説明

Fターム[2G052AA18]の内容

サンプリング、試料調製 (40,385) | 対象試料 (4,333) | ゴム、プラスチック (106)

Fターム[2G052AA18]に分類される特許

61 - 80 / 106


【課題】高分子材料からなるブロック試料についてミクロトームにより切削をおこなうにあたって高い平滑性を有する切削面を得るための切削方法を提供することを目的とする。
【解決手段】ガラス転移温度が65〜200℃の高分子材料を含む試料を加熱手段を備えるミクロトームに固定し、該加熱手段により該ブロック試料を該高分子材料のガラス転移温度(℃)に0.4を掛けた温度(℃)以上該高分子材料のガラス転移温度(℃)に0.9を掛けた温度(℃)以下の温度範囲で保持し、該温度範囲内でブロック試料に対して該ミクロトームによる切削をおこなうことを特徴とする切削方法とする。 (もっと読む)


【課題】試料の特性に左右されることなく、グロー放電により試料を確実に掘削する。
【解決手段】グロー放電掘削装置1は、連続的に給電を行う連続モード及び断続的に給電を行う断続モードの切替が可能であり、グロー放電に伴う熱により溶融しやすい試料S、グロー放電に伴うスパッタリングの威力により壊れやすい試料S等に対しては断続モードで給電を行うことで、良好な観察を行える観察面を得られるように試料Sの掘削を行う。試料Sが溶解しやすい及び壊れやすい特性を具備しないときは、連続モードで給電を行うことにより効率良く良好な観察面が得られるように試料Sの掘削を行う。 (もっと読む)


【課題】樹脂に含まれる母材を除去して測定対象の元素を濃縮することにより、樹脂に含まれる金属元素の検出感度を向上させることができる蛍光X線分析方法を提供する。
【解決手段】樹脂試料に酸化剤を加えて加熱する等の方法により樹脂試料を灰化し、灰化した試料の蛍光X線分析を行う。又は、樹脂試料を硫酸等の酸で溶解し、樹脂試料を溶解した溶液を蒸発させ、蒸発後に残った残渣の蛍光X線分析を行う。X線を散乱して蛍光X線分析におけるバックグラウンドの原因となる樹脂試料の母材を構成するC,H等、及びX線を吸収して蛍光X線を減衰させるCl,Br等が試料中から低減され、金属元素に起因する蛍光X線の強度がバックグラウンドに比べて相対的に増大し、樹脂試料中に含まれる金属元素を検出する感度が向上する。 (もっと読む)


【課題】ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、塩化ビニル樹脂などのプラスチック試料中に含まれる金属元素を分析する方法であって、簡便に効率よくプラスチック試料を溶解させ、試料中に含まれている微量の金属元素を精度よく分析できるようにしたプラスチック試料中金属元素の分析方法の提供を目的とする。
【解決手段】プラスチック試料中の金属元素をグラファイト原子吸光分析法により分析するプラスチック試料中金属元素の分析方法において、該プラスチック試料の溶解を、ヘキサフルオロイソプロパノール溶媒、あるいはヘキサフルオロイソプロパノールおよびテトラヒドロフランもしくはクロロホルムとの混合溶媒を用いて行うことを特徴とする。 (もっと読む)


【課題】溶媒と、所定の加熱温度で溶媒に溶解する溶質材と、この加熱温度で溶媒に溶解しない不溶解材との混合試料を濾過する場合、溶質材が溶媒に溶けるまでの間、溶媒がフィルタを透過して流出してしまわないようにする。
【解決手段】溶媒と、所定の加熱温度で溶媒に溶解する溶質材と、前記加熱温度で溶媒に溶解しない不溶解材との混合試料を用意する。この混合試料を、フィルタ20を備えた濾過用容器1内に入れる。この容器1内の混合試料を前記加熱温度に加熱して、溶質材を溶媒に溶解させる。溶質材が溶解された混合試料をフィルタ20で濾過して、不溶解材と溶質材とを分離する。前記溶解の際、少なくとも溶質材が溶媒に溶解されるまでの間、例えば蓋部30で吸気口15を塞いで、溶媒がフィルタ20を透過しないようにして行う。 (もっと読む)


【課題】延伸過程のゴム切片、さらには延伸過程から収縮過程のゴム切片の顕微鏡観察を可能にするメッシュおよび該メッシュを用いたゴム切片の観察方法を提供する。
【解決手段】延伸過程のゴム切片および収縮過程のゴム切片を顕微鏡により観察可能に支持するメッシュであって、中央部上面を前記ゴム切片10を固定する載置領域とすると共に、該載置領域を挟む左右両側が前記延伸方向に移動される試料ホルダ分離部への固定部とされ、該左右固定部の間で且つ前記ゴム切片の載置位置に向けて前記延伸方向と直交方向あるいは傾斜方向の分断用スリット12a,12bが入れられ、前記試料ホルダ分離部による延伸方向への移動時に前記分断用スリットで左右に分断され、分断された左右両側部に固定される前記ゴム切片を延伸させる構成としている。 (もっと読む)


【課題】 本発明は、簡便に粉砕した熱可塑性の廃プラスチックに含まれる有害物質含有量の測定を行い、粉砕した熱可塑性の廃プラスチックの有害物質含有量基準が存在するプラスチック製品への再利用方法を提供することを目的とする。
【解決手段】 本発明は、粉砕した熱可塑性の廃プラスチック中に含まれる微量成分の測定方法であり、
・粉砕した廃プラスチックを均質化する工程(b)、
・均質化した粉砕廃プラスチックより一部を抜き出し、加熱溶融混練して固形粒状物に変換する工程(c)、
・固形粒状物より一部を抜き出し、固形粒状物に含まれる微量成分を分析する工程(e1)、
を有することを特徴とする廃プラスチック中に含まれる微量成分の測定方法である。 (もっと読む)


【課題】 厚い試料の染色の方法において、適切な染色レベルでもって、全体の試料が画像化できる方法を提供することを目的とする。
【解決手段】 試料(1)の表面層の画像を取得するステップと、前記試料の表面層を除去し、それにより次の薄片を表面にもたらすステップとが繰り返される、試料の薄片から画像を得る方法であって、少なくとも、前記試料の表面層の除去のうちの一つの除去の後に、前記試料は染色剤にさらされるステップを有することを特徴とする。
本方法は、とりわけ、走査電子顕微鏡カラム(20)と集束イオンビームカラム(10)とを備えた、粒子光学装置での使用に最適である。
試料は、その場所でOsOのようなガスを前記試料に取り入れて、染色することができる。本方法は、第1染色剤に試料をさらして試料の第1画像を作り、第2の染色剤に追加的染色して、試料の画像を作ることにより、差異的な染色を形成することが可能となる。 (もっと読む)


【課題】分析用の薄膜試料切断器を提供し、薄膜試料の切り取りの作業性を向上させるとともに、薄膜試料の分析精度を向上させることを目的とする。
【解決手段】分析用の薄膜試料Sを円形に切断するための薄膜試料切断器であって、円筒状で、薄膜試料Sに押圧される輪状の下端面22を有する押圧部2と、押圧部2と同心の円柱状または円筒状で軸心回りに回転自在に押圧部2に収納され、下方に突出する複数の刃34を周方向に均等に有している回転部3と、押圧部の上部21を貫通して突出する回転部の上部33に固定される把持部41とを備え、薄膜試料Sを円形に切断する。 (もっと読む)


【課題】デバイス等の不良原因となる数μmの微小異物を採取し、コンタミレスで質量分析を行うことを課題とする。
【解決手段】数μmの微小異物の採取用プローブ先端部に局所加熱機構を持たせることにより、微小異物の採取と異物の加熱が同一のプローブで行うことが可能となる。該プローブは直接質量分析装置に装着することができるためコンタミレスで分析を行うことができる。またプローブ先端部の異物のみを加熱することにより、仮にプローブの先端部以外にコンタミ物質が付着したとしても先端部以外は加熱されずS/Nの良好なマススペクトルが得られる。 (もっと読む)


【課題】品質が均一の供試体を得ることができる方法を提供する。
【解決手段】高さ30センチメートル以上、底面の縦の長さが30センチメートル以上、底面の横の長さが8センチメートル以上の箱状容器であって、上面は蓋が無いものを供試体容器として使用する。この供試体容器の内部底面にウレタン液を流し込んで発泡させる。硬化させて供試体の母材を作成し、この一部を切り取って試験用供試体を採取する。 (もっと読む)


【課題】 測定に供する微粒子懸濁液試料の取り扱いを容易にするための試料容器を提供する。
【解決手段】 容器からの試料液採取の際に、気泡を混入させることなく容器内部での試料液の均一化を簡便に実現出来、かつ使用を通してダストその他の不純物の混入、溶媒成分の蒸発を抑えられる密閉性の高い容器。 (もっと読む)


【課題】可燃性材料中に含まれるPBB、PBDE等の有害な臭素化化合物を分析するためのものであって、測定用試料を作成するための前処理が不要であるばかりでなく、低価格な装置と簡単な分析技術を使用して高精度及び高感度な分析を実施できる分析方法を提供すること。
【解決手段】可燃性材料の試料を耐熱性の材料からなる支持体上に載置することと、その試料を燃焼させることと、その試料の燃焼過程の初期の段階において、試料から蒸発し、飛散せしめられた初期蒸発成分を含む燃焼ガスを被検基板上に堆積させることと、被検基板上の堆積物を検査して臭素化化合物を検出し、分析することとでもって分析を実施する。 (もっと読む)


【課題】本発明は試験片に設けられた空隙内だけの環境雰囲気を制御することで様々な環境雰囲気下での材料の特性を測定することが可能であり、大きな負担を要することなく、構造材料の機械的強度特性や耐環境特性を特有の、さらには過酷な環境下で行なうのと同様な結果を通常の環境下でも評価試験が行えるようにした試験片とその製造方法を提供する。
【解決手段】試験片は、その内部に形成した微細空隙内に環境構成流体を封じ込めたことを特徴とする構成を採用した。 (もっと読む)


【課題】連続して押し出されるゴムシートからのサンプル片の採取、及びそのサンプル片の測定装置への受け渡しの一連の動作を、高い信頼性を有して効率よくしかも高頻度で行う。
【解決手段】押出機2からのゴムシートGを、カッタ受け台と、その上方に配される昇降可能な打抜きカッタ5との間に通し、かつ該打抜きカッタ5の下降により、前記カッタ受け台との間で前記ゴムシートGからサンプル片Gsを打抜きカッタ5の筒孔5A内に打ち抜く。又打抜きカッタ5直下のサンプル受取り位置P1で、前記筒孔5A内のサンプル片Gsを、バキュームパッド7で吸着し、かつサンプル測定手段に設けたサンプル受渡し位置まで搬送する。 (もっと読む)


【課題】チャンバ−内部を汚染することなく長時間安定した風速の制御を行うことが可能な化学物質放散量測定装置を提供する。
【解決手段】チャンバ−A内部の空気を攪拌するための回転攪拌体がチャンバ−A内部に設けられており、この回転攪拌体を駆動させる駆動装置がチャンバ−A外部に設けられていて、材料等に含まれる化学物質の空気中への放散量を測定するための化学物質放散量測定装置において、回転攪拌体は回転攪拌子1と回転攪拌子保持部2とを備え、回転攪拌子1は回転子とこの回転子を固定保持する回転子固定軸とから構成されており、回転攪拌子保持部2はこの回転子固定軸を回転自在に軸支するベアリングとこのベアリングを保持するベアリング保持部とこのベアリング保持部をチャンバ−A内に支持する支持アームとから構成されてチャンバ−A内面に配設されていることとする。 (もっと読む)


【課題】試料の分解中に、試料がオーバーヒートしそうになった時に、即座に試料へのエネルギー供給を停止して、試料の変質を抑制することを可能とする、試料の分解方法および試料の分解装置を提供する。
【解決手段】試料に薬液を加えて密閉しマイクロ波を照射することを特徴とする試料の分解方法。反応容器を収容する空所を有するマイクロ波シールドと、該マイクロ波シールドの前記空所内に収容された反応容器内の温度を測定するための非接触式温度測定手段と、前記マイクロ波シールドの空所内に収容された反応容器内の圧力を測定するための圧力測定手段と、前記マイクロ波シールド内にマイクロ波を発生させるためのマイクロ波発生手段と、前記非接触式温度測定手段と前記圧力測定手段の情報を取得して前記マイクロ波発生手段の出力を制御するフィードバック手段とを備えていることを特徴とする試料の分解装置。 (もっと読む)


【課題】取り扱いが容易で、単純な形状の試験片を用いて、ナノ領域のナノ物性を、条件を変化させながら、自動制御、自動調整し、精度を高く、安価に計測する。
【解決手段】測定したい金属・高分子・セラミックス等のすべての材料の微細試験片を装置に取り付け、試験片のナノ領域に於けるナノ物性を、温度や形状変化に対応して、引っ張り力による変化等を正確に、3次元表示自動調整しながら測定する装置で、ナノ物性を測定する。 (もっと読む)


【課題】高分子材料の光劣化に関する化学的知見を極く短時間で得られる高分子試料分析装置を提供する。
【解決手段】複数の気相成分を生成する気相成分生成手段2と、キャリヤガスを気相成分生成手段2に導入するキャリヤガス導入手段15と、該気相成分を個々の成分に分離する分離手段4と、分離された成分を検出する検出手段5とを備える。高分子試料に紫外線を照射する紫外線照射手段11と、雰囲気ガスを気相成分生成手段2に導入する雰囲気ガス導入手段16と、分離手段4に導入されるガスを、キャリヤガスと雰囲気ガスとに切替るガス切替手段17とを備える。雰囲気ガス導入手段16から導入されるガス雰囲気下、紫外線照射手段11により紫外線を照射して、該高分子試料を劣化分解させる。劣化分解後、ガス切替手段17により分離手段4に導入されるガスをキャリヤガスに切り替え、気相成分をキャリヤガスにより分離手段4に導入する。 (もっと読む)


【課題】サンプルの加熱温度を極力抑えながらにおい測定装置による測定を適切に行うことのできる測定方法及び装置を提供する。
【解決手段】容器25にサンプル26(固体)と共に小量の水を封入し、或いはサンプル26を封入した容器25に小量の水を加えた後、容器25を加熱し、その後に容器25からシリンジ22でヘッドスペースガスを採取してにおい測定装置10に導入して測定を行う。水蒸気雰囲気下で揮発するにおい成分のヘッドスペースガス中濃度は乾燥下でのそれに比べてより高濃度となることが知られているので、この方法によれば、サンプルの加熱温度を抑えることが可能となる。 (もっと読む)


61 - 80 / 106