説明

Fターム[2G088KK18]の内容

放射線の測定 (34,480) | 検出回路又は信号の処理 (4,721) | レンジ切替 (30)

Fターム[2G088KK18]に分類される特許

1 - 20 / 30


【課題】放射線の照射検出を迅速かつ正確に行う。
【解決手段】電子カセッテは、FPDの画素を利用してX線源からX線の照射が開始されたことを自己検出する。FPDは画素から信号電荷を非破壊で読み出すことが可能であり、画素が出力する信号のゲインを変更可能である。電子カセッテは、照射開始検出動作において、まず、画素のゲインを高ゲインGnLに設定して出力信号を読み出して、その信号値SVが閾値Th以上になったか否かを判定する一次判定を行う。一次判定が肯定された場合には、低ゲインGnLに変更して出力信号を読み出して、その信号値SVで二次判定を行う。高ゲインGnHで一次判定を行うため、X線の強度が低い段階で照射開始を検出できる。低ゲインGnLで二次判定を行うため、正確な検出が行われる。 (もっと読む)


【課題】対消滅γ線のペアの数え落としを防止し、高画質な断層画像を取得できる放射線断層撮影装置を提供する。
【解決手段】本発明の構成によれば、第1の放射線検出器が検出した放射線と、第1の放射線検出器が放射線を検出した時点を含んだ時間幅である検出時点時間幅に経時的に隣接した隣接時間幅の期間に第2の放射線検出器が検出した放射線との間で同時計数を行う同時計数手段を備えている。この様にすることで、時間幅を跨ぐ対消滅放射線の検出が可能となる。これにより同時計数のカウント数が低下せず、断層画像の画質の劣化が防がれる。 (もっと読む)


【課題】 画素の容量値を調節することが可能で高いS/N比が得られる検出装置を提供することを目的とする。
【解決手段】 基板100の上に配置されたトランジスタ130と、トランジスタ130の上に配置され、トランジスタ130と接続された変換素子110と、変換素子110と接続されたオーミックコンタクト部151と、オーミックコンタクト部151と接続された半導体部152と、絶縁層101を介して半導体部152及びオーミックコンタクト部151と対向して配置された導電体部154と、を基板100と変換素子110との間に有して、トランジスタ130に対して変換素子110と並列に接続された容量素子150と、半導体部152にキャリアを蓄積させる第1電位と、半導体部152を空乏化させる第2電位と、を導電体部154に供給する電位供給手段と、を有する。 (もっと読む)


【課題】切換点で計数率の段差を発生させることなく切換を行うことができ、応答と視認性を両立させた高信頼な放射線モニタを得ることができる。
【解決手段】放射線を検出してアナログ信号パルスを出力しその出力の波高レベルが許容範囲内にある場合にデジタルパルスを出力し、出力されたデジタルパルスが入力され定周期で計数して計数値を出力する計数手段と、最新の計数値及び計数率演算過程の最新データを格納する記憶手段と、計数値に基づき定周期で計数率を演算し、その計数率を工学値に変換する共にその工学値について警報判定を行って工学値及び警報判定結果を出力する演算手段と、工学値及び警報判定結果を表示する表示手段とを備え、演算手段は、設定された計数率領域毎に設定された標準偏差に基づき計数率を演算し、その設定された計数率領域境界で標準偏差を切り換える際に、その演算周期における切換直前の計数率を引き継いで切換を行う。 (もっと読む)


【課題】放射線検出用画素による蓄積電荷に起因する撮影画像の品質の低下を抑制することのできる放射線画像撮影装置、放射線画像撮影システム、プログラムおよび放射線画像撮影方法を得る。
【解決手段】放射線検出用画素32Aにバイアス電圧が印加された第1状態で当該放射線検出用画素32Aにより検出された放射線の照射量が予め定められた第1閾値以上となった時点で放射線検出用画素32Aに印加されたバイアス電圧が低下される第2状態に遷移するように制御する。 (もっと読む)


【課題】光電変換素子のバイアス電流量を検出する抵抗器の両端子間に電圧降下が発生して前記光電変換素子の感度が低下した場合においても、適切な出力電気信号を得ることができる放射線画像検出装置及び画質低下が抑制された放射線画像撮影システムを提供する。
【解決手段】光電変換素子48の電気信号の読み出しゲインが設定される第1増幅回路71に直列に第2増幅回路72を設け、第2増幅回路72のゲインを、前記電圧降下による光電変換素子48の感度の低下に応じて増加させることにより適切な出力電気信号を得る。 (もっと読む)


【課題】放射線レベルが異なる広範な様々な形式の検査に用いられるアモルファス・シリコン・ディジタルX線検出器を提供する。
【解決手段】ディジタルX線検出器(22)の各々のピクセル領域(54)は、第一の面積(116)を有する第一のフォトダイオード(86)と、第一の面積(116)に等しい又はより小さい第二の面積(122)を有する第二のフォトダイオード(88)とを含んでいる。ディジタルX線検出器(22)はまた、各々のピクセル領域(54)の第一(86)及び第二(88)のフォトダイオードの上に位置する遮蔽構造(94)を含んでおり、遮蔽構造(94)は、第一のフォトダイオード(86)に第一の感度を与え、第二のフォトダイオード(88)に第一の感度よりも低い第二の感度を与えるように、第二のフォトダイオード(88)よりも比例的に少ない第一のフォトダイオード(86)を遮蔽している。 (もっと読む)


【課題】放射線撮像装置の画素回路内の不定電位を固定化し、ノイズ成分を低減する。
【解決手段】放射線撮像装置は、電源と非動作時に電源との接続を遮断するスイッチ部910と、1画素分の信号を蓄積する蓄積部920と、信号からノイズを除去するための除去部930と、ノイズが除去された信号を保持し、出力する保持部940と、保持部で保持されている信号と、隣り合うa個(aは2以上の自然数)の他の画素回路の保持部で保持されている信号との加算処理を行う加算部950と、を有する画素回路202を配置して構成された撮像ユニットと、撮像ユニットを構成するそれぞれの画素回路202の動作を制御する撮像制御部201と、を備え、撮像前に、スイッチ部910を介して接続される電源の電圧で、蓄積部920、除去部930、保持部940、および加算部950の不定電位を固定する。 (もっと読む)


【課題】テスト時間を大幅に削減し、テストパルスの周波数を自動で逐次最適化してテスト項目を臨機応変に変更可能な放射線監視装置を得る。
【解決手段】検出パルスを入力して計数率nを測定する測定部12を、検出パルスを入力して増幅するパルス増幅器11、増幅した検出パルスの電圧が所定範囲にある場合にデジタルパルスを出力する波高弁別器122、上記デジタルパルスを加算入力部123aに入力すると共に、フィードバックパルスを減算入力部123bに入力し、両者の差を積算した積算値Mを出力するカウンタ123、積算値Mを入力して上記フィードバックパルスを生成する周波数合成回路124、カウンタ123が計数する時の重み付けをする積算制御回路125、積算値Mを入力して計数率nを求める演算器126、パルス増幅器121の入力を切換える切換スイッチ128、カウンタ123の減算入力を切換える切換スイッチ129で構成した。 (もっと読む)


【課題】既存のASICを用いて安価に広いエネルギー範囲のX線検出に対応できる減衰回路を提供する。
【解決手段】X線分析による検出信号を減衰する減衰回路30であって、入射X線を検出する多チャンネル型の半導体検出器10と入射X線の検出信号を増幅する増幅用集積回路(ASIC)50との間に接続され、各チャンネルに1個ずつ設けられた複数の第1コンデンサを備える。これにより、既存のASIC50を用いて安価に広いエネルギー範囲のX線検出に対応できる。その結果、異なる用途に対して、ASIC50を設計し直して莫大な費用を浪費することがなくなる。また、使い慣れたASIC50を使うことによって、開発期間を短縮できる。また、半導体検出器10および第1コンデンサを接続する接続点とグランドとの間に接続された第2コンデンサを備えることが好ましい。 (もっと読む)


【課題】広い測定レンジで、かつ、高線量率の測定に好適な、小型コンパクトな放射線検出器を提供する。
【解決手段】放射線計測装置は、第1及び第2のシリコン半導体放射線検出素子と第1及び第2の前置増幅器をそれぞれ有する第1及び第2の放射線検出器を備え、第1及び第2の放射線検出器には、それぞれ、測定対象から入射されるガンマ線エネルギ及びガンマ線フラックスを減衰させるための厚さが異なる第1及び第2のガンマ線調整板が設けられている。第1及び第2の放射線検出器は、測定対象以外から入射されるガンマ線を遮断する遮蔽部材によって覆われている。 (もっと読む)


【課題】静止画撮影モードや動画撮影モード等の複数の撮影条件に対応して、放射線照射時及び放射線非照射時の出力を撮像系のダイナミックレンジの範囲内に収め、正確でS/N比の高い放射線撮影画像を得ることを可能とする。
【解決手段】演算部7により、X線照射時における電気信号の最大値又は最小値と、X線非照射時における電気信号の最小値又は最大値とが、共に読出回路部3及びA/D変換部4のダイナミックレンジの範囲内に収まるように、電圧制御手段6から読出回路部3への印加電圧を調節する。 (もっと読む)


【課題】源流点の排ガスの放射能濃度変化に対して指示が正確に追従し、試料ガスの圧力低下を抑制して測定対象の希ガスを高精度で測定できる放射性ガスモニタを提供する。
【解決手段】高い測定レンジを分担する検出部5の試料容器52は、試料ガスを導入する入口ノズル56と試料ガスを排出する排気ノズル57を有する容器底板54と、容器底板54に取り付けられて取り外し可能な容器キャップ55を具備する。容器キャップ55は、試料ガスから放出されるβ線を所望の割合に削減して放射線検出器51に入射させる取り外し可能なコリメータ58を具備する。コリメータ58は、試料ガスの流れを大きく妨げないように容器底板54に向かって突起状に配置されると共に、先端に入射窓59を有し、入射窓59と容器底板54との隙間で放射線検出器51から見た実効容積が、その実効容積とコリメータ58の内径で放射線検出器51の検出効率が決まるように構成する。 (もっと読む)


イメージング検出器は、シンチレータアレイ(202)と、シンチレータアレイ(202)へ光学的に結合される光センサアレイ(204)と、電流−周波数(I/F)変換器(314)と、ロジック(312)とを有する。I/F変換器(314)は、積分器(302)及び比較器(310)を有し、現在の積分期間の間、光センサアレイ(204)によって出力された電荷を該電荷を示す周波数を有するデジタル信号に変換する。ロジック(312)は、現在の積分期間に係るデジタル信号に基づき次の積分期間のための積分器(302)のゲインを設定する。一例において、ゲインは、現在の積分期間に係るゲインと比較して、次の積分期間のために増大する。このことは、放射線がないときに測定可能信号を生成するためにI/F変換器(314)の入力で投ぜられるバイアス電流の量を低減することを可能にし、ショットノイズ、フリッカノイズ、及び/又は他のノイズ等のノイズを低減する。
(もっと読む)


【課題】実際の線源を利用することなく放射線測定の訓練を行えるようにする。
【解決手段】擬似線源12,14は放射線に代わる電波を生成する。放射線測定装置10は訓練モードにおいて、擬似線源12,14からの電波を受信し、その受信強度に基づいて擬似測定値を演算する。その擬似測定値が実測値に代えて表示器36に表示される。線源を利用することなく放射線測定の訓練を行える。電波には、線種、エネルギー等の情報が含まれていてもよい。 (もっと読む)


X線検出器及びその画素回路が記載される。これは、各ピクセルにおける感度設定の自動選択を用いて、大きなダイナミックレンジをカバーすることを可能にする。こうして、すべての露出レベルで改良された信号対ノイズ比が提供される。X線検出器は、大きなダイナミックレンジをカバーすることを必要とされる。最も大きな露出は、必要なピクセル静電容量を決定する。しかしながら、大きなピクセル静電容量は、例えば画像の暗い部分において、小さな露出を持つ悪い信号対ノイズ比を与える。本発明の開示は、ピクセルにおける自動感度選択を提供するための複数の手法を表す。これは、低信号が小さなコンデンサに格納されるか、又は対応する良好な信号対ノイズ比を持つ高感度を用いて読み出されることを確実にする。一方、何も情報が失われないよう、より大きな信号は、より大きなコンデンサに格納されるか、又は低感度を用いて読み出される。
(もっと読む)


放射線感知性の検出器アレー112は、光子を検出し、当該光子を示す信号を生成する光センサ204を含んでいる。放射線感知性の検出器アレー112は信号解析器214も含んでいる。当該信号解析器214は、光センサ204の出力中で前記信号を識別することが可能な場合、エネルギ・ビンニングを行うと共に当該信号を計数し、信号解析器214は、光センサ204の出力中で前記信号を識別することが不可能な場合、積分期間にわたって光センサ204の出力を積分する。
(もっと読む)


【課題】テスト指示値からバックグラウバックグラウンド指示値への復帰時間を短縮する。
【解決手段】放射線を検出しその出力として信号パルスを出力する検出器11、テストパルスを出力するテストパルス発生部2、及びノーマルモードとテストモードとに切り替え制御される切換スイッチ121を介して当該切換スイッチがノーマルモードのときに上記検出
器から上記信号パルスを入力し上記切換スイッチがテストモードのときに上記テストパルス発生部からテストパルスを入力する測定部12を備え、上記ノーマルモードのときの上記測定部の動作により放射線を監視し上記テストモードのときの上記測定部の動作により動作テストを行う放射線監視装置であって、上記測定部は、上記テストモードから上記ノーマルモードに切り換わると所定期間の間は上記ノーマルモードのときより速い時定数で指示値を出力する。 (もっと読む)


【課題】素子のリーク電流に伴う誤差を補正する改良技術を提供する。
【解決手段】電離箱10は、放射線を検出して電離電流を発生する。エレクトロメータ回路20は、電離電流を測定するためのオペアンプOP1を備えている。オペアンプOP1の出力端子T1には、電離電流とリーク電流が抵抗R1を流れることによって発生する電位が表れる。リーク電流測定回路30は、オペアンプOP1の特性と同等な特性のオペアンプOP2を備えている。オペアンプOP2の出力端子T2には、リーク電流が抵抗R1を流れることによって発生する電位が表れる。リーク電流補償回路40は、減算回路として機能し、オペアンプOP3の出力端子TOには、出力端子T1と出力端子T2の電位差が表れる。こうして、エレクトロメータ回路20の出力に含まれるリーク電流の成分が除去される。 (もっと読む)


本発明は、放射線検出器に関する。本発明は、とりわけ、X線検出器に関する。X線検出器は、計数回路を含む。計数回路は、検出器の(部分)画素が生成する電気パルスを数える。計数回路では、高速計数段が数えた結果を、周期的に、低速計数段に送る。高速計数段は、例えば、高速計数器を含んでもよい。高速計数器は、小さなビット深度を持つ。高速計数器は、分周器として動作する。高速計数器は、低速計数器の前にある。低速計数器は、大きなビット深度を持つ。低速計数器は、低速計数段にある。計数回路は、任意選択で、多重化器を経由して、複数の(部分)画素の信号を受けることができる。更に、放射線装置の画素は、任意選択で、エネルギー分解されたパルスを送出してもよい。
(もっと読む)


1 - 20 / 30