説明

Fターム[2G050EB03]の内容

耐候試験、機械的方法による材料調査 (7,997) | 劣化測定手段 (892) | 電気化学的 (187)

Fターム[2G050EB03]の下位に属するFターム

Fターム[2G050EB03]に分類される特許

21 - 40 / 152


【課題】継続使用ができる状態で、コンクリートに埋設されている鋼材の腐食状況が調査できるようにする。
【解決手段】まず、コンクリート中に埋設された鋼材を作用電極とし、参照電極および対極が配設された電解質溶液を既知の面積でコンクリート表面に接触させ、ポテンショスタットを用いた作用電極の電位および作用電極と対極との間に流れる電流(腐食速度)を測定する方法により、異なる複数の腐食の程度でコンクリート柱に埋設された鋼材の各々腐食電位を求めて得られた異なる複数の既知の腐食の程度と腐食電位との関係より第1基準を作成する。次に、上述した測定方法で腐食速度が異なる複数の腐食環境で上記鋼材の各々腐食電流密度を求めて得られた異なる複数の既知の腐食速度と腐食電流密度との関係より第2基準を作成する。 (もっと読む)


【課題】長期保管環境での缶成型体の内容物に対する耐腐食性を短期間で予測可能とする促進試験法を提供することを目的とする。
【解決手段】缶成型体の内容物に対する耐腐食性を評価する方法であって、前記缶成型体は、開口部を有しかつ外面および内面のうち少なくとも内面が樹脂フィルムまたは塗料で被覆された金属板からなり、前記缶成型体に前記内容物を充填した後、これを試験体とし、外部雰囲気の該試験体への流入を遮断する装置に設置し、必要に応じて前記内容物を窒素ガスにより飽和させて前記内容物中の溶存酸素を排出した後、前記内容物の温度を、25〜60℃の範囲内で一定に保持して、前記試験体に浸漬電位から50mV以上、200mV以下のアノード側の定電位を印加し、前記定電位を印加した直後から6〜48時間の内から任意に選択した期間に生じる積算電気量から、前記缶成型体の前記内容物に対する耐腐食性を評価する方法。 (もっと読む)


【課題】測定対象物のpH変化に伴う状態変化をより高精度に測定することができるセンサー装置および測定方法を提供すること。
【解決手段】本発明のセンサー装置1は、不動態膜を形成する第1の金属材料で構成された第1の電極3と、第1の電極3に対して離間して設けられ、第1の金属材料とは異なる第2の金属材料で構成された第2の電極4と、第2の電極4を覆うように設けられ、第1の金属材料および第2の金属材料とは異なる第3の金属材料で構成された被膜7とを有し、pH変化に伴う不動態膜および被膜7のそれぞれの有無により第1の電極3と第2の電極4との電位差が変化する。 (もっと読む)


【課題】広いpHの範囲において、測定対象物のpH変化を長期間測定することができるセンサー装置および測定方法を提供すること。
【解決手段】本発明のセンサー装置1は、不動態膜を形成する金属材料で構成された測定用電極3と、測定用電極3に対して離間して設けられた参照用電極4と、測定用電極3を覆うように設けられ、不動態膜と同一の材料で構成され、イオンに対する感応性を有する感応膜8と、参照用電極4を覆うように設けられ、イオンに対する感応性を実質的に有しない非感応膜9とを有し、pHの変化に伴って測定用電極3と参照用電極4との電位差が変化する。 (もっと読む)


【課題】測定対象物のpH変化に伴う状態変化をより高精度に測定することができるセンサー装置および測定方法を提供すること。
【解決手段】本発明のセンサー装置1は、不動態膜を形成する第1の金属材料で構成された第1の電極3と、第1の電極3に対して離間して設けられ、第1の金属材料とは異なる第2の金属材料で構成された第2の電極4とを有し、pH変化に伴う不動態膜の有無により第1の電極3と第2の電極4との電位差が変化する。また、第1の電極3と第2の電極4との電位差を測定し、その測定された電位差に基づいて、測定対象物(コンクリート構造物100)の測定対象部位のpHが設定値以下か否かを検知する。 (もっと読む)


【課題】 本発明は、腐食、化学物質、又は放射性物質の警告方法に関する。
【解決手段】 本発明による方法は、示唆物質を含む塗料又はコーティングで表面を塗装する工程、及び、腐食、化学物質、又は放射性物質について表面を観察する工程を有する。 (もっと読む)


【課題】鉄塔を構成する各種部材内部の腐食環境測定装置と、腐食環境測定装置を使用した、鉄塔を構成する各種部材内部の腐食環境測定方法、また、鉄塔を構成する各種部材内部に腐食環境測定装置を配置する方法を提供する。
【解決手段】本発明に係る鉄塔を構成する各種部材内部の腐食環境測定装置100は、所定以上の外力を加えると屈曲し、外力を取り去ると真っ直ぐな状態に復元するフレキシブル素材を用いて形成した所定の長さの薄板部材11に、複数の取付台12を固定し、この取付台12にACMセンサ1を取り付けて腐食環境測定装置100を形成し、鉄塔を構成する各種部材の内部に、薄板部材11を屈曲させながら腐食環境測定装置100を挿入し、ACMセンサ1を取り付けている薄板部材11を当該部材の内部に配置している。 (もっと読む)


【課題】霧状の液体を噴出する噴霧手段が設けられた腐食試験機において、噴霧手段から噴霧された霧状の液体中に試料を均一に晒し、試験結果にムラを生じさせることなく、正確な腐食促進試験を実施することにある。
【解決手段】試料(P)が載置される載置台(26−1〜26−4)を噴霧手段(18)の周りで回転させるとともに載置台(26−1〜26−4)自体を回転させる回転機構(27)とこの回転機構(27)を作動する駆動手段(28)とが備えられた試料回転装置(25)を設け、この試料回転装置(25)を作動制御する制御手段(43)を設けている。 (もっと読む)


【課題】蒸気の導入によって凝縮水の入れ替えながら凝縮水の貯留液位の変化を抑制することができる腐食環境モニタリングセンサ及びこれを用いた腐食環境モニタリングシステムを提供する。
【解決手段】蒸気タービンのタービンケーシング21の内部に設けられて蒸気を導入する蒸気導入部35と、該蒸気導入部35で導入した蒸気を凝縮して凝縮水を生成して貯留する蒸気凝縮部53と、前記蒸気凝縮部53で生成した凝縮水の性状を検出する腐食因子センサ部とを備え、前記蒸気凝縮部53は、前記凝縮水を貯留する凝縮水貯留部54を有し、該凝縮水貯留部54の上方側に蒸気入口43及び蒸気出口60を形成した。 (もっと読む)


【課題】導入蒸気を任意の圧力(流速)に制御しつつ、詰まりによる圧力変動を抑え、詰まりが生じた場合には、蒸気タービンが運転中であっても、容易に交換、メンテナンスを行うことが可能な腐食環境モニタリングセンサ及びこれを用いた腐食環境モニタリングシステムを提供する。
【解決手段】蒸気タービンのタービンケーシング21の内部に設けられて蒸気を導入する蒸気導入部35と、該蒸気導入部35で導入した蒸気を凝縮して凝縮水を生成して貯留する蒸気凝縮部53と、該蒸気凝縮部53の凝縮水出口側に接続されたキャピラリ管93と、前記蒸気凝縮部に配設された腐食因子センサ部とを備える。 (もっと読む)


【課題】高効率の冷却効果を与えながら全体の構成を簡易小型化することができる腐食環境モニタリングセンサ及びこれを用いた腐食環境モニタリングシステムを提供する。
【解決手段】蒸気タービンのタービンケーシングの内部に設けられて蒸気を導入する蒸気導入部35と、該蒸気導入部35で導入した蒸気を凝縮して凝縮水を生成して貯留する蒸気凝縮部53及び当該蒸気凝縮部53の凝縮水に接する腐食因子センサ部を有するセンサブロック50とを備え、前記センサブロック50を液冷方式で冷却するようにした。 (もっと読む)


【課題】簡便な構造で、材料表面の任意の狙った微小領域の電気化学計測と、電極表面を電気化学計測時にその場観察可能な光学顕微鏡観察機能を備えた電気化学計測用微小電極システムを提供する。
【解決手段】電気化学計測と光学顕微鏡観察を同時に行う計測方法において、電極面積が0.0008cm2以下であり、水浸型の対物レンズを配置する液溜部を有し、電極面外周部の被覆が2種類以上の絶縁物の組み合わせで構成されていて、それらの最大厚さが100μm以下である微小電極システム。被覆が粘着テープと硬化性樹脂で構成されている、被覆用粘着テープが幅200μm以下の間隔で対向しており、その間隙に硬化性樹脂が充填されている、あるいは、電極材料表面に粘着テープ貼り付け後の明度L*が60以下であることが望ましい。 (もっと読む)


【課題】従来の手法では計測、算出することができないような、放射性廃棄物の廃棄物処分容器に生じる微小な孔食の深さを算出する孔食深さ算出方法、孔食深さ算出装置、および孔食深さ算出システムを提供することにある。
【解決手段】電気化学ノイズ法によって金属材料を経時的に測定して得られた電流信号から孔食体積を求める体積算出工程と、交流インピーダンス法によって孔食発生前後の前記金属材料を測定して得られたインピーダンススペクトルから孔食面積を求める面積算出工程と、前記孔食体積を前記孔食面積で除することにより、孔食の深さを算出する深さ算出工程と、を含むことを特徴とする。 (もっと読む)


【課題】 本発明は、コンクリート中に埋設された照合電極を長期間安定して使用することができる鋼材の腐食状態測定方法を提供することを課題とする。
【解決手段】本発明の鋼材の腐食状態測定方法は、解質溶液が内部に充填された照合電極を、鋼材が内部に埋設されているコンクリートに設置し、前記鋼材の腐食状態を前記照合電極で測定する鋼材の腐食状態測定方法において、前記コンクリートの表面に液体を供給し、前記液体を前記照合電極周りのコンクリートに浸透させることを特徴としている。 (もっと読む)


【課題】構造部材の腐食電位を精度良く測定できる腐食電位センサを提供する。
【解決手段】腐食電位センサ1は、捕捉電極部材11を有し、蓋2が絶縁体3の一端部に、外部スリーブ13の一端部が絶縁体3の外面に取り付けられ、内部スリーブ6が絶縁体3を封鎖し、センサボディ5の一端部が外部スリーブ13の他端部に取り付けられる。銀/塩化銀電極7は絶縁体3内に配置されてリード線8に接続される。捕捉電極部材11は、再循環系配管18と同材質の、円板状の電極部10、支持棒12,13及び円環部材14を有する。電極部10が、蓋2に所定間隔で向き合って配置され、外部スリーブ4の外面に接合された各支持棒12に取り付けられる。各支持棒12,13及び各円環部材14は、絶縁体3の外面から離れており、腐食電位センサ1が取り付けられる測定用座19の内側に存在する。 (もっと読む)


【課題】電気化学ノイズ法を用いて金属材料(特に、放射性廃棄物の廃棄物処分容器)に対する腐食の発生の検知を行うにあたり、極めて微小な孔食等の局部腐食の発生を検知することができるとともに、測定期間が超長期となる腐食発生の検知に適用することができる腐食発生検知方法、腐食発生検知装置、および腐食発生検知システムを提供することにある。
【解決手段】電気化学ノイズ法を用いた腐食発生検知方法であって、電気化学ノイズ法によって金属材料を経時的に測定して得られた電流信号または電位信号について、離散ウェーブレット変換を行う変換工程と、前記変換工程の離散ウェーブレット変換によって得られた変換データの高周波成分が異常値を示す時刻を検出する検出工程と、を含むことを特徴とする。 (もっと読む)


【課題】水中で使用する絶縁ケーブルに発生する水トリーを試験的に再現する。
【解決手段】水トリー発生試験方法の試験片製作工程は、突部41bが形成された第1型部材41を設置する工程と、第1型部材41と共にXLPEが流入可能な流入空間45を形成する第2型部材42を設置する工程と、加熱されたXLPEを流入空間45内に流入させる工程と、流入空間内にあるXLPEを所定温度で所定時間放置して硬化させて第1樹脂層を形成する工程と、第1樹脂層から第1型部材41等を取り外す工程と、電極側表面上に、突部41bの先端と所定の間隙を保つように電極部を形成する工程と、第1樹脂層および第2樹脂層で電極部を挟み込む工程と、を有する。 (もっと読む)


【課題】腐食試験装置において、放射性廃棄物処分容器の表面に設けられるチタン層の耐食性評価の信頼性をより向上させることである。
【解決手段】腐食試験装置10は、チタン材で形成され、アルカリ性水溶液13を入れる被試験容器12と、被試験容器12を試験温度に加熱するヒータ26aと、被試験容器内を排気して減圧する真空ポンプ30aと、被試験容器内の圧力を測定する圧力計32aと、アルカリ性水溶液の溶存酸素濃度を検出する溶存酸素濃度検出手段44と、を備え、溶存酸素濃度検出手段44は、アルカリ性水溶液に浸漬されたチタン電極44a及び参照電極44bと、チタン電極44aと参照電極44bとの間の電位差を計測する電位計測器44cとを有し、試験温度に加熱され、減圧された被試験容器内の圧力を測定し、試験温度に加熱されたアルカリ性水溶液の溶存酸素濃度をチタン電極44aの自然電位を計測して検出する。 (もっと読む)


【課題】ケース本体内において、降雨時に暴露試験片の表面に着いている種々の付着物が洗い流されてしまうことを防止した、暴露試験片の腐食状態測定方法を提供する。
【解決手段】上記暴露試験片の箱型収納ホルダーは、ケース本体内に、矩形状の暴露試験片や、矩形状のACMセンサーを配置する収納部を、縦方向に複数設けている。また、ケース本体内に、所定の間隔を開けて矩形状の固定板を複数配置すると共に、固定板の左右両端部において、ケース本体の側板に沿うように長方形の支持板を配置し、両支持板の上縁とその上方に位置している天板の間に形成されている空間、また、両支持板の上縁とその上方に位置している固定板の間に形成されている空間を、暴露試験片やACMセンサーの収納部としている。さらに、ケース本体は、個々の収納部に暴露試験片やACMセンサーを配置した状態で、収納部に挿入する長方形状の閉鎖板を備えている。 (もっと読む)


【課題】従来よりも短時間で金属の腐食速度及び腐食寿命を予測することが可能な金属の腐食速度予測方法及び金属の腐食寿命予測システムを提供する。
【解決手段】本発明の金属の腐食速度予測方法は、金属の表面に付着している水膜中の塩濃度c、温度T、及び、係数α、β、γを用いて、水膜への酸素溶解速度RO2をRO2=α×10−βcexp(−γT)で算出し、上記表面に付着している水膜の厚さL、水膜を拡散する酸素の拡散係数D、及び、水膜の酸素飽和濃度CO2がRO2>D×CO2/Lである場合には、金属表面に到達する単位時間且つ単位面積当たりの酸素量NO2をNO2=D×CO2/Lとする一方、RO2≦D×CO2/Lである場合にはNO2=RO2とし、得られたNO2、金属のモル質量w、及び、金属がイオン化する時の価数nを用い、Rcor=4×NO2×w/nで金属の腐食速度Rcorを予測する。 (もっと読む)


21 - 40 / 152