説明

Fターム[2H079FA01]の内容

光の変調 (22,262) | 駆動法 (896) | フィードバック (334)

Fターム[2H079FA01]に分類される特許

1 - 20 / 334



【課題】分散ペナルティを小さく抑えること。
【解決手段】本発明は、2つの出力光導波路38a、38bに第2MMI34を介して接続する2つの光導波路32a、32bを有するマッハツェンダ型光変調器10と、2つの光導波路を伝搬する光を変調させる変調信号を2つの光導波路夫々に設けられた変調用電極42に差動信号として出力する駆動回路14と、2つの光導波路夫々に設けられた位相調整用電極40に出力する第1の位相制御信号を制御して、2つの光導波路を伝搬する光の位相を調整する位相調整回路12と、2つの光導波路夫々に設けられた位相シフト用電極54に出力する第2の位相制御信号を切替えて、2つの光導波路を伝搬する光の位相を変化させる位相シフト制御回路50と、差動信号の極性を反転させる信号極性反転回路52と、を備える光変調装置である。 (もっと読む)


【課題】短パルス光発生装置を構成する光変調器の出力光からON/OFF消光比を直接測定することなく、該光変調器に印加されるバイアス電圧を最適に制御可能な短パルス光発生装置を提供する。
【解決手段】繰り返し周波数fで短パルス光Aを発生するパルス発信器1と、入力信号に基づき繰り返し周波数fの短パルス光の内、特定の短パルス光を除去し、繰り返し周波数をf/n(nは2以上の自然数)とする光変調器2と、光変調器2からの出力光の一部を分岐する分岐部3と、光変調器2に印加するバイアス電圧を制御するバイアス制御部5と、分岐部3で分岐された光B2のスペクトルを解析するスペクトル解析部4とを有する短パルス光発生装置であって、バイアス制御部5は、スペクトル解析部4に入射された光の所望のスペクトル周波数範囲における光強度の最大値と最小値との差を最小化するように、バイアス電圧を制御する。 (もっと読む)


【課題】 アナログ的な光波形を動的に変化させる場合にも、MZ型光変調器のバイアス電圧を最適点に制御することができるようにすることを目的としている。
【解決手段】 ディザ信号が重畳されたバイアス電圧および入力したデータ信号に基づいてMZ(Mach−Zehnder)型光変調器で光を変調し、この変調した光信号を送出する光送信器であって、前記ディザ信号および前記光信号の光強度に基づいて誤差信号を生成する誤差信号生成部と、前記データ信号の平均変調度に応じて前記誤差信号の極性を選択する誤差信号極性選択部と、前記誤差信号極性選択部で選択された極性をもつ前記誤差信号に基づいて前記バイアス電圧の制御を行うバイアス制御部と、を備えた。 (もっと読む)


【課題】光源に要求される線幅を緩和させ、常時、位相測定および補償を可能とする。
【解決手段】第1,2の周波数の2つの光波を発生する2光波発生手段1と、発生された光波を分配する光分配手段2と、光分配手段2から光サーキュレータ3および伝送光ファイバ14を介して出力された分配光を反射する部分反射鏡15と、基準信号を基に部分反射鏡15から伝送光ファイバ14および光サーキュレータ3を介した反射光の周波数をシフトさせる光周波数シフタ5と、分配光とシフト光とを合波する光合波手段6と、合波光から第1,2の周波数近傍の光波を抽出する光帯域フィルタ7a,7bと、抽出された各光波を電気信号に変換する光電変換手段8a,8bと、電気信号間の位相差から誤差信号を生成する位相比較手段9と、誤差信号を基に伝送光ファイバ14に出力される光波の遅延時間を制御する光可変遅延手段12とを備えた。 (もっと読む)


【課題】電界吸収型光変調器に供給する駆動信号の直流電圧可変に伴う駆動信号波形の劣化を防止する。
【解決手段】電圧連動可変手段30は、ドライバ回路25の終段トランジスタTRの出力用の特定端子の直流電圧と他の端子の直流電圧とを、同一方向に連動可変させて、終段トランジスタTRの動作点の変動を抑制しつつ、電界吸収型光変調器1に与える駆動信号Dの直流電圧を変化させて、駆動信号Dの直流電圧可変に伴う駆動信号波形の劣化を防止し、波形劣化の無い変調光を出力させる。 (もっと読む)


【課題】任意の駆動信号の振幅において適切なバイアス制御を行うことが可能な技術を提供することを目的とする。
【解決手段】光変調器2の駆動制御装置100は、光変調器2からの光信号に応じた電気信号の波形のピークを示すピーク検波出力信号を取得するピーク検波部5と、発振信号を生成する発振回路部6と、ピーク検波出力信号と発振信号とに基づいて同期検波を行う同期検波部7とを備える。駆動制御装置100は、同期検波の結果に基づいて、光変調器2の変調に係るバイアスを制御するための制御信号を生成するバイアス設定部8と、制御信号に発振信号を加算する加算器10bと、発振信号を含む所定信号に基づいてデータ信号を増幅することにより、駆動信号を生成する増幅器11とを備える。 (もっと読む)


【課題】フォーカスラグを低減する。
【解決手段】透過率特定部28は、操作部17が半押し操作されると、そのタイミングの液晶NDフィルタ44の透過率を、液晶NDフィルタ44に印加電圧を変化させたタイミングからの経過時間と、サーミスタ45により測定される温度とで、温度別透過率対時間テーブル26を参照して特定する。NDフィルタ制御部24は、半押し操作されたタイミングにおける透過率に対応する電圧を、透過率対電圧テーブル25より読み出して、液晶NDフィルタ44に印加することで、半押し操作されたタイミングの透過率が固定されるようにする。ゲイン制御部22およびシャッタ制御部23は、半押しされたタイミングの透過率と、目標とする透過率との差分から、液晶NDフィルタ44で調整できない明るさをゲインおよびシャッタスピードを変化させて調整する。本技術は、撮像装置に適用することができる。 (もっと読む)


【課題】
光変調器の出力光とモニタ光との位相差が補償可能であり、かつ簡単な構成で小型化可能な構成を有する光変調器を提供すること。
【解決手段】
基板1と、該基板1に形成されたマッハツェンダー型光導波路を含む光導波路2と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、該マッハツェンダー型光導波路を構成する出力導波路20を跨ぐように受光素子3を配置し、該受光素子は、該マッハツェンダー型光導波路の合波部から放出される2つの放射光(放射光用導波路21,22を伝搬する放射光)を共に受光するよう構成されていることを特徴とする。 (もっと読む)


【課題】外部要因の変動によらず、光出力波形を維持することである。
【解決手段】光送信機は、EA変調器と、フォトカレント検出回路と、変調器駆動回路と、CPUとを有する。EA変調器は、入力された信号を光信号に変換して出力する。フォトカレント検出回路は、EA変調器における光吸収電流(フォトカレント)を検出する。変調器駆動回路は、EA変調器を制御する。CPUは、フォトカレント検出回路により検出された上記光吸収電流に基づき、変調器駆動回路に印加する電圧を算出する。 (もっと読む)


【課題】光信号の歪の発生を低減しつつ、機器の小型化及び低コスト化を実現すること。
【解決手段】この光送信器1は、発光素子3からの出力光を、データ変調信号を基にBPSK変調させるMZ型光変調器5と、MZ型光変調器5に対してデータ変調信号を印加する増幅器7と、MZ型光変調器5に印加されるデータ変調信号に直流バイアス電圧を重畳するオートバイアスコントロール回路11と、増幅器7によって印加される変調信号のクロスポイント変動を検出し、クロスポイント変動を基に直流バイアス電圧を制御するクロスポイント変動検出回路13とを備える。 (もっと読む)


【課題】QPSK光送信装置を用いてBPSK光を安定して生成し、単一装置で複数の伝送方式に対応することで、装置生産コスト削減を図る。
【解決手段】第1の位相変調部12aと第2の位相変調部12bに入力されるデータ信号の出力形態を、2並列か直列かに切り替えられる機能を持つフレーマ16を備える。フレーマ16は複数のデータフォーマットから任意のフォーマットのデータ信号を選択して出力する機能を有する。また、受光素子14と第1の制御回路15aの間に反転回路19を設ける。第1の制御回路15aに入力される電気信号は当該回路15aの前に反転回路19に入力されることになる。これにより、第1の位相変調部12aに入力されるデータ信号を遮断し、反転回路19を反転設定として第1の位相変調部12aの透過率を最小点に固定させ、残る一方のデータ信号によって生成された光出力信号の振幅調整を行う。 (もっと読む)


【課題】制御を開始したときに、初めに設定したバイアス点が最適なバイアス点から180°位相がずれていても、速やかにバイアス点を最適なバイアス点となるように制御することができる光変調器を提供する。
【解決手段】光送信機10のマッハツェンダ型光変調器12は、低周波信号Psが重畳された入力信号Msと印加されたバイアス電圧Vbsに応じて光CWを変調し、光信号Osとして出力する。MCU40は、光信号Osの低周波成分と低周波信号Psの位相差に基づき、バイアス電圧Vbtを設定する。MCU40は、制御を開始したときに、光信号Osの低周波成分と低周波信号Psの位相差がゼロであった場合、バイアス電圧Vbtにオフセット電圧Vtを重畳して、バイアス電圧をオフセットする。 (もっと読む)


【課題】3値の入力信号を光変調器に印加して光を変調する変調方式において、制御を開始したときに、初めに設定したバイアス点が最適なバイアス点から180°位相がずれていても、速やかにバイアス点を最適なバイアス点となるように制御する。
【解決手段】光送信機は、MCU30を用いてMZ型光変調器に印加するバイアス電圧Vを制御する。MCU30は、低周波信号sをバイアス電圧Vに重畳する。このとき制御入力値fは制御誤差eとなる。制御誤差eがゼロであった場合、MCU30は、低周波信号sを入力信号に重畳する。このとき制御入力値fは判別量dとなる。MCU30は、判別量dの正負符号からバイアス電圧Vが最適なバイアス点にあるかを判定する。 (もっと読む)


【課題】本発明は、各構成部品を等長化して組み立てる必要がなく、部品の温度特性及び経時変化が生じてもスキュー調整が容易である位相変調装置を提供することを目的とする。
【解決手段】位相変調装置301は、連続光を出力する光源10と、2つの位相変調器12及び強度変調器15を有し、光源10からの連続光を位相変調器12がそれぞれに入力されるデータ信号(DATA1、2)で位相変調して2つの位相変調光信号を生成し、位相器13が位相変調光信号の一方の位相をπ/2ずらして位相変調光信号の他方と合波した合波信号を強度変調器15が入力されたクロック信号CLKで強度変調しRZ化して出力するRZ位相変調回路101と、RZ位相変調回路101の出力が最大となるように、RZ位相変調回路101の位相変調器12が生成する位相変調光信号の位相をそれぞれ調整する位相制御回路111と、を備える。 (もっと読む)


【課題】変調の高効率化と波長帯域の広範囲化とを両立しうる光半導体素子を提供する。
【解決手段】入力光が入力される導波路と、導波路と光学的に結合するように配されたリング変調器と、リング変調器内の光パワーをモニタする光検出器と、リング変調器及び光検出器に接続され、光検出器により検出された信号に基づいて変調信号をリング変調器に印加する制御部とをそれぞれ有する複数の変調部とを有し、複数の変調部は、リング変調器の直径が互いに異なっている。 (もっと読む)


【課題】光を変調し得る波長帯域が狭いリング共振器の共振波長を入力光の波長に容易に一致させ、高効率で入力光を変調し得る光半導体素子を提供する。
【解決手段】入力光が入力される第1の導波路と、第1の導波路と光学的に結合するように配されたリング変調器と、第1の導波路と光学的に結合するように配され、リング変調器の周回光路長より小さな周回光路長を有する第1のリング共振器と、第1の導波路と光学的に結合するように配され、リング変調器の周回光路長より大きな周回光路長を有する第2のリング共振器と、リング変調器と第1のリング共振器と第2のリング共振器とに近接して配されたヒータと、第1のリング共振器中の光パワーをモニタする第1の光検出器と、第2のリング共振器中の光パワーをモニタする第2の光検出器と、第1の光検出器及び第2の光検出器により検出された信号に基づいて、リング変調器の共振波長が入力光の波長と一致するようにヒータを制御する制御部とを有する。 (もっと読む)


【課題】光変調器に入力される信号のバイアス電圧を高速かつ効率的に制御すること。
【解決手段】光変調装置は、生成回路と、重畳器と、光変調器と、算出回路と、制御器とを備える。生成回路は、所定の周波数を有する電気信号よりも周波数が低く、かつ、振幅の平均値が振幅の中心値と一致しない低周波信号を生成する。重畳器は、生成回路によって生成された低周波信号を電気信号に重畳する。光変調器は、重畳器によって低周波信号が重畳されて得られた電気信号である入力信号を用いて、光源からの光を変調し信号光を出力する。算出回路は、光変調器によって出力される信号光の周波数成分のうち低周波信号と同一の周波数を有する低周波成分の振幅の平均値と、振幅の中心値とを算出する。制御器は、算出回路により算出された低周波成分の振幅の平均値が振幅の中心値に近づくように、光変調器へ入力される入力信号のバイアス電圧を制御する。 (もっと読む)


【課題】従来の光送信装置で問題となっていた位相変調光の平均値変動による直交制御最適点の誤検出を防ぐことにより、安定した位相シフト量(動作点)の調整を行うことができる光送信装置を提供する。
【解決手段】分岐部39とLPF32と加算器(減算器)33とを有する構成の信号補正手段40を、光送信装置の制御ループ22に設ける。分岐部39ではモニタPD31で得られた電気信号b3を、第1の分岐信号b3−1と、第2の分岐信号b3−2とに分岐する。LPF32では第2の分岐信号b3−2の低周波成分を通過させて、第2の分岐信号b3−2から高周波成分を除去することにより、第2の分岐信号b3−2の平均値b4を得る。加算器33では、第1の分岐信号b3−1から、LPF32で得られた第2の分岐信号b3−2の平均値b4を差し引くことにより、補正モニタ信号b5を得る。 (もっと読む)


【課題】本発明は、光通信システム用の放射電力等化器に関する。
【解決手段】本発明は、光通信システム用の放射電力等化器を提供し、該等化器は、(a)1つ又はそれ以上の放射成分に分割する光デマルチプレクサ(300)、(b)前記1つ又はそれ以上の放射成分を選択的に伝送又は減衰する液晶セル・アレー(310)、(c)光マルチプレクサ(330)、(d)1つ又はそれ以上の対応する成分放射電力を示す信号を生成するPINダイオード検出器アレー(120)と結合した発信器エルビウムドープ・ファイバ増幅器(70)、及び、(e)制御モジュール(130)を含むことを特徴とする。 (もっと読む)


1 - 20 / 334