説明

Fターム[2G088HH08]の内容

放射線の測定 (34,480) | 測定試料の採取、分離 (393) | 採取容器(容器内試料の測定) (96)

Fターム[2G088HH08]の下位に属するFターム

Fターム[2G088HH08]に分類される特許

1 - 20 / 50


【課題】従来のヨウ素モニタは、放射性ヨウ素が含まれていない環境で使用されてヨウ素の捕集が無くても、放射性ヨウ素捕集用のカートリッジは廃却の要があった。
【解決手段】浄化前のカートリッジA1は、捕集部B3において捕集したサンプル空気SA中に含まれている水蒸気と共に放射性ラドンやトロンを吸着していても、カートリッジ廃棄ボックスGにおいて加熱された乾燥気体をカートリッジA1に吹き付けてそれらを除去することにより浄化されるので、その後、繰り返し再利用が可能となる。 (もっと読む)


【課題】簡便かつ安全に液体放射能を測定できる放射能測定方法,放射能測定システム,および放射能測定用試料を提供する。
【解決手段】放射能測定方法が,吸水性高分子ポリマを有する放射能測定用試料に,放射能を含む液体を吸収させる工程と,前記放射能測定用試料に吸収された液体の量を検知する工程と,前記液体を吸収した放射能測定用試料の放射能の量を測定する工程と,前記測定された放射能の量と,前記検知された液体の量とに基づいて,前記液体の放射能濃度を算出する工程と,を具備する。 (もっと読む)


【課題】試料ガスによる放射線検出器の損傷防止と、入射窓の両面にかかる圧力差に起因する測定誤差を低減できる放射性ガス測定装置を提供する。
【解決手段】放射線検出部2の外気取り込み移送部27に流量調節部28を、配管部30に電磁弁31を設けることで、外気および試料ガスの流れの制御性を向上させ、試料ガスの放射線検出器26側への逆流を防止するとともに、試料容器22側の入射窓24にかかる試料ガスの圧力に、シンチレータ25側の入射窓24にかかる外気の圧力が近づくように、入射窓24とシンチレータ25の間に導入する外気の流量を調整する。 (もっと読む)



【課題】使用済核燃料再処理過程で生じた放射性粉体を再処理設備や安全に悪影響を与えないでサンプリングする。
【解決手段】使用済核燃料再処理設備の残渣回収容器5に、ケーシング10で密封したサンプリング装置20をガイド管22を介して取付け、ガイド管22に管路を開閉する隔離装置21を設け、ケーシング10に不活性ガス(例えばアルゴンガス)の注入設備が接続され、ケーシング10内をアルゴンガス圧にて残渣回収容器5の内圧よりも高く維持する構成を備える。隔離装置21を開けてケーシング10内からガイド管22を通じてサンプリング装置20のサンプラーを残渣回収容器5内に刺し入れてサンプラーに放射性粉体を捕捉させる際に、残渣回収容器5内の雰囲気がケーシング10側に漏洩することをアルゴンガス圧で阻止し、さらにケーシング10側から湿気が残渣回収容器5内に侵入しないようにケーシング内の雰囲気をアルゴンガスで置換できる。 (もっと読む)


【課題】放射性廃棄物中に含まれる放射性核種の特定、その位置及び充填量(充填状態)を単一の検査装置を用い、単一のプロセスで行う。
【解決手段】被検体18が内包する放射線源18Aが発生する放射線18Bによって標準試料12の第1の透過画像を得、次に、X線源11から照射されるX線19によって、標準試料12の第2の透過画像を得る。第1の透過画像及び第2の透過画像の大きさに関する相対比と、X線源11、放射線源18A、標準試料12及び受像器13の相対的位置関係に基づく幾何学的関係とから、放射線源18Aの位置を特定する。放射線源18Aによる標準試料12の第1の吸収特性に対し、X線19の強度を変化させることによって、標準試料12の、第1の吸収特性と合致する第2の吸収特性を得、この際のX線19の強度に基づいて、放射線源18Aの種類を同定する。 (もっと読む)


少なくとも1つのコリメート化放射線測定プローブ(6)であって、感度を有する端部が、開口部と観測フィールドとを有する交換可能なコリメータ(2)内に載置されているコリメート化放射線測定プローブ(6)を備える放射線特性化装置に関する。コリメータ(2)はコリメータホルダ(1)に担持されており、コリメータとコリメータホルダとのアセンブリ(3)はスタック内において2枚の遮蔽スクリーン(5)間に挿入されており、遮蔽スクリーン(5)は厚みを調整するように交換可能であり、コリメータとコリメータホルダとのアセンブリ(11)及び遮蔽スクリーン(5)は、コリメータ(2)の観測フィールド外にある電離放射線源から来る寄生電離放射線に対してプローブ(6)を保護する。 (もっと読む)


【課題】放射性物質測定装置において、局所的な密閉によって除湿効果を高める。
【解決手段】供給ステーション16は、未使用の積層体150を保持するタワーと、タワーを包み込む密閉ケース40と、密閉ケース40内に配置された除湿手段(ヒーター、除湿剤)152,154と、を有する。供給ステーション16の下側には、密閉ケース40の下部に形成された開口部60を通じて最下段の捕集部材を取り出すための台座ユニット58が設けられている。台座ユニット58には、当該台座ユニットの上昇状態において当該台座ユニット58と前記開口部60の接合部分をシールするためのOリング168が設けられている。台座ユニット58の上昇状態において当該台座ユニット58が開口部60を塞ぎ、これにより供給ステーション16の内部が密閉状態(除湿状態)となる。 (もっと読む)


【課題】
排ガス中の放射性ガス濃度を確実に検出し、かつ、排ガス試料採取ラインにおいて排ガスのリークのポテンシャルを最小にし、外部への放射能漏えいを抑制した排ガス放射線モニタを提供することにある。
【解決手段】
排ガス放射能測定容器,排ガス試料流量調節弁の手前に圧力調節弁及び圧力検出器を設置し、圧力検出器により採取配管内の圧力を測定し、その測定した圧力信号を演算装置に伝送し、演算装置にて任意に設定された気圧と採取配管内の圧力とが一致するように、前記演算装置より圧力調節弁へと適切な開度信号を送り、前記圧力調節弁の開度を制御することにより排ガス試料採取ラインの、リークのポテンシャルの高い箇所を負圧とすることにより、外部への放射能漏えいを抑制した。 (もっと読む)


【課題】 陽電子放射断層診断装置において使用される18F FDG(フルオロデオキシグルコース)を合成する合成室内から発生するガス状の放射性物質を監視しつつ効率よく捕集できる合成室を提供する。
【解決手段】 陽電子放射断層診断装置において診断薬として用いられる18F FDG(フルオロデオキシグルコース)を合成する合成室において、合成室の排気口に放射性物質を除去するための活性炭素繊維フィルターが配設されていること、及び活性炭素繊維フィルターの上流側及び下流側に各側の放射線量を測定するための放射線測定装置が取付けられていることを特徴とする18F FDG(フルオロデオキシグルコース)合成室。 (もっと読む)


【課題】空間内の脅威物質の存在を迅速かつ正確に決定するために、あらゆる利用可能な検出器デバイスから放射線のサインデータを分析する手法を提供すること。
【解決手段】関心のある1つ以上の物質の存在に関して、実質的に囲まれた空間を調べる検出器によって生成されるスペクトルデータを分析する方法であって、検出器の検出経路内にあると予想される物質を複数の物質群のうちの1つに分類することと、各物質群に対する、代表的なエネルギー対断面積の曲線を記述するデータを選択することと、関心のある物質に対するスペクトルデータを生成するために、物質群のうちの1つ以上と各関心のある物質の相互作用を計算することと、スペクトルデータのライブラリを生成することと、空間内の脅威物質の存在を決定するために、検出器によって生成されたスペクトルデータをスペクトルデータのライブラリと比較して分析することとを包含する、方法。 (もっと読む)


【課題】試料水捕集装置へのタール状物質の付着を回避することができると共に、サンプルガスの水蒸気密度を求める際の誤差を抑制することができるトリチウムサンプラを提供する。
【解決手段】酸性ガスとタール状物質を含むサンプルガスを除去容器21内に供給し、この酸性ガスとタール状物質をサンプルガスから金属繊維23により除去し、サンプルガスを排出する除去容器21と、この除去容器21の内部温度を測定する温度センサー25と、この内部温度を基に前記除去容器21を冷却する冷却手段26とを有する酸性ガス・タール状物資除去装置2と、前記排出されたサンプルガスをヒータ31により加熱しサンプルガスの水蒸気密度をセンサー32、33、34の計測値を基に演算する水蒸気密度測定装置3と、加熱されたサンプルガスを冷却し試料水を捕集する試料水捕集装置5とを備えた。 (もっと読む)


【課題】簡易な構成を追加するのみで、モニタリング性能を損ねることなくポンプへの負担を大幅に減らすようにして、ポンプの長寿命化および消費電力の低減を実現するダスト・よう素モニタを提供する。
【解決手段】よう素モニタ30の計測が不要な場合に電磁弁41,43を閉じてよう素モニタ30の流路を閉にするとともに電磁弁71を開いてバイパス流量制御部70を全開状態とし、また、よう素モニタ30の計測が必要な場合に電磁弁41,43を開いてよう素モニタ30の流路を開にするとともに電磁弁71を閉じてバイパス流量制御部70を流路調節状態にするダスト・よう素モニタ100とした。 (もっと読む)


【課題】波高値(α線計測部3のパルス波高分析器3eの出力)とα線のエネルギーとの対応関係を自動的に算出できるようにすることにより、α線測定装置のエネルギー校正を自動化することで、人的労力を軽減させることを目的とする。
【解決手段】α線測定装置1内の計測容器10内の真空度と、α線が半導体検出器12に入射するまでに損失するエネルギーとの対応関係は、計算によって導出できることにより、予め、制御ユニット6に格納する。更に、排気装置4の計測容器10内の真空度を変化させることにより、真空度と計数率が最大となるときの波高値との対応関係を自動計測し、この計測結果を制御ユニット6に格納する。そして、真空度とα線が半導体検出器12に入射するまでに損失するエネルギーとの対応関係と、真空度と計数率が最大となるときの波高値との対応関係とに基づいて、波高値とα線のエネルギーとの対応関係を導出する。 (もっと読む)


【課題】放射性物質と液体シンチレータとが含まれるサンプルに含まれる放射性物質を測定するサンプル測定装置において、クエンチング補正のための外部標準線源をサンプルに対して適正に位置決められるようにする。
【解決手段】フレキシブルシャフト206の先端に外部標準線源208を設け、進退機構204によって外部標準線源の位置を調整する。予備測定時には、外部標準線源208がサンプル容器13の斜め下方の近接位置に位置決められる。本測定時には、外部標準線源208が遮蔽部材230内の隔離位置に引き込まれる。 (もっと読む)


【課題】放射能の測定精度をさらに向上することができる放射性廃棄物の放射能測定方法を提供する。
【解決手段】被検体21が回転テーブル9上に載置される。回転テーブル9を回転させて、放射線検出器4により、回転する被検体21から放出される放射線を検出し、放射線計数率を求める。この放射線計数率は駆動制御装置14の記憶装置に記憶される。その後、被検体21を回転させながら放射線検出器2で被検体21から放出される放射線を検出する。放射線検出器2で得られた放射線計数率は波高分析装置15に入力される。放射線検出器2での放射線計測時に、回転テーブル制御装置14Cは、記憶装置から読み出した放射線計数率(デッドタイム量)を用いて第3駆動装置13を制御し、回転テーブル9の回転速度を制御する。すなわち、被検体21の回転速度が調節される。 (もっと読む)


【課題】試薬を補充する際の放射線の漏れを防止し、短時間で繰り返し合成を行うことができるRI化合物合成装置を提供する。
【解決手段】RI及び複数の試薬を反応器3に導入してFDGを得るRI化合物合成装置において、反応器3を有すると共に、ホットセル11を開閉するホットセル扉15の内面側に取り付けられた装置本体部5と、試薬を収容する試薬容器7A,7B,7C,7Dを保持すると共に、ホットセル扉15の外面側に取り付けられた試薬ホルダ部9と、ホットセル扉15を貫通すると共に、試薬容器7A,7B,7C,7Dと反応器3とを接続する試薬チューブ21と、を備える。試薬を補充する場合には、ホットセル扉15を開けずに試薬容器7A,7B,7C,7Dに試薬を補充できるため、反応器3などに残留するRI/RI化合物からの放射線の漏れを防止し、短時間で繰り返し合成を行うことができる。 (もっと読む)


【課題】放射能測定の効率化と測定精度の信頼性向上を図ることを可能とする放射線測定装置を提供する。
【解決手段】放射線測定装置18は、放射性液体を貯留する原液バイアル16を内部に収容可能な筒型の内電極28、及び内電極28を取り囲む筒型の外電極30を有し、上端及び下端が開放された電離箱24と、内電極28内で原液バイアル16を支持する支持台26と、を備える。支持台26は、電離箱24の下端から内電極28内に入り込んで原液バイアル16を支持する。内電極28及び外電極30は、側方から内電極28内に収容された原液バイアル16を視認可能にするための切欠き部32,34を有する。支持台26は計量部44を有しており、重量計測機能を有する。 (もっと読む)


【課題】密封容器に密封されているガスの濃度を下げることなく、放射性物質等を高感度で計測できる密封容器内の放射線計測方法を提供する。
【解決手段】密封容器2内の封入ガスを減圧環境にすることで密封容器2から封入ガスを取り込み、封入ガス中に存在するダスト状の放射性物質をフィルタで回収しフィルタの放射線濃度を計測する。フィルタでダスト状の放射性物質を回収した後の封入ガスは再度密封容器2内に戻す。密封容器2から回収した封入ガスを保管中又は検査中に密封容器2から取り出した封入ガスと同量のガスを密封容器2に供給してもよい。 (もっと読む)


実施形態に係る186Reの単離方法では、185Reと186Reを含む源化合物を気化する。気化した源化合物をイオン化して、185Reと186Reを含む負の電荷を帯びた分子にする。負の電荷を帯びた分子を分離して、186Reを含む負の電荷を帯びた分子を単離する。単離された186Reを含む負の電荷を帯びた分子を、正の電荷を帯びた収集器で収集する。その結果、単離された186Reを用いて、高い比放射能を持つ治療用及び/あるいは診断用の放射性医薬品を生成することができる。 (もっと読む)


1 - 20 / 50