説明

Fターム[3C081CA02]の内容

マイクロマシン (28,028) | プロセス (6,263) | 多段階処理による製造 (820) | 基板上での製造 (810)

Fターム[3C081CA02]の下位に属するFターム

Fターム[3C081CA02]に分類される特許

101 - 120 / 210


【課題】 小型化可能で、特性のばらつきが少ない高精度なMEMSを製造する。
【解決手段】 単結晶シリコンからなる基板の第一の主面の環状領域に複数の凹部を形成し、前記基板を非酸化性雰囲気中で熱処理することによって、前記複数の凹部から前記基板内に環状の空洞を形成するとともに、前記空洞によって隔てられた薄肉部と厚肉部と、前記空洞に囲まれ前記薄肉部と前記厚肉部とを連結している支柱部とを形成し、前記第一の主面の裏面に相当する前記基板の第二の主面から、前記空洞に到達する環状溝を形成することによって、前記環状溝の外側に位置し前記薄肉部と結合する枠部と前記環状溝の内側に位置し前記支柱部に結合する錘部とに前記厚肉部を分割する、ことを含む。 (もっと読む)


【課題】エッチング中の基板表面のVpp(RFバイアス電圧のピーク間電圧差)又はVdc(自己バイアス電圧)を正確に測定し、高精度加工を可能にするとともに、基板間の加工再現性を向上させる。
【解決手段】被エッチング材料の表面に保護膜により所定のマスクパターンが形成された基板(28)をチャンバ(12)内に配置し、チャンバ(12)内にプロセスガスを供給しながら、当該チャンバ内にプラズマを発生させ、マスクパターンの開口部分に対応する被エッチング材料をエッチングするエッチング工程と、エッチング工程におけるエッチング処理中に、基板(28)のマスクパターンが形成されている面の被エッチング材料の表面に接触させた導電性部材(36)を介して当該基板表面の電圧を測定する電圧測定工程と、電圧測定工程の測定結果に基づいてエッチング条件を制御する制御工程と、を有する。 (もっと読む)


【課題】相対的に大きな力学量が加わっても、破損することなく被検知対象である傾斜を検知することができる力学量検出センサ及びその製造方法を提供すること。
【解決手段】本発明の力学量検出センサである傾斜センサは、基材上に立設された導電性の固定接点柱11bと、前記基材上であって固定接点柱11bの外側に設けられた枠体11aと、前記枠体11aに対して梁11dを介して設けられ、前記枠体11aと前記固定接点柱11bとの間で揺動可能である導電性の可動部材11cと、を具備し、前記枠体11a及び前記可動部材11cは、前記基材側の第1層と前記第1層よりも上層の第2層とを含み、前記第2層に前記梁11dが設けられており、前記第1層が前記梁11dの下方に部分的に延在部11eを有することを特徴とする。 (もっと読む)


【課題】駆動時に並進変位動作する可動部について回転変位を抑制するのに適したマイクロ可動素子、および、そのようなマイクロ可動素子を含んでなる光干渉計を提供する。
【解決手段】本発明のマイクロ可動素子X1は、可動部10、固定部20、および連結部31〜34を備える。可動部10は、一対の電極部12,13を有する。固定部20は、電極部12,13の離隔方向に交差する方向における可動部10の並進変位の駆動力を電極部12,13と協働して発生させるための一対の電極部22,23を有する。複数の連結部31〜34のそれぞれは、可動部10に接続し且つ固定部20に接続する。連結部31および可動部10が接続する接続部P1と、連結部33および可動部10が接続する接続部P3との離隔方向における、接続部P1,P3の間以内に、電極部12,13は位置する。 (もっと読む)


【課題】壁電極を用いるミラーアレイを備えるMEMS素子が、より容易に製造できるようにする。
【解決手段】第1電極パターン113に溝部113aを形成する。同様に、第2電極パターン(不図示)にも溝部を形成する。例えば、公知の技術となっているSiの深堀加工技術であるDRlEエッチング技術で、SF6をエッチングガスとして用いることで、上述したエッチングが行える。ここで、溝部113を形成するエッチングでは、形成した溝部113aの底部に、第1電極パターン113(シリコン層103)が残るようにエッチング時間を制御する。例えば、実験などにより、予めエッチングレートを測定しておき、このエッチングレートより、溝部113aの底部に、第1電極パターン113(シリコン層103)が残る処理時間を算出し、この算出結果を上記エッチングに適用させればよい。 (もっと読む)


【課題】SOI基板を用いずに製造することができ、かつ、分離層を必要としない、MEMSセンサを提供する。
【解決手段】シリコン基板2に凹部4が形成されており、その凹部4内に固定電極5および可動電極6が配置されている。固定電極5および可動電極6は、シリコン基板2の材料であるシリコン材料ではなく、タングステンからなり、シリコン基板2のパターニングにより形成されるものではない。そのため、シリコン基板2が高導電性を有している必要がない。したがって、高導電性のシリコン層を備えるSOI基板を用いなくても、低導電性のシリコン基板2を用いて、加速度センサ1を製造することができる。シリコン基板2が高導電性を有していないので、固定電極5および可動電極6が形成される領域をその周囲から絶縁分離する必要がない。そのため、その絶縁分離のための分離層を必要としない。 (もっと読む)


【課題】MEMSセンサの可撓部の厚さを均一化する。
【解決手段】支持部と、錘部と、前記支持部と前記錘部とを連結し前記錘部の運動にともなって変形する可撓部と、が形成されている積層構造体を備え、前記積層構造体は、前記可撓部を構成し下面が平坦である単結晶シリコン層10と、前記単結晶シリコン層上に積層され前記単結晶シリコン層と異質のCMPストッパ層30と、を含み、前記ストッパ層の下面と前記単結晶シリコン層の下面とは同一平面に含まれるか、前記ストッパ層の下面は前記単結晶シリコン層の下面から突出している、MEMSセンサ。 (もっと読む)


【課題】補助基板が取り付けられた本体基板が、所定位置に正確に位置決めされて基板の製造が行われる基板の製造方法を提供すること。
【解決手段】本発明の基板の製造方法は、まず、本体基板1の表面側にパターンを形成すると共に、アライメントマーク7を形成する。そして、本体基板1の表面側に補助基板9を接着する。そして、形成されたアライメントマーク7とマスク15とが位置決めされた状態で、マスク15を介して本体基板1の裏面側に露光させ、本体基板1の裏面側にパターンを形成する。そして、本体基板1の裏面側にパターンが形成されると、本体基板1から補助基板9を剥離する。 (もっと読む)


少なくとも1つの露出面を有する固体状材料を提供する工程と;露出面に補助層を適用して複合物構造(応力パターンを有する補助層)を形成する工程と;その中の深さで面に沿って固体状材料の破壊を促進する条件に複合物構造をさらす工程と;補助層および、それと共に、破壊深さで終了する固体状材料の層(応力パターンに対応する表面トポロジーを有する固体状材料の除去された層の露出面)を除去する工程とを含む印刷方法が開示される。
(もっと読む)


【課題】圧電素子をMEMSに配置できる領域を拡大する。
【解決手段】複数のコンタクトホールが形成された絶縁層と前記絶縁層に接する半導体層とを含み可撓性を有する可撓部と、前記半導体層に形成された複数の不純物拡散領域からなり互いに分離している複数の導線と、前記絶縁層の表面に積層され前記コンタクトホールを通じて前記導線に接している下部電極層と前記下部電極層の表面に積層された圧電層と前記圧電層の表面に積層された上部電極層とを含み前記可撓部上に位置する圧電素子と、前記可撓部に形成された前記コンタクトホールを通じて前記上部電極層と前記導線とを接続する導電層からなる接続手段と、を備えるMEMS。 (もっと読む)


【解決手段】 高スループット且つ低コストのサブミクロン3D構造製品を製造するための3D鋳型を製造するプロセスが開示される。このプロセスは、2光子レーザリソグラフィと3D書き込み技術との使用を統合して、3D構造製品の各層の3D鋳型を作り、次に、ナノインプリントを使用して、その層の上記3D鋳型から3D構造の各層のポリマー薄膜シートを形成する。次に、ポリマー薄膜シートの各層は、サブミクロン3D構造製品に製造される。高スループット且つ低コストのサブミクロン3D構造製品の各層の3D鋳型がさらに使用されて、マスタ鋳型が作られ、次に、マスタ鋳型を使用して、3D構造の各層のポリマー薄膜シートが形成されて、サブミクロン3D構造製品が製造される。このプロセスを使用する適用例も開示される。 (もっと読む)


【課題】可撓性変換器ユニットを製造するための新規な方法を提供する。
【解決手段】複数の変換器構造体を含むウェハーから、可撓性変換器ユニットを製造する方法に関するものであり、変換器構造体が、基板1と、金属−酸化物層10と、金属−酸化物層10における少なくとも1個のメッシュ構造体4と、金属−酸化物層10に少なくとも1個の第1コンタクトパッド3を有する電線2とを備える。本製造方法は、メッシュ4を解放するために金属−酸化物層10をエッチングする工程と、メッシュ4上に密封層7を形成する工程と、金属−酸化物層10上に第1可撓性材料層8を形成する工程と、変換器構造体を十分可撓性のあるものにするにはために基板1のかなりの厚さを除去する工程とを含む。また、メッシュを解放する前に、第1可撓性材料層8を形成してもよい。さらに、ウェハーの裏側に第2可撓性層9を形成する工程を有してもよい。 (もっと読む)


【課題】MEMSチップを半導体チップ上にフェースダウン実装した場合においても、半導体チップを経由することなくMEMSチップからパッケージの外部に結線できるようにする。
【解決手段】可動部16が半導体ウェハ31に対向するようにして、MEMSチップを半導体ウェハ31上にフェースダウン実装し、MEMSチップと半導体ウェハ31間の段差が解消されるように、MEMSチップの周囲の半導体ウェハ31上に樹脂層37を形成し、樹脂層37の表面および半導体基板の裏面の研削を行った後、半導体基板をウエットエッチングすることで、半導体基板を絶縁膜12から除去し、パッド電極33aに接続されたランド電極40aおよび電極15bの裏面に接続されたランド電極40bを樹脂層38上に形成する。 (もっと読む)


【課題】 特に、従来に比べて、簡単な構造にて、センサの薄型化と電気的安定性等とともに質量部の質量を効果的に大きくすることが可能なMEMSセンサ及びその製造方法を提供することを目的としている。
【解決手段】 シリコンで形成され高さ方向にて対向配置された第1の基板1及び第2の基板2を有し、前記第1の基板1には、質量部4及び、前記質量部4と接続されるアンカ部5が形成されており、前記アンカ部5は、前記第2の基板2に固定支持されており、前記質量部4と前記第2の基板2の間には空間6が設けられており、前記質量部4の内部には、前記シリコンよりも比重が大きい金属7が埋め込まれている。 (もっと読む)


【課題】 特に、センサ部と第2の基板(支持基板)間の空間構造を改良したMEMSセンサを提供することを目的としている。
【解決手段】 第1の基板1と、第2の基板2と、第1の基板1と第2の基板2の間に介在する絶縁層3と、を有する。前記第1の基板1には、可動電極部及び固定電極部を備えて成るセンサ部4と、前記可動電極部及び前記固定電極部の夫々のアンカ部12,14,17,19が形成されている。前記アンカ部は、第2の基板2の表面に前記絶縁層3を介して固定支持されている。前記センサ部4と対面する前記第2の基板2の表面には凹部5が形成され、前記センサ部4と前記第2の基板2との間に空間が形成されている。 (もっと読む)


【課題】ミラー面の鏡面性と製造歩留りに優れたMEMS走査型ミラーおよびその製造方法を提供する。
【解決手段】 少なくとも1つの段差付き静電櫛歯アクチュエータを有するMEMS走査型ミラーであって、ミラーがその最上面TOPSよりも下に形成されている。また、少なくとも1つの段差付き静電櫛歯アクチュエータを有するMEMS走査型ミラーの製造方法では、絶縁層Iを除去することによりミラー板10Bの表面10BSが露出される。 (もっと読む)


【課題】簡単な製造方法により、横ずれが少ない長寿命のアクチュエータを提供する。
【解決手段】アクチュエータ1は、基体2と、基体2上に固定された微細構造体3とを有する。微細構造体3に、相対向する第1の支持部4と、相対向する第2の支持部5と、V字状の弾性連結部6を介して第1の支持部4に回動自在に連結され基体2から浮く回動板7と、回動板7の端部に設けられた櫛歯状の可動電極群11と、ばね部8を介して第2の支持部5に連結され基体2に固定された固定部9と、固定部9の端部に可動電極群11とかみ合って設けられた櫛歯状の固定電極群10と、基体2・微細構造体3を位置決めする位置決め部14とを備える。固定電極群10を含む固定部9は、第2の支持部5よりも肉薄で、自重とばね部8の変形とにより可動電極群11を含む回動板7よりも下方に変位して基体2に固定され、可動電極群11は固定電極群10よりも上方にずれて位置する。 (もっと読む)


【課題】フレームと可動部とを連結する連結部のバネ定数の変動を抑制するのに適したマイクロ可動素子、および、そのようなマイクロ可動素子を備える光スイッチング装置を提供する。
【解決手段】本発明のマイクロ可動素子X1は、フレーム30、可動部20、及びこれらを連結する連結部42が形成されているマイクロ可動基板S1と、支持基材S2と、マイクロ可動基板S1のフレーム30および支持基材S2の間に介在してフレーム30および支持基材S2に接合する複数のスペーサ90A,90Bと、フレーム30および支持基材S2の間に介在してフレーム30および支持基材S2に接合するスペーサ部91C,92ならびに当該スペーサ部を覆ってフレーム30および支持基材S2に接合する接着剤部93を有する少なくとも一つの強固定部90Cとを備える。強固定部90Cは、二つのスペーサ90A,90Bの間に位置する。 (もっと読む)


【課題】MEMSセンサによる物理量の検出精度を高める。
【解決手段】MEMSセンサの製造方法は、支持部と、支持部に一端が結合し支持部よりも薄い梁部と、梁部の他端に結合し梁部よりも厚い錘部と、梁部に設けられ梁部の歪みを検出する歪み検出手段と、を備えるMEMSセンサの製造方法であって、基板の表面上に膜を積層することによって膜によって構成される歪み検出手段と基板とを含む積層構造体を形成し、第一の通孔が形成されている第一の保護膜と第二の通孔が形成されている第二の保護膜とを基板の裏面上に形成し、第一の通孔から露出している積層構造体を貫通するまでエッチングすることによって、梁部の側面と錘部の側面の梁部から離間している部分とを形成し、第二の通孔から露出している基板をエッチングすることによって梁部の厚さを調整するとともに錘部の側面の基板からなる残部を形成する、ことを含む。 (もっと読む)


【課題】可動構造体において、ヒンジの強度や剛性を確保しつつ、可動板の共振周波数を大幅に低くする。
【解決手段】光走査ミラー1は、シリコン層210−酸化膜220−金属層230の3層基板200から形成されている。シリコン層210には、可動板50が、第1ヒンジ5により固定フレーム4に揺動可能に軸支されるように形成されている。可動板50の下方には、酸化膜220と金属層230により構成された金属構造体9が可動板50と一体に揺動可能に形成されている。金属構造体9が設けられていることにより、金属構造体9を含む可動板50の第1ヒンジ5回りの慣性モーメントが大きくなっている。従って、第1ヒンジ5の強度や剛性を確保しつつ、可動板50の共振周波数を大幅に低くすることができる。 (もっと読む)


101 - 120 / 210