説明

Fターム[3D235AA02]の内容

車両の推進装置の配置又は取付け (28,655) | 車種 (2,591) | 一般車両 (2,081) | 乗用車 (704)

Fターム[3D235AA02]に分類される特許

1 - 20 / 704





【課題】部品点数の増加や構造の複雑化を招くことなく、エプロンフロントエクステンションにかかった荷重を効率的に分散することが可能な車体前部構造を提供する。
【解決手段】 本発明にかかる車体前部構造100は、フェンダエプロンパネル(フェンダエプロン120)は、前面(前面部122)と車体内方側の側面(側面部124)との間の少なくとも下部において、車体前方から車体後方に向かって車体内方に傾斜する傾斜面(傾斜部126)を含み、エンジンマウント104aが取り付けられ、フェンダエプロンパネルの前面に接合されるエプロンフロントエクステンション(エプロンフロント130)には、フェンダエプロンパネルの傾斜面に沿うように車体後方に向かって後端を延長させたフランジ132が形成されていて、傾斜面とフランジとが更に接合されることを特徴とする。 (もっと読む)


【課題】組立時にインバータ等の電力変換モジュールを収納する電力変換室への異物の混入を防止でき、三相端子を収納する三相端子室から電力変換室にボルトが転がり落ちてしまうことを防止するパワーコントロールユニットを提供する。
【解決手段】パワーコントロールユニット(30)は、電力変換室(76)と三相端子室(78)とを有し、電力変換室(76)は第3開口部(76a)を、三相端子室(78)は第4開口部(78a)をそれぞれ有し、三相端子(64a、64b、64c)は、一端が電力変換室(76)内の電力変換モジュール(60)に接続され、電力変換室(76)と三相端子室(78)とを連通する連通孔(162)を通って他端が三相端子室(78)に位置し、ブラケット(160)は、三相端子(64a、64b、64c)が挿入孔(168a、168b、168c)に挿入された状態で三相端子室(78)の内壁に固定される。 (もっと読む)


【課題】蓄電装置と車両本体との固定状態を適切に維持しつつ、大きな荷重が加わった際に車両本体から蓄電装置を離脱できるようにする。
【解決手段】本発明の蓄電装置の車載構造は、蓄電装置に固定されるとともに車両本体に締結される車両締結部を含むブラケットを有する。車両締結部は、第1締結孔および第2締結孔と、蓄電装置に対して車両左右方向に配置され、第1締結孔および第2締結孔が形成される固定部と、衝撃を受けた際の蓄電装置の車両本体に対する移動に伴って第1締結孔および第2締結孔を介した車両本体との締結の解除を許容する締結解除部と、を含む。第2締結孔は、第1締結孔よりも蓄電装置に対して車両左右方向外側に位置するとともに、固定部は、第2締結孔から第1締結孔に向かって車両前後方向の幅が大きくなるように形成されている。 (もっと読む)


【課題】サービスホールカバーの取り外し作業の作業性を向上しつつ、車両用シートのスライド量を低減することができる車両用電池搭載構造を得る。
【解決手段】サービスホール32を塞ぐサービスホールカバー70は、サービスホール32の車両前後方向の後端側を覆う後側カバー72と、サービスホール32の車両前後方向の前端32F側を覆う前側カバー102とを有している。即ち、サービスホールカバー70は、車両前後方向に後側カバー72と前側カバー102とに分割されている。前側カバー102は、ボルト114によってフロアパネル14に設けれたフロアアッパリインフォースメント108に着脱可能に取り付けられる。 (もっと読む)


【課題】プロペラシャフトを必要とする車両に一体型のバッテリパックを配設させることが可能なハイブリッド自動車の車体構造を提供することにある。
【解決手段】本発明に係るハイブリッド自動車10の車体構造は、エンジン11の動力と、バッテリモジュール16から供給される電力によって駆動する駆動モータの動力と、を利用して駆動するものであって、車両上下方向におけるフロアパネル14の下方側面に配置されるとともに、車両前後方向に延設して配置され、少なくとも後輪にエンジン11の動力及び駆動モータの動力を伝達可能なプロペラシャフト13と、フロアパネル14の下方側面にプロペラシャフト13を覆って配置され、少なくともバッテリモジュール16を有する一体型のバッテリパック15と、を備え、バッテリパック15は、プロペラシャフト13を収容する凹部26を備えて構成されている。 (もっと読む)


【課題】インバータのメンテナンスを容易にする。
【解決手段】車両のフレームFの床面よりも上に座席Sを備えるようにし、走行用モータ34に電力を供給するバッテリ51と、前記走行用モータ34用に電力を変換するインバータ50とを、車両のフレームFの床面よりも下に収納するようにした電気自動車の車体構造において、前記バッテリ51を前記座席Sよりも前方に、前記インバータ50を前記座席の直下に配置する電動自動車の車体構造とした。バッテリを座席よりも前方に、インバータを座席の直下に配置したことにより、座席を取り外すことで、インバータが床面を通じて上方に露出させることができ、インバータのメンテナンスを容易にすることができる。 (もっと読む)


【課題】ブラケットの両側に構成されるフロント及びリアインシュレーターをそれぞれ加硫接合方式とインサート方式により装着して組み立てることにより、表面の損傷を防止し、防錆性能を改善できる自動車用ロールロッドを提供する。
【解決手段】ブラケットとブラケットの両側に構成されるフロントインシュレーター及びリアインシュレーターを含み、フロント及びリアインシュレーターのうちの1つは加硫接合方式によりブラケットの開口部に装着され、他の1つはインサート方式によりブラケットの開口部に装着されて構成されることを特徴とする。 (もっと読む)


【課題】車室外の電動機と車室内の制御装置とを接続するケーブル配設構造の最適化を図ることで、高電圧がかかるケーブルに対する車室内の乗員の安全を確保でき、車室内のスペースを有効活用できると共に、車両の組立工程の効率化を図る。
【解決手段】エンジンルーム(2)内に配置された車両駆動用のモータ(3b)を含むパワーユニット(3)と、車室(7)内に配置されたモータ用の制御装置(20)と、モータ(3b)と制御装置(20)を接続してなる高電圧のケーブル(15)とを備えた車両のケーブル配設構造であって、ケーブル(15)は、ダッシュボード部(21)に設けたシフトワイヤ(65)用の貫通穴(13)を通してエンジンルーム(2)から車室(7)内に導入されている。 (もっと読む)


【課題】フロントバンパカバーの前面が車両後方へ変位するような変形がフロントバンパカバーに生じても、車体前部に影響を及ぼさない、又は、車体前部に与える影響を少なくできる車両用充電リッド部構造を得る。
【解決手段】本車両用充電リッド構造では、フロントバンパカバー40の前面42がインレットブラケット26に対して車両前方に離間している。このため、車両前方からの荷重でフロントバンパカバー40に変形が生じても、前面42からインレットブラケット26までの距離だけ前面42が車両後方へ変位するまでは、前面42がインレットブラケット26、更には、ラジエータサポートアッパ16に接しない。しかも、このような変形がフロントバンパカバー40に生じると、フロントバンパカバー40とインレットブラケット26との間のインレットカバー62が変形し、インレットカバー62によってラジエータサポートアッパ16が保護される。 (もっと読む)


【課題】ワイヤハーネスの損傷を抑制すると共にワイヤハーネスを短くしつつ、車体を形成し易い車両のバッテリ搭載構造を提供する。
【解決手段】センターフロアクロスメンバ48を、車両幅方向中央に配置されるセンターメンバ部材ロア50、センターメンバ部材アッパ52と、これらの両側に配置されるセンターメンバ部材ライト54Rと、センターメンバ部材レフト54Lとで構成する。センタフロアパネル16に形成され高圧バッテリ23から演出されるワイヤハーネス40を挿通させる貫通孔42を、バッテリ側方の剛性の高いリアフロアサイドメンバ24近傍に配置することで、衝突時の貫通孔42の変形を抑えることができる。 (もっと読む)


【課題】 高い信頼性を有するモータユニット支持構造を提供する。
【解決手段】
本発明に係るモータユニット支持構造1においては、モータユニット30は、マウント設置部材22A、22Bに設けられたマウント40A、40Bによって吊り下げられる。そして、モータユニット30に水平方向(X−Y平面方向)の荷重が付加された場合には、その荷重の付加方向にパイプ41およびボルト26が偏倚し、パイプ41およびボルト26とマウント筐体43の管状部分43dとの間に位置する円筒状のゴム42が径方向において圧縮される。つまり、モータユニット30に対する荷重の付加方向が、車両左右方向(X方向)および車両前後方向(Y方向)を含む水平方向のいずれの方向であっても、ゴム42を圧縮する方向の力のみが加わり、ゴム42をせん断する方向の力は加わらない。そのため、モータユニット支持構造1では、ゴム42の耐久性が向上し、高い信頼性が実現されている。 (もっと読む)


【課題】電動機を車両に搭載した状態のままでも車両下方側から内外接続導体にアクセス可能として、組付け性やメンテナンス性を向上させると共に、上方からの外力に対して内外接続導体を保護することができる電動機の内外接続導体配置構造を提供する。
【解決手段】電動機2は、ステータ14、ロータ15、ステータ14及びロータ15を収容するケース11、及びバスバー130と導電ケーブル103とを電気的に接続するコネクタ101を備える。電動機2は、マウント部材13a、13bによって車両3のサブフレーム13に支持され、コネクタ101は、マウント部材13a、13bが固定されるケース11のボス部11aよりも下方に配置される。 (もっと読む)


【課題】本発明は、後突時の骨格部材の変形に対するバッテリユニットの追従が抑制された車両用電池搭載構造を得ることを目的とする。
【解決手段】バッテリブラケット40の車体側固定部42Aには、ボルト48が貫通される貫通孔46が形成されている。この貫通孔46の前側縁部46Fには、脆弱部としての溝部52が形成されている。この溝部52によって、車体側固定部42Aにおける貫通孔46の車両前後方向の前側の部位が、車体側固定部42Aの他の部位と比較して脆弱(低剛性)になっている。これにより、貫通孔46の前側縁部46Fに形成された溝部52に対してボルト48から車両前後方向の前側へ所定値以上の荷重が入力されたときに、溝部52を起点として車体側固定部42Aが破断等し、センタクロスメンバ16の下壁部16Aとバッテリブラケット40の車体側固定部42Aとの結合が解除されるようになっている。 (もっと読む)


【課題】車両フロアの振動を低減することができる車両用電池搭載構造を得る。
【解決手段】フロアパネル12のセンタフロア部12Cには、一対の前側バッテリ用ブラケット60と、一対の後側バッテリ用ブラケット70が設けられている。一対の前側バッテリ用ブラケット60はセンタフロア部12Cにおけるフロアアンダリインフォースメント30上に配置されている。一方、一対の後側バッテリ用ブラケット70は、センタフロア部12Cにおけるセンタクロスメンバ20上に設けられている。これらの前側バッテリ用ブラケット60及び後側バッテリ用ブラケット70に、バッテリケース42に設けられた前側ブラケット42及び後側ブラケット46がそれぞれ固定されている。 (もっと読む)


【課題】動力を弾性エネルギに変換して蓄力可能であると共に該蓄力した弾性エネルギを動力に変換して出力可能な蓄力装置を乗員スペースなどを確保して自動車に搭載できるようにする。
【解決手段】動力を弾性エネルギに変換して蓄力(蓄勢)すると共に蓄力した弾性エネルギを動力に変換して出力する蓄力装置30と、後輪66a,66bからの動力を蓄力装置30に伝達したり蓄力装置30からの動力をエンジン22の出力軸や後輪66a,66bに伝達したりする倍進装置40と、を備えるものにおいて、蓄力装置30をクロスメンバとして車両に搭載する。 (もっと読む)


【課題】制御ユニットから発生する振動が、車室内に伝達されるのを抑制することができる制御ユニットの支持構造を提供すること。
【解決手段】ハイブリッド車両1に搭載され振動を発生する制御ユニット6を車体2に支持するユニット支持部材7を備えた制御ユニットの支持構造において、車体2が、上下方向に沿って配置されたサイドエプロン21と前後方向に沿って配置されたサイドメンバ22とを有し、ユニット支持部材7が、制御ユニット6を載置するトレイ部72と、サイドエプロン21に連結するサイドエプロン連結部73と、サイドメンバ22に連結するサイドメンバ連結部74とを有し、サイドエプロン連結部73が、高剛性を有するよう結合する高剛性結合手段8によりサイドエプロン21に結合されるとともに、サイドメンバ連結部74が、低剛性を有するよう結合する低剛性結合手段9によりサイドメンバ22に結合されたことを特徴とする。 (もっと読む)


【課題】低コスト化及び軽量化を図った上で、パワーコントロールユニットやPCU搭載フレームと、モータルーム内に配置される別の部品と、の干渉を抑制し、パワーコントロールユニットを保護できる電気自動車を提供する。
【解決手段】PCU搭載フレーム22は、PCU5を四方から囲んでおり、さらにPCU搭載フレーム22は、フロント支持フレーム25と左サイド支持フレーム24とを接続する前部支持脚部32と、左サイド支持フレーム24とリア支持フレームとを接続する後部支持脚部34と、を備え、後部支持脚部34は、ストロークシュミレータ6を左右方向に避けるように前部支持脚部32に対して左右方向に沿う内側にオフセット配置されているとともに、ストロークシュミレータ6の前端部よりも後方に配置されていることを特徴とする。 (もっと読む)


1 - 20 / 704