説明

Fターム[2G050CA04]の内容

Fターム[2G050CA04]の下位に属するFターム

Fターム[2G050CA04]に分類される特許

61 - 80 / 123


【課題】
金属素材表面に設けられた被膜の耐食性を簡易かつ迅速に評価する方法を提供する。
【解決手段】
金属素材表面に設けられた被膜の耐食性を評価する方法であって、被膜部と、地金が露出する露出部とにより表面が構成されてなる金属素材評価物を、酸素含有雰囲気下、前記被膜部および露出部のそれぞれ一部のみが浸漬するように耐食性評価液中に保持し、前記耐食性評価液に浸漬した被膜部と露出部とを有する面を耐食性評価部として観察することを特徴とする金属素材表面に設けられた被膜の耐食性評価方法である。 (もっと読む)


【課題】応力腐食割れ発生データを、1体の試験体で複数取得できること。
【解決手段】試験環境10Aと同一の温度状態において、試験体11に曲げ変形が付与された状態で、試験体11の表面12の複数位置で歪ゲージ13を用いて歪を計測し、この歪値から表面12の歪分布を予め求め、次に、試験体11を試験環境10Aに所定時間浸漬した後に取り出し、試験体11の表面12に亀裂が発生したときに応力腐食割れ発生データを取得するものである。 (もっと読む)


【課題】セメントの化学組成や種類が不明な硬化後のコンクリートに対して、化学的劣抵抗性を評価することができるコンクリート劣化判定方法を提供することを目的とする。
【解決手段】本発明のコンクリート劣化判定方法は、分析対象のコンクリートを粉砕し、粉末にして乾燥後、前記粉末を純水または反応溶液を溶媒として各成分を溶出させた溶出量を測定することを第1の測定とし、前記粉末の各成分をX線分析により測定することを第2の測定とし、前記粉末を酸溶解させた後に残る各成分を測定することを第3の測定とし、少なくとも第1〜3の測定のいずれかによる測定値から前記コンクリートの特性値を算出して、化学的劣化抵抗性を評価することを特徴とする。 (もっと読む)


【課題】ハロゲン化物イオン、海水に含まれる生化学的成分または塩類等を含む水溶液環境中で使用される機器用のステンレス鋼に発生するすきま腐食損傷を、未然に防止もしくは適正なステンレス鋼を選定するための、ステンレス鋼のすきま腐食発生時間の評価方法を提供する。
【解決手段】ハロゲン化物イオンまたは海水に含まれる生化学的成分もしくは水溶性塩類を含む水溶液環境中に、ステンレス鋼の表面どうしを向かい合わせて、間隔0.5mm未満のすきま部を設けた、すきま付き試験片と、前記ステンレス鋼の自由表面のみからなる、すきまなし試験片をそれぞれ水溶液環境中に浸漬し、外部電源によって、それぞれの試験片に同一の電位を印加した時点から、それぞれの試験片に生じる電流密度の差分値の時間的変化から、すきま腐食発生時間を決定することを特徴とする、ステンレス鋼のすきま腐食発生の時間評価方法。 (もっと読む)


【課題】結晶粒内部表面の過剰な金属腐蝕を可及的に抑えつつ、不純物が偏析した結晶粒界部の金属腐蝕を選択的に促進できるとともに、隣接する結晶粒内部表面間に生じる段差を可及的に小さく抑え得る金属表面の結晶粒界部腐蝕方法を提供する。
【解決手段】金属表面の腐蝕対象部位を電解液に接しさせて電位を加え、該電位を自然電位(1)から不動態化電位(2)を超えた任意値まで上昇掃引して腐蝕対象部位に不動態皮膜を形成した後、該電位を下降方向に逆掃引して、結晶粒界部を選択的に腐蝕させる金属表面の結晶粒界部腐蝕方法であって、前記自然電位(1)から不動態化電位(2)までの活性態域では、結晶粒全体の腐蝕を抑制しつつ被腐蝕対象部位を活性化すべく早い速度で掃引する一方、前記逆掃引時は粒界部の溶解を促進すべく遅い速度で行い、該逆掃引は再不動態化最小電位(8)を通過してから不動態化最大電位(2)に至る間の任意の電位値で終了させる。 (もっと読む)


【課題】燃料の酸化劣化を検出して、ユーザに報知することが可能な燃料劣化検出装置および燃料劣化検出方法を提供することを目的とする。
【解決手段】本発明に係る燃料劣化検出装置は、ECU10は、バイオ燃料の燃料劣化指標値(酸化劣化度合い)Xを算出し、燃料劣化指標値Xが閾値Xfを超えた場合に、インパネ20の第1の警告灯21を点灯して、ユーザにバイオ燃料の酸化劣化を警告することにより、バイオ燃料の酸化劣化を検出して、ユーザーに報知することが可能となる。 (もっと読む)


【課題】本発明は、地際環境での被覆鋼材の耐食性の簡便で正確な評価方法を提供する。
【解決手段】0.02〜2.0質量%のアンモニアと塩化物イオン濃度で0.1〜2.0質量%の金属塩化物を含むpHが5.0〜11.0である試験水溶液中に、評価対象である被覆鋼材を所定時間浸漬することで、被覆鋼材の耐食性を試験することを特徴とする被覆鋼材の耐食性評価方法である。本発明により、コンクリートあるいは地面に一部埋め込まれて使用される被覆鋼材の正確な耐食性を簡便で迅速に評価することができ、さらに被覆鋼材の適切な防食構造の開発の効率を向上させることができる。 (もっと読む)


【課題】
本発明の目的は、プラント運転中に炭素鋼配管の腐食減肉抑制効果を確認でき、プラント稼働率を向上できるプラント運転方法を提供することにある。
【解決手段】
炭素鋼配管と同じ炭素鋼の少なくとも3個の電極を、炭素鋼配管を流れる水中に曝露し、測定した当該電極間の電気化学ノイズから算出されるノイズ抵抗の逆数、又はノイズ抵抗、あるいは電気化学的電流ノイズの標準偏差を指標として、プラント運転中の炭素鋼配管の複数箇所における腐食減肉の発生有無を監視し、その結果に基づいて水中に添加する腐食抑制剤の量を制御する。 (もっと読む)


【課題】水系の腐食傾向を迅速かつ精度良く定量的に監視することができる腐食監視装置において、腐食が全面腐食によるものか、局部腐食によるものかを目視的に判断し、前記腐食監視装置のデータが妥当か否かを判断できる腐食監視装置を提供する。
【解決手段】カラム1は、カラム軸心方向を上下方向として設置され、下側のエンド部材2の管継手11から試験流体が導入される。この試験流体は、径方向貫通孔10、貫通孔7を介してカラム1内に流入し、極細金属ワイヤ4と接触した後、上側のエンド部材の貫通孔7、径方向貫通孔10及び管継手11を介してカラム1外に流出する。この監視装置において、カラム1に肉眼観察できる覗き部位1bを設け、カラム1内の微細金属ワイヤの腐食状況を観察することによって全面腐食か、局部腐食かを判断することができるようにした。 (もっと読む)


【課題】船舶バラストタンク環境を部位ごとにより正確に模擬し、実験室的にしかも短時間で評価することのできる、船舶バラストタンク用金属材料の腐食試験方法を提供する。
【解決手段】本発明は、空荷での一航海中の海水浸漬環境を模擬するように、0〜60℃で任意の温度変動パターンを持たせた海水の浸漬環境工程と、実荷での一航海中の湿潤環境を模擬するように、温度を0〜80℃で任意に保持し、かつ、相対湿度を25〜100%で任意の湿度変動パターンを持たせた湿潤環境工程の2工程で1往復の航海を模擬し、該2工程を交互に繰り返して金属材料試験片に付与することを特徴とする。また、前記浸漬環境工程に代えて、空荷での一航海中の海水付着環境を模擬するように、温度を0〜80℃で任意に保持し、相対湿度を100%に保持する時間と塩水噴霧する時間とを任意に変動させた塩水噴霧パターンを持たせた塩水噴霧環境工程を用いることを特徴とする。 (もっと読む)


【課題】金属の耐食試験時間を短縮でき、且つ、装置の簡易化及びコンパクト化を実現することができる金属材料の耐食性試験方法及び装置を得る。
【解決手段】腐食促進溶液2を貯留して金属材料の試験片1を浸漬可能にしたタンク4と、該タンク4に空気を送給するエアレーション装置8と、該エアレーション装置8に接続されて前記タンク4内の試験片1に気泡6を連続的に接触させる気泡発生手段5と、を具備した耐食試験装置11を使い、試験片1を腐食促進溶液2中に浸漬させると共に、腐食促進溶液2中に空気若しくは酸素を供給して試験片1に連続的に気泡6を接触させて、試験片1の耐食性を評価する。 (もっと読む)


【課題】金属材料の重要な劣化モードの一つとしての応力腐食割れは、その発生過程を含めた現象を観察することが困難であるが、応力腐食割れに起因する構造物の破壊リスクを定量的に予測し長期的な寿命管理を行うために、その検知手段の開発、特には視覚化技術の開発が求められている。特に、割れ発生のごく初期(割れ萌芽形成期)の小規模かつ確率論的性格の強い段階での現象を感度良く観測する技術の開発。
【解決手段】金属材料の主要成分の陽イオンと発色反応する物質を環境中に加えておくことによって、局所的過渡的溶解事象を視覚化する。 (もっと読む)


【課題】応力腐食割れ(SCC)を模擬した割れを、厚さが不均一な複雑な形状の試験体における所望の部位に付与する。
【解決手段】溶接部13に応力腐食割れを模擬した割れが付与された試験体10を製造する方法において、試験体10に一端を溶接部13に突き当てるようにして補強部材14を取り付けて補強部材付き試験体15とし、補強部材付き試験体15を曲げて溶接部13に引張応力を発生させることで、溶接部13に突き当てられた補強部材14の一端により溶接部13に応力集中を生じさせて、その応力集中により溶接部13に割れを付与し、その後、補強部材14を試験体10から取り外すようにした。 (もっと読む)


【課題】応力腐食割れ(SCC)を模擬した割れを、厚さが不均一な複雑な形状の試験体における所望の部位に付与する。
【解決手段】溶接部13に応力腐食割れを模擬した割れが付与された試験体10を製造する方法において、試験体10に溶接部13の割れを付与する部位を挟むようにして一対の柱状部材16、17を取り付け、それら一対の柱状部材16、17の内の一方の柱状部材16の自由端側の部分にボルト22を螺合すると共にそのボルト22の先端を他方の柱状部材17の自由端側の部分に当接させ、ボルト22を締め付け、一対の柱状部材16、17の自由端側の部分同士を離間させて溶接部13の割れを付与する部位に引張応力を発生させることで、その部位に割れを付与し、その後、一対の柱状部材16、17を試験体から取り外すようにした。 (もっと読む)


【課題】応力腐食割れによって生じる複数の微少亀裂が進展する過程において隣り合う微少亀裂同士が合体する過程を模擬的に再現して観察する方法を提供する。
【解決手段】試験片1を屈曲させた状態で腐食液3に浸漬し、試験片1の表面11に複数の微少亀裂12を発生させ、試験片1の表面11に、型取り材を積層させ剥がすことで各微少亀裂12が転写されたレプリカを採取し、試験片1に、表面11に引張応力が生じるように曲げを加えて各微少亀裂12を進展させ、試験片1の表面11に、型取り材を積層させ固化後に剥がすことで、進展した各微少亀裂12を転写したレプリカを採取し、試験片1の曲げとレプリカの採取とを交互に繰り返すことで、各微少亀裂12の進展を進めつつそれを転写したレプリカを採取し、これまで採取した複数のレプリカを観察することで、隣り合う微少亀裂12同士が合体する過程を観察する。 (もっと読む)


【課題】実環境で観察されるような、腐食の進行が速い微生物腐食に対して評価可能な、鉄又は鉄を含む合金の耐食性の評価方法を提供する。
【解決手段】炭酸物質、硫酸イオン、塩素イオンを含む嫌気条件の水溶液中に、鉄を電子供与体として、かつ、前記炭酸物質を炭素源として培養可能なメタン生成菌及び硫酸塩還元菌を存在させ、当該メタン生成菌及び硫酸塩還元菌を含む水溶液と鉄又は鉄を含む合金とを接触させ、又は、前記微生物を含む水溶液中に鉄又は鉄を含む合金を浸漬して、前記鉄又は鉄を含む合金を嫌気条件で腐食させた後、又は、更にその後、空気又は酸素を供給して、前記水溶液中の溶存酸素濃度を高めることにより好気条件として、前記鉄又は鉄を含む合金を腐食させた後、当該腐食量を測定して、前記鉄又は鉄を含む合金の耐食性を評価する。 (もっと読む)


【課題】腐食媒体により腐食する被検体の腐食状態、特に腐食速度を電気化学的に検出するための測定電極、腐食監視装置及び腐食監視方法を提案する。
【解決手段】腐食媒体Fにより腐食する被検体Mの腐食状態を電気化学的に検出するために、腐食媒体Fに接触させる測定電極20であって、被検体Mと同一の金属材料からなる試験体層22及び被検体Mと異なる金属材料からなる下地層23を積層して形成されると共に試験体層22のみが腐食媒体Fに接触可能な第一極21と、被検体Mと同一材料からなる第二極25と、を備える。 (もっと読む)


【課題】高強度溶融亜鉛めっき鋼板において問題となる耐遅れ破壊性について、迅速、簡便に評価をする方法を提供する。
【解決手段】引張強度が980MPa以上の高強度溶融亜鉛めっき鋼板の耐遅れ破壊性評価方法であって、前記めっき鋼板における素材鋼板を用いて作製された試験片1aを、電解液2中に浸漬し、電解液2の電解によって発生する水素を試験片1bに導入する水素導入工程(S1)と、水素を導入した試験片1cに、亜鉛を主体とするめっき層を5〜100μmの厚さで形成するめっき層形成工程(S2)と、めっき層が形成された試験片1dに、450〜600℃の水素拡散処理温度、5〜600秒の水素拡散処理時間で、水素拡散処理を行う水素拡散処理工程(S3)と、水素拡散処理を行った試験片1eに対し、耐遅れ破壊性試験を行う耐遅れ破壊性試験工程(S4)と、を含むことを特徴とする。 (もっと読む)


【課題】本発明は、樹脂の化学劣化を高精度に評価することができる化学劣化評価方法を提供することを主目的とするものである。
【解決手段】本発明は、フェントン溶液に樹脂を含侵させる化学劣化評価方法であって、評価時間経過以後にフェントン溶液中の過酸化水素を水にし得る触媒をフェントン溶液に浸して劣化反応を停止させるフェントン反応停止工程を有することを特徴とする化学劣化評価方法を提供することにより、上記課題を解決する。 (もっと読む)


【課題】化学劣化に対する耐性が高く、高耐久性を有する高分子電解質膜を選出することが可能な高分子電解質膜の検査方法を提供する。
【解決手段】初期状態の高分子電解質膜の降伏応力を測定する初期降伏応力測定工程と、下記条件にて該高分子電解質膜のフェントン試験を実施するフェントン試験工程と、該フェントン試験後の該高分子電解質膜の降伏応力を測定するフェントン試験後降伏応力測定工程と、前記高分子電解質膜の前記初期状態の降伏応力と前記フェントン試験後の降伏応力とを比較する降伏応力比較工程とを備え、前記降伏応力比較工程において、前記フェントン試験後の降伏応力が前記初期状態の降伏応力以下である前記高分子電解質膜を良品と判断する高分子電解質膜の検査方法。<フェントン試験条件>(1)鉄イオン(Fe2+)濃度:4ppm以上、(2)過酸化水素濃度:3wt%以上、(3)加熱温度:80℃以上、(4)加熱時間:120分以上 (もっと読む)


61 - 80 / 123