説明

Fターム[2G060DA14]の内容

電気的手段による材料の調査、分析 (24,887) | 電界効果トランジスタ(FET) (316) | ゲート (118) | イオン感応層を持つもの (90) | 感応層が無機物からなるもの (26)

Fターム[2G060DA14]に分類される特許

1 - 20 / 26


【課題】鉄筋が施工された後、腐食が始まるまでの期間、測定対象物の状態変化を測定し、得られた情報をコンクリート構造物の計画的な保全に活用することができるセンサー装置を提供すること。
【解決手段】本発明のセンサー装置1は、隣接する空孔同士が連通した連続空孔を有する多孔質体で構成された第1の電極3と、第1の電極3に対して離間して設けられた第2の電極4と、第1の電極3と第2の電極4との電位差を測定する機能を有する機能素子51とを有し、機能素子51で測定された電子差に基づいて、測定対象部位の状態を測定し得るように構成されている。 (もっと読む)


【課題】超薄膜プラチナ粒界ナノ空間に金属化合物が形成された薄膜をガスセンサの感応膜に適用し、プラチナとナノ化合物の構成金属や膜厚や占有比率や形成条件を変える事で、水素およびそれ以外の様々なガスのセンシングに対応でき、長期信頼性の高い超薄膜ガスセンサを実現するデバイスを提供する。
【解決手段】基板上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極とを具備し、ゲート電極は、酸素を含有する酸素ドープアモルファス金属と前記金属の酸化物結晶とが混合した金属酸化物混合膜と、前記金属酸化物混合膜上に設けられたプラチナ膜とを有し、プラチナ膜は、複数のプラチナ結晶粒と該プラチナ結晶粒間に存在する粒界領域から構成され、粒界領域は、金属酸化物混合物により埋められ、プラチナ結晶粒の周囲が金属酸化物混合物により囲まれた構造を有するガスセンサ。 (もっと読む)


【課題】迅速かつ安価にターゲットを解析する。
【解決手段】凹部2は、深堀エッチングにより半導体基板1上に形成されている。センサ部5は、凹部2内に形成された電界効果デバイスであって、ゲート領域にセットされたターゲットの試薬に対する反応に応じて電気的特性を変化させる。ポンプ部6A、6Bは、センサ部5に対する試薬を含む液体の供給及び排出の少なくとも一方を行うために凹部2内に形成されている。カバー部3は、凹部2を覆うように半導体基板1に張り合わされ、凹部2に対する液体の注入口と排出口とが設けられている。 (もっと読む)


【課題】低電力応用のために、室温または環境温度で動作する敏感で選択性のあるセンサが必要とされる。
【解決手段】気相または液相中の、化学的またはバイオ化学的な検体をセンシングするための、低電力センシングに関し、所定の検体をセンシングするために、デバイス中でのセンシング層40としての、粒界の無い薄い連続した膜の使用に関する。使用において、センシング層は検体に露出した表面を有する。センシング層の電気的なインピーダンスは、センシング層の露出表面上の、所定の検体の吸収に応じて変化する。センシング層は、好適には約1nmと約30nmの間の範囲、例えば約1nmと約30nmの間の膜厚を有する。好適には、センシング層はアモルファス層である。 (もっと読む)


【課題】気体感応型の半導体装置を、補償の手間を少なくする、簡単で確実な信号形成および信号評価に関して改良する。
【解決手段】ゲート電極、および/または、このゲート電極を半導体チャネルから絶縁するゲート絶縁層、および/または、ゲート電極と半導体チャネルとの間に設けられるゲートスタック層が2つの面セクションを有し、この2つの面セクションは、複数の気体に対して異なる感度を有する。 (もっと読む)


【課題】酸素を含有する空気中で、低濃度の水素を検出可能な水素ガスセンサを提供する。
【解決手段】板状の圧電体11、圧電体11の表面の一部に配置されたパラジウム―プラチナ合金からなる薄膜状のガス感応部32、及びガス感応部32に接するガスの水素濃度に依存するガス感応部32の物性の変化を検出する検出部として機能する櫛歯状の電極22を備える水素ガスセンサを提供する。 (もっと読む)


【課題】簡単な構造で自己診断機能を有するガスセンサを提供する。
【解決手段】2つの電界効果型トランジスタからなり、該2つの電界効果型トランジスタのゲート絶縁膜24上にゲート電極を設け、該ゲート電極によりガスを検知するガスセンサ30であって、一方の電界効果型トランジスタに設けられた第一ゲート電極5と、他方の電界効果型トランジスタに設けられた第二ゲート電極6と、前記第一ゲート電極5と前記第二ゲート電極6との間を配線により接続して同電位あるいは一定電圧差の直流電圧あるいは交流電圧を印加する電圧印加手段と、を備え、前記第一ゲート電極5と前記第二ゲート電極6とは、それぞれ異なる金属からなるとともに、一方の電界効果型トランジスタと他方の電界効果型トランジスタの構造を同じにする。 (もっと読む)


本発明は、少なくとも1つの感受性の構成部材(3)を有し、上記感受性の構成部材(3)上に熱的に残らず分解可能な材料からなるマスキング層(31)を設け、上記感受性の構成部材(3)を上記マスキング層(31)によりほぼ完全に覆い、上記マスキング層(31)上に温度安定性の材料からなる保護層(33)を設け、上記マスキング層(31)を熱分解又は低温運転する酸素プラズマによって除去するセンサ素子(1)の製造方法に関する。本発明は、更に、少なくとも1つの感受性の構成部材(3)及び温度安定性の材料からなる保護層(33)を有し、上記感受性の構成部材(3)は上記温度安定性の材料からなる上記保護層(33)により覆われていて、上記感受性の構成部材(3)及び上記保護層(33)は互いに間隔を空けて配置されている、センサ素子に関する。
(もっと読む)


【課題】性能が長期間安定して維持され、特性が安定して製造歩留りが高く、応答速度が大きいガスセンサを提供する。
【解決手段】 n型SiC基板1の表面から内部へと設けられたp型領域6と、p型領域の表面に配置された触媒3と、触媒3の上に位置するp側電極11と、ソース電極21およびドレイン電極22と、基板内でp型領域に接してソースとドレインとを繋ぐn型チャネルと、半導体基板のn型領域の裏面に位置するn側電極12とを備え、触媒3を介在させて、n側電極とp側電極との間に電圧を加えて、pn接合15に逆バイアス電圧を印加することを特徴とする。 (もっと読む)


【課題】高い測定精度を可能にする、冒頭で述べた種類のガスセンサを提供する。
【解決手段】ガスセンサ(1)は少なくとも1つの導電性のガス感知層(7)を有し、当該ガス感知層(7)は目標ガスと接触可能な表面領域(9)を有し、当該表面領域内での仕事関数は表面領域と接触している目標ガスの濃度に依存している。少なくとも1つの電気ポテンシャルセンサは、エアギャップ(8)を介して表面領域(9)に容量結合している。表面領域(9)は少なくとも1つの繰り抜き部によって構造化され、当該繰り抜き部内に、ガス感知層(7)と導電結合されている平坦な材料要素(18)が配置され、当該材料要素の材料はガス感知層(7)の材料と異なり、且つ金属、および/または、金属を含有する化合物を含んでいる。 (もっと読む)


【課題】プラチナ膜をゲート電極に使用するSi−MOSFET型の水素ガスセンサにおいて、プラチナとゲート絶縁膜(酸化シリコン膜)との密着性を維持しつつ、高濃度の水素ガスにさらされても水素被毒を抑制できる特徴をもち、かつ、パラジウム膜をゲート電極に使用するSi−MOSFET型の水素ガスセンサと同程度以上の水素応答強度を実現するデバイス構造を提供する。
【解決手段】ゲート構造において、プラチナ微結晶5間の結晶粒界6(粒界近傍領域7を含む)に酸素をドープした非晶質のチタン、プラチナ−チタン拡散層からなるPt−Ti−O領域を形成した構造とする。さらに、結晶粒界6にPt−Ti−O領域を有するプラチナ微結晶5の下に、酸素ドープチタン膜3(酸素をドープした非晶質のチタン、非晶質酸化チタン、または、酸化チタン微結晶が混じり合った膜)を形成した構造とする。 (もっと読む)


【課題】タンパク質、核酸、炭水化物、脂質およびステロイド等の検体を検知する。
【解決手段】ナノワイヤを含む電子デバイスが、その製造方法および用途とともに記載される。ナノワイヤはナノチューブおよびナノワイヤでよい。ナノワイヤの表面は選択的に官能基化されている。ナノ検出器デバイスが記載される。タンパク質、核酸、炭水化物、脂質およびステロイド等の検体によりゲート制御される電界効果トランジスタのアレイより構成されたナノセンサである。 (もっと読む)


化学的および生物学的な化学種を検出し、かつ放射線の変化を検出するソリッドステート電界効果トランジスタセンサが開示される。デバイスは、多孔性または構造化されたチャネルの区画を含むことにより、デバイス感度を向上させる。感知された生物学的、化学的または放射線の変化がチャネルのコンダクタンスの指数関数的な変化を引き起こすように、デバイスはフルデプレート型モードにおいて動作する。一実施形態において、チャネルの上に重なる誘電体層と、該誘電体層の上に重なる材料の層とをさらに備え、該材料の層は、放射性、化学的および生物学的な化学種から成るグループから検出される標的化学種と相互作用し、該材料の層は、連続的な層または離散的なアイランドのいずれかである。
(もっと読む)


【課題】センサヘッドを構成する個々のCNT−FETにばらつきが有っても、ばらつきのない測定値が得られるようにすること。
【解決手段】CNT−FETバイオセンサ装置1は、ソース−ドレイン間にカーボンナノチューブ(CNT)を形成したカーボンナノチューブ電界効果トランジスタ(CNT−FET)でなるセンサヘッド2と、濃度が未知の蛋白質又はDNAを測定して得られた上記センサヘッド2の出力値から上記蛋白質又はDNAの濃度値を演算する演算部3とを備え、上記演算部3は、濃度の変化に対して同一出力しか得られない濃度の上記蛋白質又はDNAを予め測定して得られた上記センサヘッド2の出力値を記憶する記憶部30を備え、上記記憶部30に記憶された出力値を用いて、上記センサヘッド2の出力値を校正して、上記蛋白質又はDNAの濃度値を演算する。 (もっと読む)


【課題】可能な限り簡単な構造のナノデバイスから多くの情報量を読み出すことが可能な、高機能、高感度の観測装置を提供する。
【解決手段】金属性カーボンナノチューブ101の両端に電極102、103が接続され、これと平行に接地電極104が形成される。電極102、103は、それぞれプローブ針106、107と接触し、同軸ケーブル108により高周波測定部105と接続している。高周波電源109が、特定範囲の周波数の信号を出力し、反射波・透過波検出回路110が、その反射波および透過波を測定する。制御部111は、高周波電源109からの信号の振幅と反射波・透過波検出回路110の検出結果からSパラメータの周波数依存性を測定し、その結果に基づいて、吸着分子112を同定し、吸着分子112の量を検出する。 (もっと読む)


本発明は、半導体ボディ12の表面上に形成されると共に、第1の端部において第1の導電接続領域13に接続され、第2の端部において第2の導電接続領域14に接続される、少なくとも1つのメサ型の半導体領域11を構成している物質を検知する一方、検知されるべき物質30からなる流体20は、前記メサ型の半導体領域11に沿って流れることができ、及び検知されるべき前記物質30は、前記メサ型の半導体領域11の電気特性に影響を及ぼしうる、半導体センサ装置10に関し、メサ型の半導体領域11は、その後長軸方向に見ると、第1の半導体材料からなる第1の半導体サブ領域1及び前記第1の半導体材料とは異なる第2の半導体材料からなる第2の半導体サブ領域2を有する。本発明によれば、前記第1の半導体材料は、IV族の元素材料からなり、前記第2の半導体材料は、III-V族化合物からなる。サブ領域1及び2の間の界面化学の違いにより、病気を知らせるたんぱく質が結合される抗体のような物質30が、所望の第1の領域1にさらに選択的に取り付けられることができる。
(もっと読む)


【課題】電界効果型トランジスタ(FET)を用いたFET型ガスセンサの加熱電力を最小化し、長寿命化を図る。
【解決手段】FETのゲート絶縁膜上に成膜される感応電極31に二つの端子10、11を設け、異なる電位を与えて電流を流す。加熱が必要な感応電極31自体に電流を流すことで感応電極31が発熱体となるので、最も効率よくFET型ガスセンサを加熱できる。また、端子10、11は温度検出部の一部を構成し、加熱された感応電極31の温度を測定する。 (もっと読む)


それぞれのバイオセンサセル(10)が感知ゾーンを備えるバイオセンサセル(10)及び複数のバイオセンサセル(10)を備えるバイオセンサアレイ。第1の感知電極(24)、第2の感知電極(25)、及び感知電極(24、25)を隔てるギャップ(27)が、感知ゾーン内に配列される。第1の感知電極(24)は、ギャップ(27)を使って第2の感知電極(25)から電気的に絶縁される。捕捉分子(28)は、感知ゾーン内に固定化され、電界効果トランジスタ(16)は、ゲート電極(19)、ソース電極(17)、及びドレイン電極(18)を有し、第1の感知電極(24)は、電界効果トランジスタ(16)のゲート電極(19)に電気的に接続され、第2の感知電極(25)は、ゲート電圧に電気的に接続可能である。本発明は、さらに、生体分子などの標的分子を検出する方法を実現する。 (もっと読む)


【課題】 電源を内蔵したセンサ装置において、低消費電力と広濃度範囲の計測を両立する。
【解決手段】低濃度域に感度をもつ低消費電力のFET方式センサと高濃度域に感度を有するヒータ加熱が必要なセンサとを組み合わせてセンサ装置とする。動作例を示せば、常時、ガス漏洩を検知する際は、低濃度域のセンサを動作させ、ヒータへの通電は遮断する。FET方式センサが第1の設定閾値を越える値を検出したところでヒータ加熱を開始する。ヒータが第2の閾値の温度を越えた場合、高濃度域センサの起動が完了したと判断し、それ以後は、第3の設定閾値以下の濃度はFET方式センサの出力値、閾値以上の場合は高濃度域センサの出力値をセンサ装置の出力とする。 (もっと読む)


【課題】金属酸化物半導体と水素吸蔵性金属との接合を用いたガスセンサにおいて、周囲のガス雰囲気に影響されずに高感度で水素濃度を測定することができる水素ガスセンサを提供する。
【解決手段】金属酸化物半導体とPd系金属等の水素吸蔵性金属との接合により形成されるセンサ素子を有する水素ガスセンサにおいて、前記水素吸蔵性金属表面が、その少なくとも一部において、シリカ膜等の、水素ガスを透過し、かつ、酸素ガスの拡散を抑制する機能を有する膜でコートされている。 (もっと読む)


1 - 20 / 26