説明

Fターム[2G058DA02]の内容

自動分析、そのための試料等の取扱い (28,698) | フロー方式自動分析に関するもの (1,482) | キャリア液として試薬以外を使用 (30)

Fターム[2G058DA02]に分類される特許

1 - 20 / 30


【課題】少なくとも1つのパケットに対して汚染なしに化学的または物理的処理を行うためのマイクロ流体デバイスおよび方法を提供する。
【解決手段】マイクロ流体デバイス1において、該デバイスが、軸Xを有するマイクロチャネル2、および下記の少なくとも1つを含むパケット操作手段を含むところのデバイス、発電ユニット9、および上記発電ユニット9に連結されかつ、上記マイクロチャネルの少なくとも一部分の内部に、上記マイクロチャネルの軸Xと実質的に共線的である電場を作るように構成された電極アッセンブリ3、ここで、上記発電ユニット9は、マイクロチャネルにおいて少なくとも1つのパケットを変形させるまたは少なくとも2つのパケットを互いの方に移動させるような振幅および周波数を有する電場を発生させることができる。 (もっと読む)


【課題】シース液層流によるサンプル液層流の挟み込みを流路の上下方向(深さ方向)にも行うことができ、高い分析精度を得ること可能なマイクロチップの提供。
【解決手段】シース液を通流可能な流路11を具備し、この流路11を通流するシース液層流中に、サンプル液が導入されるマイクロチップ1を提供する。このマイクロチップ1では、シース液層流中にサンプル液を導入することにより、サンプル液層流の周囲をシース液層流で取り囲んだ状態で送液される。絞込部115により、シース液層流及びサンプル液層流が、等方的に縮小して絞り込まれて送液される。 (もっと読む)


本発明は、1種または複数種の流体試料(A)の列を搬送流体(B)内に作成および/または配列するための装置に関する。この装置は、入口(02)と、出口(03)と、入口(02)と出口(03)との間においてマイクロチャネル(01)に開口するノズル開口(03)とを備えたマイクロチャネル(01)を含む。更に、搬送流体(B)を導入体積流量(V1)にて注入して導出体積流量(V2)にて吸い出す供給ユニットが設けられている。試料容器(10)内においてノズル開口(04)が流体試料(A)に接触している。制御ユニットにより、導入体積流量(V1)と導出体積流量(V2)との間の比が変化させられる。ノズル開口(04)の横断面積は、導入体積流量が導出体積流量に等しい場合(V1=V2)、搬送媒体(B)がノズル開口(04)から試料容器(10)へ流出しないように、また導出体積流量が導入体積流量よりも大きい場合(V2>V1)、流体試料(A)がノズル開口(04)内に流入するように選ばれている。本発明は、更に1種または複数種の流体試料(A)の列を搬送流体(B)内に作成および/または配列するための方法に関する。 (もっと読む)


【課題】異なる種類の微小液滴を選択的に任意の順序にアレイ化し、解析を行った後の微小液滴を一括で取り出して装置を再利用することを可能する。
【解決手段】液体が流れるマイクロ流路2に連通する狭窄領域4を水平方向に複数個配置し、流体中の微小液滴をアレイ化して配置する駆動部を有する微小液滴の配列装置1において、前記狭窄領域4の後方に連通する微小通路5と、前記狭窄領域4に捕捉される微小液滴8と、前記微小通路6の側面に配置される流体圧力によって駆動するバルブ7とを備え、前記バルブ7の動作により微小液滴の通過と取り出しとを行うとともに、前記マイクロ流路2に流れる液体の逆流操作により前記バルブ7の動作により前記捕捉された微小液滴8を前記狭窄領域4から一斉に取り出すようにした。 (もっと読む)


【課題】基板上に配設された流路内において、通流する液体の連続性を分断して送液し、分断された反応緩衝液に種々の物質を注入することにより、一つの流路内で複数の化学反応を同時に分析するための技術を提供することを主な目的とする。
【解決手段】基板1上に配設された流路11内に気体又は絶縁性液体のいずれかの流体を導入することにより、流路11内を通流する液体を分断して送液する手順と、分断された前記液体に複数の物質を注入する手順と、分断された前記液体に識別用マイクロビーズBを注入する手順と、該物質間の反応を検出する手順と、該識別用マイクロビーズBからの識別信号を検知する手順と、を含む反応分析方法を提供する。 (もっと読む)


【課題】 汚れ又は気泡等の付着の程度に応じて適切な洗浄を行うことができる検体処理装置を提供する。
【解決手段】
検体分析装置1は、検体の測定を行う第1及び第2測定ユニット2,3と、第1及び第2測定ユニット2,3の測定結果を各別に処理してそれぞれの分析結果を取得する情報処理ユニット5とを備える。情報処理ユニット5は、前回のシャットダウン完了時刻からの経過時間に応じて、第1測定ユニット2及び第2測定ユニット3のスタートアップ動作における洗浄動作の回数を変化させるように、第1測定ユニット2及び第2測定ユニット3の動作を制御する。 (もっと読む)


【課題】シース液層流によるサンプル液層流の挟み込みを流路の上下方向(深さ方向)にも行うことができ、高い分析精度を得ること可能なマイクロチップの提供。
【解決手段】シース液を通流可能な流路11と、この流路11を通流するシース液層流中に、サンプル液を導入するための微小管14と、を備えるマイクロチップ1を提供する。このマイクロチップ1では、シース液層流中に微小管14によってサンプル液を導入することにより、サンプル液層流の周囲をシース液層流で取り囲んだ状態で送液することができる。 (もっと読む)


【課題】 熱分解法により、無機物中、特にセメント中の臭素を効果的に捕集し、日常の管理試験として、簡便、迅速に定量することができる臭素の分析方法及びシステムを提供する。
【解決手段】 被分析試料中の臭素を抽出し、定量分析する方法であって、被分析試料を800〜1100℃の範囲で加熱し、発生した臭化物を吸収液に捕集、定量することを特徴とする。 (もっと読む)


【課題】
複数の試料を用いて測定する場合でもコストダウンを図ることができる、一般的なFIA法を用いたフローインジェクション分析装置を提供する。
【解決手段】
本発明のフローインジェクション分析装置は、キャリア液が流れる流路と、試料ループに供給された試料をキャリア液に導入する導入切替え弁と、を備え、キャリア液に導入された試料と反応試薬とを反応させて、反応の結果を測定するフローインジェクション分析装置において、キャリア液1が流れる流路上には、複数の導入切替え弁8a,8b,8c,8dが直列に配置されている。 (もっと読む)


【課題】粘度が変化した緩衝液でも、電気泳動流路に確実に緩衝液を充填でき、正確なサンプル分析を行うことのできる生体分子解析装置を提供する。
【解決手段】複数の電気泳動流路を持つ解析用プレートを用いた生体分子解析装置において、前記解析用プレートを回転させるためのモータと、前記モータを制御する回転制御パルスを出力するためのモータ制御器と、前記電気泳動流路に光を照射するための流路検出用光源と、前記電気泳動流路からの反射光を検出し流路充填信号として出力する流路検出器と、前記基準位置マーカからの反射光を検出し基準位置通過信号として出力する基準位置検出器と、前記基準位置通過信号から前記電気泳動流路毎の前記緩衝液の充填率を計算し、前記全ての電気泳動流路の充填率が所定の値を越えた時に前記モータを停止させる指示を前記モータ制御器に行う充填率判断器とから成る生体分子解析装置。 (もっと読む)


【課題】マイクロ流路チップの流路内泡を消去できるマイクロ流路内泡除去方法と、その泡除去方法を使用し、凍結乾燥された試薬を被検査液体等に溶解混合した場合でも泡を消失することのできるマイクロ流路内溶解分散方法を提供することである。
【解決手段】マイクロ流路内で発生する泡Xを除去するマイクロ流路内泡除去方法及びマイクロ流路内溶解分散方法であって、マイクロ流路に導入された液体L内の泡Xが浮上して流路内壁に付着維持できる程度以下の液体流速とし、泡が内包された液体の気液界面Lvを、泡が流路内壁面の付着位置を維持できる流速で移動させて、液体進行方向後端の気液界面に泡を集める。 (もっと読む)


【課題】核酸の塩基配列等を解析するための装置において、溶液の処理量を少なくし、また構造を簡易化する。
【解決手段】処理プレート12上には基幹流路14に対して交差するように4つの溶液流路18が形成されている。4つの溶液流路18に対してそれぞれの所定の溶液を満たした上で、導入口14Aから洗浄液(バッファー液)を送り込めば、4つの交差点に存在する4つの溶液層がX方向の下流側に送り出される。これを繰り返せば、反応処理部に22に存在する核酸に対して循環的に溶液処理を行うことが可能となる。溶液処理によって生じた遊離基は光学的に検出される。 (もっと読む)


【課題】検体及び試薬を基板管の隙間に確実に注入することができ、基板管の隙間の気泡を容易に排出することができる化学分析装置を提供する。
【解決手段】互いに平行には配置された複数の基板は垂直に又は垂直方向に対して傾斜して配置されている。基板管の隙間にオイルが充填され、オイルに試料及び試薬を注入する。オイルが試料、試薬、及び、反応生成物より重い場合には、エレクトロウェッティングと重力を利用して液の移動を行う。この場合、基板間の隙間の上端に、プローブ挿入用ガイドを配置する。オイルが試料、試薬、及び、反応生成物より軽い場合には、エレクトロウェッティングと浮力を利用して液の移動を行う。この場合、基板間の隙間の下端に、プローブ挿入用ガイドを配置する。 (もっと読む)


【課題】診察をする側の診療科や病棟の個別事情に合ったきめ細やかな判定をすることができる臨床検査装置を提供する。
【解決手段】患者の臨床検体を測定する測定部と、この測定部による測定結果を出力する出力部と、前記測定部による測定結果の判定基準を医療組織別に記憶する記憶部と、前記測定部による測定結果と前記記憶部に記憶されている判定基準とに基づいて、医療組織毎に、当該測定結果が所定の状態に属するか否かを判定する判定手段と、この判定手段によって前記測定結果が所定の状態に属すると判定された場合に、当該所定の状態を示す情報を前記出力部に出力させる出力手段とを備えている。
(もっと読む)


【課題】マイクロチップ上の複数の被検出部の検出結果を基に総合判断を行う場合や複数の被検出部の結果を比較する場合等において高い信頼性が得られるマイクロチップを用いる検査装置を提供すること。
【解決手段】複数の被検出部を有するマイクロチップが収容可能なマイクロチップ収容部と、前記マイクロチップ収容部に収容されるマイクロチップの前記複数の被検出部に光を照射する光源と、前記マイクロチップ収容部に収容されるマイクロチップの前記複数の被検出部を介して前記光源からの光を受光する単一の受光部と、を有する。 (もっと読む)


【課題】少ない刺激によって高速かつ高精度に微粒子を分別できる微粒子分別マイクロシステムおよび微粒子分別方法を提供することを目的とする。
【解決手段】微粒子分別マイクロシステム1は、刺激感応物質としてのゾル-ゲル転移物質が添加された微粒子含溶液11が流れる微粒子含溶液流路3と、所定位置で当該微粒子含溶液流路3と合流するシース溶液12が流れるシース溶液流路4と、微粒子含溶液流路3とシース溶液流路4とが合流した合流流路9と、当該合流流路9に設けられた導入された微粒子10を計測するための微粒子計測部5と、合流流路9の下流に設けられ、分岐点6を介して分岐する微粒子10を分別するための微粒子回収流路7a及び微粒子廃棄流路7bとが、基板2上に設けられるとともに、当該微粒子廃棄流路7b上に刺激付与手段としての赤外線照射装置8が設けられた構成を有する。 (もっと読む)


【課題】微量の試料を収容した試料容器を扱えるようにする。
【解決手段】試料容器90は上部開口が分注プローブ8のニードルで貫通可能なセプタムなどのシール材90aで閉じられた状態でマイクロチップ処理装置に装着される。分注プローブ8はその側面に溝8bが設けられており、分注プローブ8の先端が試料容器90に挿入されて試料を吸入する際に試料容器90内と大気とが連通して試料容器90内が陰圧になるのを防止する。 (もっと読む)


【課題】ピペットを挿抜した際に生じるセンサユニットの傾きを防止する。
【解決手段】押さえ部材の押圧部80bの底面に、傾き防止部材85a〜85dを4カ所に設ける。これら傾き防止片85a〜85dは、押圧部80bの底面80eに直交する面86と、該直交する面86に向けて傾斜する斜面87とを備えた楔形状から構成されている。センサユニット12が測定位置にセットされると、押さえ部材80が下降を開始する。この下降の際に、傾き防止部材85a,85bの斜面87が、センサユニット12の稜線12eに、傾き防止部材85c,85dの斜面87が、センサユニット12の稜線12cにそれぞれ線接触される。これにより、センサユニット12がレール70に押圧された状態で保持される。 (もっと読む)


【課題】 流路に充填された緩衝剤中で生体サンプルを移動させ、生物学的、酵素的、免疫学的、及び化学的アッセイを行う際に、煩雑な準備作業、及び複雑な検出操作が不要で、簡便且つ短時間で正確な検出結果が得られる生体サンプル判別装置、及び生体サンプル判別用プレートカートリッジを提供する。
【解決手段】 生体サンプル判別用プレート10を生体サンプル判別用プレートカートリッジ200内部に収納した状態のまま、生体サンプル判別装置100に装着し、該生体サンプル判別装置100の充填ユニット20により、前記カートリッジ200内部に収納されたプレート10を回転させて、該プレート10に形成された流路に緩衝剤を充填し、泳動ユニット30により、該充填させた緩衝剤中に一定量の生体サンプルを添加して電気泳動させ、光学検出部40により流路中の生体サンプルの泳動状態を検出して、生物学的、酵素的、免疫学的、及び化学的アッセイを行なう。
(もっと読む)


【課題】電気的に液体の位置を制御する液体搬送デバイスにおいては、液体周囲のオイルの位置を制御できないため、測定の再現性が悪くなっていた。
【解決手段】液体搬送デバイスの表面に周囲よりもオイルとの親和性の高い領域を設けることにより、測定部にオイルが多量に入り込むことや、オイルが制御電極上から液体とともに離れ、液体が制御できない位置に移動することを防ぐ。
【効果】測定部に於いてオイルが多量に入りこむことを防止し、測定の再現性が良くなる。 (もっと読む)


1 - 20 / 30