二硫酸アンモニウムと硫酸とを添加し、65℃〜沸騰温度で加熱する工程1と、工程1を経た検査水へ炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトース又は分解によりこれらのアルドース若しくはケトースを生成するオリゴ糖の水溶液を添加して引き続き加熱する工程2と、工程2を経た検査水へ七モリブデン酸六アンモニウム又はモリブデン酸のアルカリ金属塩若しくはアルカリ土類金属塩並びにアンチモンの価数が3であるアンチモン化合物を含む水溶液を添加し、65℃以上に維持する工程3と、工程3を経た検査水について、600〜950nmの範囲における任意の波長の吸光度を測定する工程4とを含んでいる。 (もっと読む)


1 - 20 / 76