説明

Fターム[2G058FA01]の内容

自動分析、そのための試料等の取扱い (28,698) | 混合、撹拌 (997) | 容器内での混合 (669)

Fターム[2G058FA01]の下位に属するFターム

Fターム[2G058FA01]に分類される特許

141 - 160 / 217


【課題】反応容器に分注された液体を目標温度に保持し、分析値の信頼性に優れた分析装置および反応容器における液温調節方法を提供すること。
【解決手段】液体を攪拌して反応させ、反応液を分析する分析装置と反応容器における液温調節方法。分析装置は、反応容器9に取り付けられ、液体を攪拌する音波を出射する音波発生素子21と、音波発生素子の駆動を制御する駆動制御回路24と、反応容器内の液体の温度を検知する温度センサ7と、温度センサが検知した液体の温度をもとに駆動制御回路による音波発生素子の駆動を制御し、液体の温度を目標温度に調節する温度調節回路25とを備え、音波発生素子21は、出射する音波の音響エネルギーによって液体を加熱する。 (もっと読む)


【課題】表面弾性波素子を用いて反応容器に保持した液体試料を攪拌する場合、液体試料を所定温度に簡易に保持することが可能な分析装置と分析装置における液体試料の温度制御方法を提供すること。
【解決手段】検体と試薬を含む液体試料を保持した複数の反応容器9を収容し、液体試料を所定温度に保温する恒温槽6を備え、表面弾性波素子が発する音波によって液体試料を攪拌し、反応液を分析する分析装置1と分析装置における液体試料の温度制御方法。分析装置1は、恒温槽6の温度を表面弾性波素子の駆動信号から予測される液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、液体試料を所定温度に保温する温度制御回路16cが設けられている。 (もっと読む)


本発明は、自動生物学的分析のパッケージング装置に関し、このパッケージング装置は、分析サンプルと、その試薬と、体液サンプルの1以上の分析を実施するのに必要な情報と、該当する方法の場合には、その分析からの廃棄物を受けることを目的とする位置とを含むことを特徴とする。
(もっと読む)


【課題】コンタミネーションの心配なく液体試料の温度を測定して温度調節に利用することが可能な表面弾性波素子、攪拌装置及び分析装置を提供すること。
【解決手段】圧電基板21a上に櫛型電極からなる振動子21bが形成された表面弾性波素子21、攪拌装置20及び分析装置。表面弾性波素子21の圧電基板21aは、振動子21bと同一素材からなる温度センサ21dが振動子と共に設けられている。音波を照射することによって容器に保持された液体を攪拌する攪拌装置20は、容器9に取り付けられ、液体を攪拌する音波を出射する表面弾性波素子21と、表面弾性波素子による音波の出射を含む駆動を制御する駆動制御回路24と、温度センサが検出した容器の実測温度に基づき駆動制御回路による表面弾性波素子の駆動周波数を制御して容器に保持された液体の温度を調節する温度調節回路25とを備えている。 (もっと読む)


【課題】標準検体の測定値に関する基準値、基準値に基づいて設定される検体の管理値、管理値の変更日及び変更理由等を含む試薬の補充に関連した履歴データが確実に記録される分析装置を提供すること。
【解決手段】試薬と検体を攪拌して反応させ、反応液の光学的特性を測定して反応液を分析する分析装置1。試薬の補充に関連した履歴データの入力を検体の分析動作の開始条件とする制御部16を備えている。履歴データは、精度管理用の標準検体の測定値に関する基準値、基準値に基づいて設定される検体の測定値に関する管理値、管理値の変更日或いは管理値設定者の所見を含む。 (もっと読む)


【課題】撹拌棒によらずに、検体と試薬とを撹拌可能にすることにより、検体の採取量を抑制可能にする反応容器、および分析装置を提供すること。
【解決手段】一対の測光壁2bを対向して設ける一方、弾性変形可能な弾性壁2cにより一対の測光壁2bを相互に接続したので、弾性壁2cを押圧すれば、反応容器2に分注した試薬と検体とを撹拌できる。したがって、撹拌棒を反応容器2に挿入して撹拌する必要がなく、反応容器2の横断面積を小さくでき、検体の採取量を抑制できる。 (もっと読む)


【課題】本発明は、液体を自動的に配量して混合する方法に関し、この方法は、実施が簡単で、安価であり、追加的な部品を全く必要とせず、できるだけ速くかつ少ない工程で、著しく効果的に液体を混合する。
【解決手段】本方法は、a)ある体積の1の液体または複数の体積の複数の液体を配量針から試料容器に投与する工程であって、前記配量針から1の液体または複数の液体を投与する操作は、前記配量針の投与開口部が開始位置(S)に位置するときに開始され、前記投与操作は前記配量針が終了位置(E)に向かって鉛直下方向に移動する間継続され、前記投与操作は前記配量針の投与開口部が前記終了位置(E)に位置するときに終了し、前記開始位置は、前記試料容器の底部から鉛直方向にある距離を空けて置かれ、この距離は本工程において前記液体を完全に投与した後の前記試料容器の最大充填高さに相当するか、または前記充填高さより上か、または本工程において前記液体を完全投与した後の前記試料容器の底部から前記試料容器の最大充填高さまでの距離の最大10%だけ前記充填高さより低いかであり、前記終了位置(E)は、前記試料容器底部に対してある距離を空けて、前記開始位置(S)の鉛直方向真下に位置する、工程と、b)前記配量針の投与開口部が前記終了位置(E)に位置している間、前記配量針を使って試料容器内に存在する前記ある体積の液体の少なくとも一部を吸い上げる工程と、c)前記投与開口部が前記開始位置(S)に位置するまで前記配量針を鉛直方向に移動させる工程と、d)吸い上げられた前記体積の液体を前記配量針から投与する工程であって、この投与操作は、前記配量針の投与開口部が前記開始位置(S)に位置するときに開始され、前記投与操作は、前記配量針が前記終了位置(E)に向かって鉛直下方向に移動する間継続され、前記投与操作は、前記配量針の投与開口部が前記終了位置(E)に位置するときに終了する工程を備える。 (もっと読む)


【課題】表面弾性波素子の発熱に起因した液体の温度上昇を抑制することが可能な攪拌装置と分析装置を提供すること。
【解決手段】容器に保持された液体を音波によって攪拌する攪拌装置及び分析装置。攪拌装置20は、容器に接触した状態で液体に照射する音波を発生させる表面弾性波素子24と、音波の発生に伴う表面弾性波素子の発熱を抑制する抑制部材とを備えている。抑制部材は、表面弾性波素子24に当接し、冷却によって表面弾性波素子の発熱を抑制するペルチェ素子27又は放熱によって表面弾性波素子の発熱を抑制する放熱部材である。 (もっと読む)


【課題】音波の吸収に起因した液体の温度上昇を抑制することが可能な攪拌装置及び分析装置を提供すること。
【解決手段】容器に保持された液体を音波によって攪拌する攪拌装置及び分析装置。攪拌装置20は、液体に照射する音波を発生させる表面弾性波素子24と、表面弾性波素子が照射する音波によって上昇する液体の温度を所定温度以下に制御する駆動制御部21とを備えている。駆動制御部21は、液体の熱に関する特性に応じて液体の温度を制御する。 (もっと読む)


【課題】発生した音波のエネルギーの無駄を抑えて、攪拌効率の良い攪拌装置及び分析装置を提供すること。
【解決手段】容器に保持された液体を音波によって攪拌する攪拌装置及び分析装置。攪拌装置20は、液体に照射する音波を発生させる表面弾性波素子24と、音波によって液体L内に生ずる流れの時間変化に応じて表面弾性波素子24の駆動条件を制御する駆動制御回路23とを備えている。表面弾性波素子24の駆動条件は、表面弾性波素子の駆動時間,間欠駆動のタイミング,印加電圧又は駆動周波数の少なくとも一つである。 (もっと読む)


【課題】液体の攪拌効率を向上させることができ、構造が簡単で、小型化が可能な攪拌装置と分析装置を提供すること。
【解決手段】攪拌対象の液体を保持する容器と、液体へ音波を照射すると共に、音波によって液体を攪拌する音波発生手段とを備えた攪拌装置と分析装置。攪拌装置20の表面弾性波素子22は、容器7に接触する接触面を有する圧電基板22aと、圧電基板上に形成され、液体を攪拌する音波を発生する発音部22bと、圧電基板上の接触面以外の部分に形成され、外部から供給される発音部の駆動電力を無線で受電する受電部22cとを有している。 (もっと読む)


【課題】音波の伝搬経路が短く、音波の減衰を抑えて液体の攪拌効率を向上することが可能な攪拌装置と分析装置を提供すること。
【解決手段】攪拌対象の液体を保持する容器と、液体へ音波を照射すると共に、音波によって液体を攪拌する表面弾性波素子とを備えた攪拌装置と分析装置。攪拌装置20の表面弾性波素子22は、圧電基板22aと、圧電基板上であって、容器7の液体に接する領域の壁と圧電基板との間に配置されると共に、液体を攪拌する音波を発生する発音部22bとを有している。表面弾性波素子22と容器との間には、音響整合層が配置され、発音部22bは、音響整合層によって保護されている。 (もっと読む)


マイクロ流体デバイスは、ナノリットル量の試薬を利用して異なる反応を平行して行うことを可能ならしめる。 (もっと読む)


【課題】親水性表面を有する基材によって構成されたマイクロ流体チップにおいて、回転動作の停止等により、上流側から下流側への外力がなくなった際に、流路を構成する壁面を液体がつたい逆流することを防止できるマイクロ流体チップを提供する。
【解決手段】検査すべき液体が流れるトンネル状の第1の流路と、前記第1の流路が底面で接続された前記液体を充填するための空洞状のチャンバーと、前記チャンバーに蓄えられた液体を排出するための前記チャンバー底面に接続されたトンネル状の第2の流路と、前記チャンバーの内部に前記チャンバーの内壁厚みよりも小さい高さの突起部を設けることにより、前記マイクロ流体チップにおける逆流を防止することができる。 (もっと読む)


【課題】音波の伝搬経路が短く、伝搬に伴う音波の減衰を抑えて液体の攪拌効率を向上させることが可能な攪拌装置と分析装置を提供すること。
【解決手段】攪拌対象の液体を保持する容器と、液体へ音波を照射すると共に、音波によって液体を攪拌する表面弾性波素子とを備えた攪拌装置と分析装置。攪拌装置20の表面弾性波素子22は、圧電基板22aと、圧電基板に設けられると共に、容器7及び圧電基板を介して液体に隣接する容器外側に配置され、液体を攪拌する音波を発生する発音部22bとを有している。容器及び圧電基板は、音波の透過する面の表面粗さが、前記発音部の発生する音波の波長よりも小さい。 (もっと読む)


【課題】反応容器の隅部を含む全体を短時間で攪拌することが可能な攪拌装置と分析装置とを提供すること。
【解決手段】液体を保持する容器と、液体に音波を照射すると共に、音波によって液体を攪拌する流れを発生させる表面弾性波素子とを備えた攪拌装置と分析装置。攪拌装置の表面弾性波素子22は、表面弾性波素子から遠ざかる方向に流れる少なくとも2つの離隔流Faと、少なくとも2つの離隔流の間を表面弾性波素子へ戻る方向に流れる帰還流Fbとを液体L内に発生させる。容器7は、少なくとも2つの離隔流の外側に液体の界面を有する。 (もっと読む)


【課題】キュベットホイールへの着脱を繰り返しても少なくとも振動子の損傷を回避することが可能な表面弾性波素子とこの表面弾性波素子を用いた反応容器を提供すること。
【解決手段】電気端子7dと櫛型電極からなる振動子7b,7cとを有し、外部装置の挿入部に挿入することにより外部装置の装置端子が表面を摺動して電気端子と接続される表面弾性波素子7と表面弾性波素子を用いた反応容器6。表面弾性波素子7は、少なくとも振動子が、表面弾性波素子表面の装置端子が摺動する領域以外の領域に配置される。 (もっと読む)


【課題】反応容器に保持された液体の位置に合わせて測光位置を制御可能とした分析装置と分析装置の測光方法を提供すること。
【解決手段】容器7に保持された液体の光学的特性を測定する分析装置1と分析装置の測光方法。分析装置は、液体の光学的特性を測定する測光部10と、容器7内において液体が保持される位置をもとに測光部10が液体を測光する測光位置を制御する制御部16とを備えている。分析装置の測光方法は、容器7内において液体が保持される位置をもとに液体を測光する測光位置を制御する工程と、制御された測光位置において液体を測光する工程とを含む。 (もっと読む)


【課題】試薬や検体等の液体が反応容器内部まで導入されなくとも測光が可能な分析装置と分析装置で用いる容器を提供すること。
【解決手段】液体の光学的特性を測定する分析装置と分析装置で用いる容器。分析装置1は、液体を少なくとも2つの気液界面を有する状態で保持する容器7と、容器7に保持された液体の光学的特性を測定する測光部10とを備えている。容器7は、液体を導入する開口と、開口から導入した液体を少なくとも2つの気液界面を有する状態で保持する液体保持部とを有している。容器は、少なくとも2つの気液界面が鉛直方向上下に並んだ場合に、容器の内壁全周に液体から作用する表面張力の鉛直成分と容器内の気体から液体に鉛直上方に作用する力との和が、液体の重量以上である。 (もっと読む)


【課題】構成が簡単で、容器が保持した液体の位置を検出することを可能とした位置検出装置と位置検出方法及び分析装置を提供すること。
【解決手段】容器に保持された液体の位置を検出する位置検出装置、位置検出方法及び分析装置。位置検出装置25は、容器7接して配置されると共に、電気エネルギーの入力によって音波を発生する複数の発音部27b〜27dを有する表面弾性波素子27と、各発音部から反射される電気エネルギーをもとに各発音部の電気的特性を測定する測定部26と、測定部において測定した電気的特性の違いをもとに各発音部の位置における液体の有無を判定する判定制御部21cとを有する。 (もっと読む)


141 - 160 / 217