説明

Fターム[2G052DA33]の内容

サンプリング、試料調製 (40,385) | 容器 (3,166) | 試料ホルダ (199)

Fターム[2G052DA33]に分類される特許

81 - 100 / 199


生物学的物質を処理するためにピペット操作可能な物質を受け取るための容器。容器は、ピペット操作可能な物質を含む容器の内部にアクセスするために穴を開けられ得る複数の開口部領域を有する壁、好ましくは蓋、を含む。
(もっと読む)


【課題】保持部に対する試料容器の取付け作業性を良好にした試料ホルダを提供する。
【解決手段】試料ホルダ6には、保持部10の外面10aから保持部10の内側に向かって保持部10を加圧して、保持部10により試料容器9を挟持する固定部材11が採用されている。このような力で保持部10の外面10aを加圧する固定部材11として、例えば、キャップ、クリップ、締結バンドのようなものを挙げることができ、保持部10に対する試料容器9の取付け作業性が良好である。しかも、保持部10の外面10aから内側に向かって保持部10を加圧する力は、しっかりと試料容器9を保持部10に固定させるのに最適である。 (もっと読む)


【課題】フリップステージなしにFIB−STEMシステムで使用されることができるSTEMサンプル作製および解析のための方法を提供する。
【解決手段】方法は、約60度の最大傾斜を有する典型的な傾斜ステージを有するデュアル・ビームFIB/STEMシステムが、基板からSTEMサンプルを抜き出し、TEMサンプル・ホルダ上にサンプルを搭載し、FIBミリングを使用してサンプルを薄化し、かつサンプル面がSTEM撮像のために垂直電子カラムに垂直であるように、サンプルを回転するために使用されることを可能にする。 (もっと読む)


【課題】半導体ウエハやデバイスチップから所望の特定領域を含む試料片のみをサンプリング(摘出)して、分析/計測装置の試料ステ−ジに、経験や熟練や時間のかかる手作業の試料作り工程を経ることなく、マウント(搭載)する試料作製方法およびその装置を提供すること。
【解決手段】FIB加工と、摘出試料の移送、さらには摘出試料の試料ホルダへの固定技術
を用いる。
【効果】分析や計測用の試料作製に経験や熟練技能工程を排除し、サンプリング箇所の決定から各種装置への装填までの時間が短縮でき、総合的に分析や計測の効率が向上する。 (もっと読む)


【課題】液滴における前記物質の分散状態を保持したまま、液体中の分散物の分散状態を正確に観察可能な固体試料を提供する。
【解決手段】常温常圧で液相を呈する液体と、前記液体とは異なる物質であって常温常圧で固相又は液相を呈する物質と、を含み、前記物質が前記液体中に分散された検体を用意する工程と、前記検体を液滴として、冷却されたステージ表面に付着させる工程と、を含み、観察すべき領域全体をアモルファス化することを特徴とする。 (もっと読む)


【課題】ガス収着試験に用いる薄膜サンプルチャンバを提供。
【解決手段】ガス収着サンプルチャンバは、複数の薄膜基板を含み、該基板をシーベルト装置又は他のガス収着分析器に流体連通結合する。薄膜基板は、サンプルチャンバ内において、サンプルチャンバ内の自由気体体積を低減して収着試験の精度が向上するように、列状の配列で、重ね合わせ配置か又はわずかに隙間を空けた配置で互いの近傍に保持される。チャンバの内部構造形状は、薄膜基板とチャンバの内部表面との間のクリアランスが最小になるように構成されており、それにより、チャンバ内空間の略全てが薄膜サンプル材料及び不活性基板材料によって占められている。グローブボックス内での使用を容易にするために、チャンバは、全ての基板をひとまとめにして積み込んだり取り出したりできるように、複数の薄膜基板が配置された取り出し可能なサンプルカートリッジを備えてもよい。 (もっと読む)


【課題】10μm以下の微小な有機物を確実に採取し、該微小有機物の同定が可能となる微小有機物の同定分析方法を提供する。
【解決手段】微小有機物に近接場赤外光を照射し、該微小有機物の赤外吸収スペクトルを測定する微小有機物の同定分析方法において、
前記微小有機物を、赤外光の反射率の高い材料で形成され又は該反射率の高い材料で被覆された、該微小有機物の採取用プローブに付着させる過程と、
前記微小有機物を、測定用基板に移し変えることなく、微小有機物の採取用プローブに付着させたままで、該微小有機物の赤外吸収スペクトルを測定する過程と、を含む構成とする。 (もっと読む)


【課題】透過法のX線回折測定を容易としうるX線回折測定方法の提供。
【解決手段】本発明のX線回折測定方法は、所定の回転軸線Zsまわりに試料48を回転させながらこの回転軸線Zsに略沿った方向の入射X線を試料48に透過させることにより、X線回折が測定される。好ましい測定方法では、貫通孔46を有する試料ホルダー34と、この試料ホルダー34が取り付けられた状態で回転軸線Zsまわりに回転しうる回転体25とが用いられる。この回転体25は、X線を通過させるためのX線通過孔32を有している。X線通過孔32は、上記回転軸線Zsを通過させるように上記回転体25を貫通している。試料ホルダー34の貫通孔46とX線通過孔32とが連通した連通孔が形成されるように試料ホルダー34が取り付けられている。試料48は、試料ホルダー34の貫通孔46の内側に配置される。 (もっと読む)


【課題】半導体ウエハやデバイスチップから所望の特定領域を含む試料片のみをサンプリング(摘出)して、分析/計測装置の試料ステ−ジに、経験や熟練や時間のかかる手作業の試料作り工程を経ることなく、マウント(搭載)する試料作製方法およびその装置を提供すること。
【解決手段】FIB加工と、摘出試料の移送、さらには摘出試料の試料ホルダへの固定技術
を用いる。
【効果】分析や計測用の試料作製に経験や熟練技能工程を排除し、サンプリング箇所の決定から各種装置への装填までの時間が短縮でき、総合的に分析や計測の効率が向上する。 (もっと読む)


毛髪試料分析システムであって、該システムは、容器内に位置する複数の試料列と、上記容器から個々の列を取出し、上記試料列の毛髪試料を第1概略位置に付勢する自動駆動機構と、該駆動機構を調節して前記試料をX線回折ビームと略一致させるよう配置するモニタリング及び制御システムと、を備え、上記試料を、上記X線回折ビームと略一致させるよう配置し、上記試料に上記ビームを所定時間照射し、上記毛髪試料を照射する上記ステップから得たデータを、分析するために受信し、保存し、上記試料列を、上記容器の元の位置に戻し、上記試料容器から別の列を取出し、上記ステップを連続する列に対して繰り返すこと、を特徴とする毛髪試料分析システム。 (もっと読む)


【課題】測定光を透過させる分析が可能で、試料の変形や汚染を防止可能な試料ホルダを提供すること。
【解決手段】表面の試料支持面(2b)に試料(S)が支持され且つ表面側から裏面側に延びる複数の吸引孔(2a)が形成された光学透過材料製の試料支持部材(2)と、前記複数の吸引孔(2a)が接続され且つ前記試料支持部材(2)の表面側に対して負圧に排気された減圧空間(K)を有し、前記試料支持部材(2)を支持する減圧空間形成部材(4)と、を備えた試料ホルダ(1)。 (もっと読む)


【課題】 タンパク質やその複合体を含む水の厚さを制御できる試料ホルダを提供する。
【解決手段】 SiNにより成る薄膜A(100)の上に、微小開口部を有するチタンより成る薄膜B(101)を配置した。これらの構造は、部分的に除去されたSi基板102の上に形成されている。 (もっと読む)


【課題】くり抜き孔を有する試料ホルダー板の間に、フィルム状試料を挟んで固定する試料ホルダーにおいて、フィルム状試料のたわみ、しわなどをなくした状態で、フィルム状試料を固定する手段を提供する。
【解決手段】フィルム状試料のたわみを生じた箇所の外縁から当該箇所を引っ張る力を、当該箇所に加える手段を試料ホルダー板に設ける。当該手段は、その先端部がフィルム状試料に当接したまま、フィルム状試料の表面上を滑ることなく、試料ホルダー板の外周部に向かって移動するものである。 (もっと読む)


【課題】 半導体装置表面に付着している微小異物を採取し、精度の良い観察、分析を行うことができる試料作製装置および試料作製方法を提供する。
【解決手段】 埋包試料30は、無機固体物12中に微小異物10を埋め込ませて採取したものである。無機固体物12が試料ホルダ14a、14bの左右方向に退けられ、微小異物10が上下の試料ホルダ14aと14bの対向面にそれぞれ直接接触するに至るまで埋包試料30を圧縮する。微小異物と上下の試料ホルダとの接触部分を結ぶ経路は、微小異物10以外の第3物質である無機固体物10によって阻害されることがない測定経路となる。 (もっと読む)


【課題】
試料となるウェーハを割ることなしにウェーハ断面を水平から垂直迄の方向からの断面
観察や分析を高分解能,高精度かつ高スループットで行える微小試料加工観察装置および
微小試料加工観察方法を実現することを目的とする。
【解決手段】
上記課題を解決するために本発明装置では、同一真空装置に集束イオンビーム光学系と
電子光学系を備え、試料の所望の領域を含む微小試料を荷電粒子線成型加工により分離し
、分離した該微小試料を摘出するプローブを備えた。 (もっと読む)


【課題】より好適にサンプル処理を行う。
【解決手段】サンプルを担持したプレート46は、カセット48に収容される。このカセット48の長手方向一端にはテーパ74が形成されている。進退バー54は、プレート46上で進退することで、カセット48に供給された液体を強制的に流動させる。排液の際、進退バー54は、カセット48の一端から他端までの範囲E2で進退するが、このとき、範囲E2の始端に到達した進退バー54は、テーパ74に当接することになる。そして、このテーパ74と当接することにより、進退バー54は、移動軸56を中心回動し、自動的に上方に案内されるため、液切れ性能が向上する。 (もっと読む)


【課題】半導体ウエハやデバイスチップから所望の特定領域を含む試料片のみをサンプリング(摘出)して、分析/計測装置の試料ステ−ジに、経験や熟練や時間のかかる手作業の試料作り工程を経ることなく、マウント(搭載)する試料作製方法およびその装置を提供すること。
【解決手段】FIB加工と、摘出試料の移送、さらには摘出試料の試料ホルダへの固定技術を用いる。
【効果】分析や計測用の試料作製に経験や熟練技能工程を排除し、サンプリング箇所の決定から各種装置への装填までの時間が短縮でき、総合的に分析や計測の効率が向上する。 (もっと読む)


【課題】半導体ウエハから取り出された試料を薄くするプロセスを自動化する。
【解決手段】試料キャリアは、外側境界(6)を有する隆線形状部(5)及び外側境界を超えて延びる支持膜(4)を有する。その隆線形状部(5)はCuで作製され、その支持膜(4)は炭素で作製される。試料を支持膜上に設け、位置合わせをして、その試料は、IBIDを用いて剛性構造体に取り付けられる。試料を剛性構造体に取り付けた後、イオンビームを用いてその試料を薄くする。試料を薄くする間、支持膜も同様に局所的に除去される。本発明は、試料と試料キャリアとの良好な位置合わせを実現する。また本発明は、たとえば帯電したガラス針(2)による、ウエハから試料キャリアへの試料の移動に係る自由度を増大させる。その自由度の増大により、試料を試料キャリアへ移動させるのに通常必要となる取り付け/切断工程が不要となる。 (もっと読む)


【課題】観察したい平面領域を広範囲にわたって観察することが可能な平面観察試料を得ることができる試料作製方法の提供を課題とする。
【解決手段】エネルギービームを照射することで、被観察平面を含む薄膜領域31を有する平面観察試料30を作製する試料作製方法であって、原試料から被観察平面を含む微小試料片20を摘出する微小試料片摘出工程と、該微小試料片20に、エネルギービーム照射方向に対する被観察平面の傾きの有無を現出させるマーカ手段を形成するマーカ手段形成工程と、前記マーカ手段に基づいて被観察平面をエネルギービームの照射方向に一致させる平行合わせ工程と、被観察平面を照射方向に一致させた状態で、エネルギービームを照射して被観察平面を含む薄膜領域31を加工する薄膜加工工程とを有する。 (もっと読む)


【課題】本発明は、AESによる断面加工試料の測定において、断面のエッチングによるクリーニング操作から断面の観察、測定操作までにかかる複雑なステージ操作工程や、さらにCMAを搭載したAESにおける複数試料観察の際の角度微調節といった工程の削減を可能とする試料台の提供を目的とする。
【解決手段】試料台(1)に傾斜角度50°〜60°の傾斜面2面からなる傾斜部分(2)を設けることにより、エッチング後、試料ステージの反転操作を行なわずに観察、測定操作を可能とし、また、傾斜部分(2)に並列に試料(5)を固定できる構造により、観察断面の方向をそろえることを可能とすることで位置調整に要する操作を削減することが出来る。 (もっと読む)


81 - 100 / 199