説明

Fターム[3D203DB05]の内容

車両用車体構造 (101,630) | 装備品との関連(2) (2,379) | 駆動用バッテリー (336)

Fターム[3D203DB05]に分類される特許

21 - 40 / 336


【課題】後突時に燃料タンクを保護できる車体後部構造を提供することを目的とする。
【解決手段】車体後部構造100は、車体後部に搭載されるバッテリー114と、バッテリーを支持する枠状のフレーム部材120とを備え、フレーム部材の前方で一対のサイドメンバ124、126間に差し渡された第1クロスメンバ128と、第1クロスメンバの前方で一対のサイドメンバ間に差し渡された第2クロスメンバ130と、車体中央付近で第1および第2クロスメンバ間に差し渡されたブリッジ部材132と、ブリッジ部材と一方のサイドメンバ124との間に搭載される燃料タンク116とをさらに備え、燃料タンクは、前方に張り出し第2クロスメンバに固定された第1取付部140a、140bと、側方に張り出しブリッジ部材に固定された第2取付部140cと、側方に張り出し一方のサイドメンバに固定された第3取付部140dとを有する。 (もっと読む)


【課題】後突に伴う衝撃を吸収しながら、バッテリーを保護できる車体後部構造を提供することを目的とする。
【解決手段】本発明にかかる車体後部構造100は、ハイブリット車または電気自動車の車体後部の床面を形成するリアフロアパネル120と、車体後部に搭載されるバッテリー114とを備えた車体後部構造において、リアフロアパネルの側端に沿って配置され車両前後方向に延びた一対のサイドメンバ122、124と、一対のサイドメンバ間に差し渡されたクロスメンバ126と、バッテリーの全周を囲んでバッテリーを支持する枠状のフレーム部材128とを備え、フレーム部材は、車外側が一対のサイドメンバに固定され、車両前方側がクロスメンバに固定され、クロスメンバよりも前方に位置するリアフロアパネルを含む領域よりも剛性が高いことを特徴とする。 (もっと読む)


【課題】製造コストの増加、車両重量の増加を生じることなく、バッテリーユニットを好適に搭載できる車体構造を提供する。
【解決手段】本発明の代表的な構成は、ハイブリッドカーまたは電気自動車の車体構造100において、車体床面を構成し開口部104が形成されたフロアパネルと、フロアパネルの上下にまたがって開口部104に設置されるバッテリーユニット110と、フロアパネルから上側にてバッテリーユニット110の上部に被さる樹脂製のカバー部材とを備えることを特徴とする。 (もっと読む)


【課題】バッテリーユニットを搭載するハイブリッドカーまたは電気自動車において、トーイングフックを好適に組付可能な車両構造を提供する。
【解決手段】ハイブリッドカーまたは電気自動車の車両構造において、電気モータを動作させるバッテリーユニットを包囲して支持する枠状の部材であって、車両床面にバッテリーユニットを固定するユニット固定フレーム112と、ユニット固定フレーム112の後端付近から垂下される垂下部材140と、垂下部材140に結合されるトーイングフック152とを備える。 (もっと読む)


【課題】従来より軽量化でかつ、低コストで製造可能な車両用電磁波シールドカバーの提供を目的とする。
【解決手段】
本発明に係る車両アンダーカバー10は、車底壁92の一部を構成して、バッテリーモジュール群30全体を下方から覆い、カバー本体17の上面に、アルミ層12を1対の樹脂層13,13で挟んでなるノイズ遮蔽シート11を敷設して備えている。また、ノイズ遮蔽シート11の上面には、アルミ層12と導通接続した接続部20が露出している。 (もっと読む)


【課題】簡潔な構成で剛性向上を図ることが可能な車両後部構造を提供することを目的とする。
【解決手段】車両後部構造100は、電気自動車またはハイブリッドカーにおいて実施される。車両後部構造100は、車両後部の床を構成するリヤフロアパネル106と、リヤフロアパネル106の後端に連結され車両後壁を構成するバックパネル110と、リヤフロアパネル106の所定の領域に形成される開口部114と、開口部114に通されリヤフロアパネル106に取り付けられるバッテリ112と、リヤフロアパネル106の開口部114とバックパネル110との間の領域に車幅方向へ伸びるよう取り付けられる補強メンバ118とを備えることを特徴とする。 (もっと読む)


【課題】車体重量の増加を抑制しつつ、車両衝突時にバッテリを確実に保護することができる車体後部構造を提供する。
【解決手段】バッテリフレーム9は、バッテリケース11の前壁面21の下部とリアフロア7とを連結するフロントフレーム27と、バッテリケース11の後壁面23の上部とリアフロア7とを連結するリアフレーム29と、バッテリケース11の側壁面25に取り付けられたサイドフレーム31とからなる。前記リアフレーム29はフロントフレーム27よりも上方に配置され、前記サイドフレーム31は、フロントフレーム27の側端部27aとリアフレーム29の側端部29aとを連結すると共に、側面視において、車両後方に向かうに従って斜め上方に傾斜して延在するように配設している。 (もっと読む)


【課題】軽量化及び低コスト化を図りつつ、後面衝突時にバッテリを保護することができる車両用バッテリ搭載構造を提供する。
【解決手段】車両用バッテリ搭載構造10では、リアサスペンションビーム22が、車両幅方向に延びるビーム本体部36と、このビーム本体部36の車両幅方向外側に形成され車両側面視した場合の断面積がビーム本体部36よりも大きいビーム端部38とを有している。また、バッテリフレーム24のリア部を構成するバックボード44は、車両幅方向に延びてビーム本体部36の車両前側に配置されたボード本体部46を有している。このボード本体部46における車両幅方向外側の端部46Bには、車体フレームに取り付けられた車体取付部54が設けられており、この車体取付部54は、ビーム本体部36における車両幅方向外側の端部36Aの車両前側に該端部36Aと対向して配置されている。 (もっと読む)


【課題】バッテリ群とインバータ等の電気機器との間に介在する接続制御機器の配置を最適化することで、ハーネス長さを短くする。
【解決手段】車両1のフロアパネル16の下側に複数のバッテリ3からなるバッテリユニットと、バッテリユニットに関する電気的接続を制御する接続制御機器35aを配置し、バッテリユニットはスペースを挟んで配置した2個のバッテリS2R,S2Lを備え、接続制御機器35aはスペースの内側に配置することで、接続制御機器35aの配置を最適化し、ハーネスの長さを短縮可能とする。 (もっと読む)


【課題】バッテリパック間寸法とサイドメンバ間寸法に寸法差がある場合、寸法差を許容してバッテリパックを車体のサイドメンバに支持すること。
【解決手段】バッテリモジュール2を収容したバッテリパックケース1を、車体下面に車両前後方向に延びて設けられた一対のサイドメンバ109,109に対して支持する。この電気自動車のバッテリパック車体支持構造において、バッテリパックケース1のロア側バッテリケース11に、固定面71aを有する第1バッテリ側ブラケット71を設けた。一対のサイドメンバ109,109に、第1バッテリ側ブラケット71の固定面71aと車幅方向に符合する位置に固定面72aを有する第1サイドメンバ側ブラケット72を設けた。そして、第1バッテリ側ブラケット71の固定面71aと第1サイドメンバ側ブラケット72の固定面72aを互いに重ね合わせて固定した。 (もっと読む)


【課題】電池フレームのフロアパネル側からの離脱を防止又は効果的に抑制することができる車両用電池搭載構造を得る。
【解決手段】電池フレーム30はカラー38及びブラケット40を介してフロアパネル14に結合されている。ブラケット40の内側フランジ部48は、フロアパネル14と二枚重ねでスポット溶接されている。これに対して、ブラケット40の外側フランジ部50は、フロアパネル14とフロアアンダリインフォース24の第一フランジ部24Aとの間に挟まれ、三枚重ねでスポット溶接されている。これにより、外側フランジ部50のフロアパネル14への結合強度が内側フランジ部48のフロアパネル14への結合強度に比べて高く設定されている。 (もっと読む)


【課題】本発明は、蓄電池を有する電気自動車またはハイブリッド自動車の車体構造に関し、また、この車室の温度を制御あるいは変更するための方法に関する。
【解決手段】この車体構造1は、内部パネル3と外部パネル4と、これらのパネル間の中間層2とを備え、これらのパネルはそれぞれ熱伝導性で電気絶縁性の材料に基づいている。この中間層は、相変化材料PCM1,PCM2と、電気部品5とを備え、電気部品は、PCMに結合されてバッテリーに接続されるように構成されるとともに、バッテリーが再充電されているときに利用できる電気エネルギーをPCMにより蓄えられる熱エネルギーへと変換することができ、蓄えられた熱エネルギーが、その後、前記少なくとも1つのPCMの結晶化により、車両の使用時に車両の内部へと伝えられ、逆に、PCMは、このPCMが再充電されないときには、その融解により、車両内の過剰な熱を吸収することができる。 (もっと読む)


【課題】既存の後部車体構造を有効に利用して、スペアタイヤ支持構造を大型化、重量化することなく、車室スペースを減少することなく、後部座席の後方にスペアタイヤを垂直姿勢で適切に支持すること。
【解決手段】フロアパネル12に形成された荷物収納用凹部12Cの車体前方側傾斜12F面よりタイヤキャリア部材40を立設し、タイヤキャリア部材40の下部近傍にスペアタイヤ100を載置される上面を備えたタイヤ支持フランジ部42Eを設け、タイヤ支持フランジ部42Eより上方に垂直姿勢のスペアタイヤ100を着脱可能に固定するタイヤ固定部58を設ける。 (もっと読む)


【課題】車室内のこもり音発生を防止しつつ、電源装置の損傷防止と車体重量の軽量化とを両立可能な車両の電源装置支持構造を提供する。
【解決手段】前後方向へ延びる左右1対のリヤサイドフレーム2と、これら1対のリヤサイドフレーム2に亙って設けられたリヤフロアパネル3と、駆動用バッテリ6を載置可能で且つリヤフロアパネル3よりも上方に離隔配置された後側支持部材40と、後側支持部材40よりも上側位置において一端がホイールハウス15の固定座15aに連結され且つ他端が後側支持部材40の連結部43bに連結された左右1対の直線状の連結部材50と、左右1対の連結部材50の一端同士を直線的に連結して車幅方向に延びる第1車幅方向連結部材51とを備えている。 (もっと読む)


【課題】補機バッテリを比較的容易に交換することができ且つ補機バッテリを効果的に保護することができる車体後部構造を提供する。
【解決手段】一対のリアサイドメンバ21aと、リアエンドクロスメンバ23と、リアフロアクロスメンバ22Aと、を有する車体フレーム20を備え、補機バッテリ40が、リアエンドクロスメンバ23とリアフロアクロスメンバ22Aとの間に、一方のリアサイドメンバ21aに近接して配置されていると共に、車体フレーム20が、補機バッテリ40の一方のリアサイドメンバ21aとは反対側に設けられた補強フレーム24を備える構成とする。 (もっと読む)


【課題】サイドメンバの破損を抑制しつつ、側突によるクロスメンバの屈曲を抑制することができる車両用電池搭載構造を提供することを目的とする。
【解決手段】フロントクロスメンバ40のクロス側連結部42は、その高さHがサイドメンバ30のサイド側連結部32の高さHよりも低くされている。また、クロス側連結部42は、その中心軸Cがサイド側連結部32の中心軸Cよりも車両上下方向下側に位置されている。これらのサイド側連結部32とクロス側連結部42は、連結部材50によって連結されている。ここで、連結部材50の低位部50Cで覆われたクロス側連結部42の部位は、曲げ耐力が小さい脆弱部42Wとなっている。この脆弱部42Wの上壁42U及び下壁42Lには第1位置決め孔62がそれぞれ形成されており、これらの第1位置決め孔62に貫通された連結棒60によって、脆弱部42Wの上壁42Uと下壁42Lとが連結されている。 (もっと読む)


【課題】車両下部の空力性能の低下を招くことなしに、車両用電源装置を有利に保護しつつ、低いコストで冷却可能な車両用電源装置の冷却構造を提供する。
【解決手段】前側に空気取入口38が、後側に空気送出し口42が、それぞれ設けられた筒状の導風ダクト34を、車両10の床下の車両用電源装置16よりも前側に位置して、車両前後方向に延び、且つ空気送出し口42を車両用電源装置16の下側に開口させた状態で設置する一方、車両用電源装置16の下面を覆うカバー部材14,24を設け、更に、かかるカバー部材14,24の内側に、車両前後方向に延びる通風路58を、導風ダクト34の空気送出し口42に接続して形成し、走行風を、導風ダクト34を通じて通風路58内に導入して、車両用電源装置16の下面に沿って車両後方側に流通させるように構成した。 (もっと読む)


【課題】 蓄電装置に作用する外力に応じて、蓄電装置を車両本体に固定したままの状態としたり、蓄電装置を車両本体から外したりする。
【解決手段】 車両に搭載され、車両の走行に用いられるエネルギを出力する蓄電装置(1)と、車両本体と締結されるとともに、車両本体から離れた位置で蓄電装置と締結されるブラケット(70)と、を有する。蓄電装置およびブラケットの少なくとも一方は、突起部(72)を有する。突起部は、車両本体から離れた位置から車両本体に向かって突出しており、突起部の先端は、車両本体から離れている。 (もっと読む)


【課題】側面衝突時における車体側部の変形から電池を良好に保護することができると共に、車体の質量及びコストが増加することを抑制できる自動車の電池保護構造を得る。
【解決手段】自動車の電池保護構造10では、側面衝突時に、ロッカ14に対して車両幅方向内方側への衝突荷重が入力されると、クロスメンバー42の内側補強部材48には、外側補強部材46の下壁部46B(傾斜部)を介して車体上方向きの成分を含んだ荷重が伝達される。これにより、内側補強部材48には、アンダーリインフォースメント26側の端部を支点とする車体上方側への回転モーメントが作用し、クロスメンバー42が脆弱部50において車体上方側へ屈曲する。これにより、フロアパネル24が車体上方側へ変形することにより、衝撃エネルギーが分散されるため、車体幅方向内方側への車体側部12の変形量を低減することができる。 (もっと読む)


【課題】バッテリー冷却性能及び車両の運動性能の両方を良好にすることができる自動車のバッテリー冷却構造を得る。
【解決手段】バッテリー冷却構造10では、フロアパネル28に設けられた傾斜壁28Aが、車体後方側へ向かうに従い下降するように傾斜している。これにより、フロアパネル28とバッテリーモジュール12との間に形成された隙間40は、車体前後方向と垂直な断面の断面積が車体後方側へ向かうに従い漸減している。このため、車体前方側から上記隙間40に導入された走行風W1は、車体後方側へ向かうに従い流速が増加する。これにより、車両の運動性能を良好にすることができる。しかも、バッテリーモジュール12の上面に当たる走行風W1の流速が増加されるため、バッテリー冷却性能を良好にすることもできる。 (もっと読む)


21 - 40 / 336