説明

Fターム[2G052GA21]の内容

サンプリング、試料調製 (40,385) | 分析方法、装置 (3,239) | 電気的・電気化学的方法によるもの (584)

Fターム[2G052GA21]の下位に属するFターム

Fターム[2G052GA21]に分類される特許

41 - 60 / 72


【課題】簡単な構成でありながら検体容器の様々なフタ形状を識別する必要がなく、検体容器を設置するのと同時に、検体容器のフタの有無の確認及び混和の有無の設定を行うことである。
【解決手段】検体容器Tを保持する検体容器ホルダ6と、その検体容器ホルダ6を略水平方向に配される軸線周りに回転駆動するホルダ駆動部7と、前記検体容器ホルダ7に設置された検体容器Tの傾斜角度θを検出する傾斜角度検出部8と、前記ホルダ駆動部7を制御する制御装置9とを備え、前記制御装置9が、前記角度検出部8から角度検出信号を受け付けて、その傾斜角度θに応じて、前記検体容器T内の血液検体の混和の有無を判断し、前記ホルダ駆動部7を制御するものである。 (もっと読む)


【課題】小型で安価でありながら極低濃度のガスをリアルタイムに測定するためのガス捕集装置を提供する。
【解決手段】ハニカム構造のマイクロチャネルを形成し、その上に疎水性のガス透過性膜を固着する。ポリジメチルシロキサン(PDMS)を、マイクロチャネルを作成する基材に用いれば、その重合固化の過程でガス透過性膜を固着する。単純なマイクロチャネルではなくハニカム型にすることによって極薄の液層を広い面積にわたって形成することができる。そのためにガスの吸収効率が上がり、短い吸収時間でも吸収液層にガス成分を捕集濃縮することができるようになる。 (もっと読む)


【課題】深い深度での使用が可能で、ボーリング作業による撹乱の無い地層から、直接原位置の地下水を採水できる地下水採水装置を得る。
【解決手段】採水容器11と、プラグ21を備える。プラグ21は、採水容器11の下方向に突出して設けられ、採水口22、導水管部25を有する。採水容器11内部には、採水口22と接続され、採水容器11内の上部に配置された内管開口32を有する。また、採水容器11内部の下部に位置付けられたその揚水口42が配置された揚水管と、加圧による揚水手段を有する。さらに、プラグ21の水平断面積が、採水容器11の水平断面積と比較して小さい。 (もっと読む)


【課題】溶出試験装置および試験方法を提供する。
【解決手段】本発明は溶出試験装置を提供し、該装置は、少なくとも第2のチャンバ10と直列に接続された第1のチャンバ2を含み、第1のチャンバ2は固体試験サンプルを第2のチャンバ10へと移送可能であり、かつ第2のチャンバ10は固体試験サンプルを保持可能である。さらに、この装置は、1以上の媒体を第1のチャンバ2および第2のチャンバ10内へとそれぞれ連続的に供給するための第1のリザーバ21および少なくとも第2のリザーバ22を備え、チャンバは固体試験サンプルおよび媒体を一緒に混合するための攪拌器4、11を有する。加えて、第1のチャンバ2は、第1のチャンバ2への媒体の連続的な供給の間に試験サンプルを導入するためのサンプルホルダ38を有する。チャンバからの流出物を分析するためのプロセッサ5、16、20も設けられている。 (もっと読む)


【課題】試料ガス中の酸素や二酸化炭素量に影響されずに測定可能なTVOC計を提供する。
【解決手段】一定流量の試料ガスG1の酸素濃度を磁気式酸素計2で測定した後、試料ガスG1を燃焼触媒酸化炉3で完全燃焼させ、排出された試料ガスG2の酸素濃度を磁気式酸素計4で測定し、それぞれの測定値に比例した電気信号E1、E2を演算処理装置5に入力して酸素濃度差を求め、その酸素濃度差を演算処理して試料ガスG1の全揮発性有機化合物(TVOC)濃度を算出する。 (もっと読む)


【課題】簡単な方法でフィルタへの微粒子堆積量を検知でき、フィルタの交換や再生処理の時期の決定が容易に行えるような微粒子捕集フィルタを提供する。
【解決手段】気体中の微粒子を捕集し気体を浄化するために使用される微粒子捕集フィルタであって、当該微粒子捕集フィルタ1の少なくとも2カ所に電極2を設置して、当該電極2間の交流インピーダンスを計測するインピーダンス計測回路を構成し、当該インピーダンス計測回路に交流電流を流したときの前記電極2間の交流インピーダンスを計測することによって、捕集された微粒子の量を検知する。 (もっと読む)


【課題】
流体デバイスの一方の流路における流量と他方の流路における流量の流量差を生じさせることのないシリンジポンプを提供する。
【解決手段】
シリンジ1aと流体デバイス、導電率検出部27とシリンジ1bがそれぞれ接続されるようにバルブ9,31を切り替える。シリンジ駆動部5によってピストン4がY軸上方に駆動すると、シリンジ1aは内部の試料水を試料水流路17に吐出し、シリンジ1bは内部に測定水を吸引する。これに同期してガス透過膜15では試料水から測定水にガスが透過し、導電率計27によって測定水の導電率が検出される。 (もっと読む)


【課題】 いわゆるディスポーザブルタイプとしての使用に適しており、手軽に分析することが可能な分析装置用カートリッジを提供すること。
【解決手段】 試料液に含まれる特定成分の分析を行う分析装置に装填される分析装置用カートリッジAであって、上記試料液が導入される液導入口3と、上記試料液を希釈する希釈手段4と、希釈手段4により希釈された希釈試料液に含まれる特定成分を分析するための1以上の分析部5A,5B,5C,5Dと、分析された上記希釈試料液を貯蔵しておくための1以上の貯蔵手段61と、を備えている。 (もっと読む)


本発明の実施形態は、並列プロセスを実行する装置および方法を指向する。本発明の1つの実施形態は、各ステップが容器13a〜13f内で流体を図示のように前記容器に通して流すことによって実行される複数のステップを有するプロセスを実行する装置を指向する。プロセスのステップは、少なくとも第1ステップおよび少なくとも1つの後続ステップを備える。後続ステップの少なくとも1つは最終ステップであり、各ステップは、その実行に関連する時間、つまりステップ期間を有する。少なくとも1つのステップは最長ステップ期間を有し、ステップの合計数に最長ステップ期間を掛けた値がプロセス期間に等しい。装置は複数の容器13a〜13fを備える。複数の容器はそれぞれ、プロセスの全ステップをプロセス期間内に順番に実行するものであり、複数の容器はそれぞれ、プロセスの各ステップを最長ステップ期間内に実行するものである。
(もっと読む)


【課題】 一の測定部で、複数の採取箇所における,ある特定の測定項目についての被測定流体の測定を行うことができる流体測定装置を実現する。
【解決手段】 流体測定装置1は、給水ライン2と接続された第一サンプリングライン7および第二サンプリングライン8、並びに濃縮水排水ライン5と接続された第三サンプリングライン9と、サンプリングされた被測定流体を特定の測定項目にしたがって測定する測定部10と、選択されたいずれかの前記各サンプリングライン7,8,9から前記測定部10へ被測定流体を導入する弁装置を構成する第一開閉弁11,第二開閉弁12および第三開閉弁13とを備える。 (もっと読む)


【課題】 大気中のベンゼンの濃度を濃縮することにより迅速かつ簡便にベンゼンの濃度を測定できる測定方法及びその方法に使用する濃縮用フィルターシステムを提供すること。
【解決手段】 空気よりもベンゼンをより良く溶解することができる高分子分離膜の供給側から透過側へベンゼン及び空気の混合気体を通過させ、該分離膜にベンゼンを選択的に溶解すると同時に、該分離膜に溶解したベンゼンを該分離膜の透過側に拡散させることにより、混合気体中のベンゼン濃度を該分離膜の供給側よりも透過側において50倍以上高くするベンゼン濃縮工程を含む空気中ベンゼン濃度の測定方法、及び、前記高分子分離膜をフィルターハウジングに張架した濃縮用フィルターシステム。 (もっと読む)


【課題】 集積化ライブラリ成膜時において、プラズマの荷電粒子により基板損傷を生じることなく、膜厚、抵抗値などの各種物性値を測定することができるコンビナトリアルマテリアル評価基板を提供する。
【解決手段】 荷電粒子を含む成膜手段により基板上に成膜試料群を作製して、その物性等を評価するコンビナトリアルマテリアルの評価方法において、該基板上に設けられた絶縁・剥離層を介して設けられ、該基板および該成膜試料と絶縁される接地層において、成膜時の荷電粒子が接地され中性化され、ついで該基板上に到達して成膜された後に、該絶縁・剥離層を除去して、この除去部分に該基板表面を露出させ、該絶縁・剥離層以外の部分に成膜試料群を作製し、この成膜試料群の物性等を該基板に設けられたセンサ用端子を用いて評価する。 (もっと読む)


【課題】極めて簡易な装置構成で、焼却炉もしくは燃焼溶融炉等の燃焼制御を高精度に行う。
【解決手段】排ガス通路19内のガス圧力を検出する圧力計40と、ガス分析装置20の滞留室内のガス圧力を検出する連成計とを備え、コントローラ41にて圧力計40と連成計によりそれぞれ検出される圧力の差圧を演算し、この演算される差圧が所定値に達したときにガス分析装置20の酸素濃度検出器により検出される酸素濃度の値を保持し、この保持した酸素濃度値に基づき燃焼溶融炉1に供給される空気量を制御するようにする。 (もっと読む)


【課題】例えば、コンビナトリアル手法を用いて複数種の原料を混合して混合比の異なる
多種類の試料を自動的に生成してライブラリプレートに配置したライブラリを自動的に分
析することができるライブラリ分析装置を提供する。
【解決手段】ライブラリプレート上の予め定められた試料形成点の複数の試料の位置を自
動的に演算し、個別の試料の特性の測定を個別に、自動的に行うことのできるライブラリ
分析装置。本発明のライブラリ分析装置によれば、ライブラリプレート上の膨大な数の試
料を自動的に分析できる。また、試料は原料を規則的に変化する比率で混合しておけば、
特性の変化の連続性から、分析する試料の組成比より細かい組成比の試料の特性を推測す
ることができる。
(もっと読む)


【課題】 凍結被検体の加工に最適な脆化温度を非破壊的に決定する方法を提供する。
【解決手段】 本発明に係る被検体の脆化温度の決定方法は、静電容量緩和終了温度と緩和時間との関係および脆化温度と歪み時間との関係がアレニウス型の式に従うことに基づいて、静電容量の測定結果を、数式(1)および数式(2)にしたがって脆化温度に換算する。 (もっと読む)


【課題】 従来の気液分離装置においては多孔質の膜やチューブを用いているために、この多孔に目詰まりが起こってガス透過機能が低下し、再活性化に要する時間と手間がかかって満足できる分析手段とはなっていない。
【解決手段】 揮発性成分を含む液体を流動させる第一の流れと、前記液体に対して実質的に不透過性であり、かつ、非晶質のフッ素含有ポリマー膜からなる気液分離膜の一方の側面に前記第一の流れを接触させて前記揮発性成分を前記膜の他方の側面に透過させる気液分離部と、前記膜の他方の側面に接触して前記揮発性成分を溶解させる液体からなる第二の流れと、前記第二の流れを導いて前記揮発性成分を検出する検出器と、を備えることを特徴とする液体中の揮発性成分の検出装置を提供する。 (もっと読む)


【課題】
簡単かつ低コストな構成で、Soot濃度測定の際に必要な希釈比を求め、精度のよいSoot濃度測定が可能な排気ガス分析装置を提供する。
【解決手段】
排気ガスラインに対し、SOF濃度を連続測定可能なSOF測定系と、Sootを連続測定可能なSoot測定系とを接続し、前記Soot測定系を、前記排気ガス又は炭化水素濃度が既知である標準ガスのいずれを一方を選択的に希釈用ガスで希釈して導出する希釈器と、前記希釈器の希釈比を調整可能な希釈比調整手段と、前記希釈器で希釈されたガス中のSootを連続測定するSoot検出器とを備えたものにするとともに、前記SOF測定系を、前記希釈器に接続可能に構成して当該希釈器で希釈された標準ガスの炭化水素濃度を測定可能なものにした。 (もっと読む)


【課題】
希釈比を簡便に変更、調整でき、しかも希釈されたガスの品質を脈動等がない安定したものにできる希釈システムを提供する。
【解決手段】
希釈用ガスが流れる内部の主経路上に、ノズル及びデフューザを直列に設け、希釈用ガスが加速されて負圧になる負圧領域を形成するとともに、その負圧領域に連通させた連通路を介してサンプルガスを吸い込み、前記希釈用ガスと混合して導出する希釈器と、外部からの所定操作によって、前記希釈器におけるサンプルガスの吸い込み流量がほぼ一定に保たれる範囲内で、当該希釈器に導入される希釈用ガスの流量を変化させる希釈比調整手段とを備えるようにした。 (もっと読む)


【課題】 粒子捕捉手段で捕捉した粒子の高濃度化の効果を減殺することなく、粒子センサの正確なキャリブレーションを行うに十分な時間を確保できるセンサ配置位置を実現する。また、流速に依存しない出力値を得る。
【解決手段】 流体が流れる配管15の近傍または内部に第1粒子捕捉手段を設け、流れの方向16の下流側の配管15の近傍または内部に粒子センサ12および第2粒子捕捉手段28を配置する。第1粒子捕捉手段11によって流体内に存在する粒子17を所定時間捕捉し、これを解放すると共に第2粒子捕捉手段28による粒子17の捕捉を開始する。その後、粒子センサ12のキャリブレーションを実行し、観測領域18に到達した粒子17の数量を粒子センサ12で計量する。 (もっと読む)


【課題】 有機化合物以外に、電解質成分や無機炭素を多く含有する試料液であっても、そのTOC値を精度良く簡便に測定でき、しかも装置を小型化できる全有機炭素含量測定方法および装置を提供する。
【解決手段】 反応器1内の試料液流路LSにおける試料液中のガスを、反応器1内に設けたガス透過性チューブ3を介して吸収液流路LAの吸収液に吸収させ、吸収液の導電率が平衡状態に達した際の第1導電率xを測定する。その後、紫外光源2を点灯し、試料液中の有機化合物を酸化し、発生した二酸化炭素をガス透過性チューブ3を介して吸収液に吸収させ、吸収液の導電率が平衡状態に達した際の第2導電率xを測定する。第2導電率xと第1導電率xとの差から試料液中の全有機炭素含量を求める。 (もっと読む)


41 - 60 / 72