説明

Fターム[3G071HA04]の内容

タービンの制御 (4,929) | 目標値、設定値 (427) | 流量 (91)

Fターム[3G071HA04]に分類される特許

61 - 80 / 91


【課題】負荷が遮断され、無負荷での運転に切り替わるときに、フラッシュバック振動の発生を抑制することができる低圧蒸気タービンシステムを提供することにある。
【解決手段】静翼3と動翼2とから構成される段落を複数有する低圧蒸気タービン1を有する低圧蒸気タービンシステム100であって、1つの段落の直前直後に給水加熱器8の給水加熱用蒸気の抽気孔6を有する場合において、低圧蒸気タービン1の負荷が遮断されて無負荷での運転に切り替わるときに、給水加熱器内8の温度を低減する構成とした。 (もっと読む)


【課題】負荷遮断時に、計測負荷が所定値以下のときに、低圧蒸気タービンに発生するランダム制御を抑制して、ランダム振動とフラッシュバックとの重畳による影響を少なくすること。
【解決手段】静翼3と動翼2とから構成される段落を複数有する低圧蒸気タービン1を有する低圧蒸気タービンシステム100であって、負荷遮断時に、計測負荷が所定値以下のときに、低圧蒸気タービン1にフラッシュバック振動が発生する所定時間の間、目標回転速度を所定値低く設定し、ロータ4が所定値低く設定した目標回転速度を所定時間維持するように、低圧蒸気タービン1に供給する蒸気量を調節する指令を蒸気流量調節弁10に出力するようにした。 (もっと読む)


【課題】小型貫流ボイラとこれにより生成された蒸気を利用して発電するための蒸気タービンとを夫々複数台設置した小型貫流ボイラ発電システムにおいて、蒸気流量の需要変動に対応して効率的な運転が可能な小型貫流ボイラ発電システムおよびその運転制御方法を提供する。
【解決手段】小型貫流ボイラ2と蒸気利用プロセス5とを接続する蒸気供給流路6が複数の分岐流路6a,6b,6cに分岐されるとともに、発電ユニット3が、この複数の分岐流路の各々に、蒸気過熱器7、流量計および圧力計からなる検出部、緊急遮断弁、流量調節弁、発電機付帯の蒸気タービン8および減圧弁と、前記緊急遮断弁、流量調節弁および発電機付帯の蒸気タービン8をバイパスして前記分岐流路に接続されたバイパス流路16と、このバイパス流路16に設けられたバイパス弁とを介装されてなる。 (もっと読む)


【課題】導入される排気ガスの流量が少ないときでもタービンホイールの回転を適正に制御し、タービン効率を向上させることのできるターボチャージャを提供する。
【解決手段】排気導入口3と、排気排出口4と、該排気導入口3と該排気排出口4とを連通する渦巻き状のスクロール部5を有するタービンハウジング6と、スクロール部5に回転自在に収容されるタービンホイール8と、複数のベーン15の開度を調整することで該タービンホイール8に流入する排気ガスの流速を可変とする可変ノズル9と、スクロール部5を径方向に内側スクロール5aと外側スクロール5bとに分割する分割壁30と、排気ガスの流入量を制御する流入量制御手段31と、分割壁30の下流側端部からベーン15の近傍で、かつ、該ベーン15の作動範囲外まで延設される内側ガイド壁32を有するガイド部34とを備える。 (もっと読む)


【課題】高蒸気条件である蒸気タービンプラントでも、抽気に伴うタービントリップの発生を避けてタービンの運転継続を第1としつつ、抽気蒸気の安定的な供給を可能とする抽気制御を行えるようにする。
【解決手段】蒸気タービンの中間段で主蒸気の一部を抽気し、抽気蒸気を需要先に供給する抽気系を備え、抽気状態を制御する抽気制御システムを備えた蒸気タービンプラントについて、抽気系に、抽気蒸気流量計と抽気蒸気止め弁を設け、抽気蒸気の流量に関して警報流量と抽気蒸気停止流量を制限流量値として設定でき、抽気蒸気流量計からの抽気蒸気流量計測値が警報流量に達した場合に警報を出し、警報の一定時間後に抽気蒸気止め弁を一定の開度として抽気蒸気流量を制限した状態とし、抽気蒸気流量を制限した状態で抽気蒸気流量が増大し、抽気蒸気流量計測値が抽気蒸気停止流量に達した場合に抽気蒸気止め弁を全閉として抽気を停止させる。 (もっと読む)


【課題】蒸気消費設備に蒸気を送気する際の発電プラント全体の効率を高めることである。
【解決手段】複数の発電ユニット11の蒸気消費設備への蒸気取り出し位置より後段の蒸気タービン15、16の効率をタービン効率算出部32で算出し、判定部33はタービン効率算出部32で算出された各発電ユニット11の蒸気タービンの効率を比較して蒸気タービンの効率が最も悪い発電ユニットを判定し、出力部34は判定部33で蒸気タービンの効率が最も悪いと判定された発電ユニットを蒸気送気用の発電ユニットとして報知出力する。これにより、蒸気タービンの効率が最も悪い発電ユニットから蒸気消費設備に蒸気を送気する。 (もっと読む)


【課題】原子力発電プラントのタービン制御装置において、負荷要求信号の変動や、再循環流量制御自動信号のオン/オフ切り替えに伴う変動を抑制することで、系統に対する影響を抑制できる、圧力設定点変更回路を備えたタービン制御装置を提供する。
【解決手段】入力信号に一次遅れ要素を持つインパルス応答特性を与え、再循環流量制御自動信号が”オフ”の場合にはその出力を”0“に切り替えて出力する前段関数演算部2と、再循環流量制御自動信号が”オン“の場合は前段関数演算部2の出力に、”オフ“の場合は”0“に切り替えて出力する切替回路3と、入力信号に一次遅れ要素を持つインディシャル応答特性を与えて出力する後段関数演算部4とを直列に構成する圧力設定点変更回路1をタービン制御装置10に備える。 (もっと読む)


【課題】 この発明は、ボイラーで生成した蒸気を利用して高い効率で発電することを目的としたものである。
【解決手段】 この発明は、ボイラーで生成した蒸気を高温加熱して高温過熱蒸気とし、この高温過熱蒸気に温水を吹き込み800℃以上の高温で10MPa以上の高圧蒸気とし、該高温高圧蒸気を発電用の高速蒸気タービンに用いて発電することを特徴とした蒸気発電方法により、目的を達成した。 (もっと読む)


バルブ組立体(100)は、流体がその間を通過できるための流体導管(102)により連結された入口(104)と出口(106)を有する。バルブ組立体は、バルブ組立体の内側で中央に載置されたスピンドル(112)とスピンドル(112)に載置されたバルブヘッド(108)を有するストップバルブを備えている。ストップバルブスピンドル(112)は、入口(104)が出口(106)と連通している開放位置と、出口が入口から隔離されている閉鎖位置との間でストップバルブヘッド(108)を動かすために動作可能である。さらに、バルブ組立体は、バルブ組立体の内側で離芯して載置された少なくとも一つのスピンドル(114)と、少なくとも一つの制御バルブスピンドル(114)に載置されたバルブヘッド(110)を有する制御バルブを備えている。少なくとも一つの制御バルブスピンドルは、流体導管(102)に沿って通過する流体の変化する流量を制御するための制御バルブヘッド(110)を動かすために動作可能である。ストップバルブが開放位置にある場合に、ストップバルブヘッド(108)は、制御バルブヘッド(110)の内側に収納されている。
(もっと読む)


【課題】 主蒸気圧力,抽気流量,排気圧力の変化によりタービン内の蒸気条件(ヒートバランス)が異なる場合でも、主蒸気加減弁の開度と主蒸気圧力とを制御し、蒸気タービンの最適な効率を維持する蒸気タービン制御システムを提供する。
【解決手段】 主蒸気圧力2を測定し、主蒸気加減弁3前後での圧力損失を計算し、その計算結果に基づき主蒸気加減弁3前後での圧力損失が最小となるように、主蒸気圧力2および主蒸気加減弁3の開度を制御する。 プロセス蒸気など抽気8がある場合は、抽気流量6を測定し、その抽気流量に応じてタービン内の蒸気条件(ヒートバランス)がどのように変化するかを再計算し、再計算結果に基づきその蒸気条件でのタービン効率が最大となるように主蒸気加減弁3の開度を調整するとともに、蒸気流量を制御する。 再計算時に排気圧力9の測定結果も入力すると、蒸気流量および主蒸気圧力のより効率的な制御が可能となる。 (もっと読む)


【課題】 エンジンの始動時にランキンサイクル装置の蒸発器が発生する蒸気温度や蒸気圧力を適切に制御できるようにする。
【解決手段】 エンジンの始動時に蒸発器の内部密度が設定値よりも低ければ、給水量を増加させて蒸発器の内部密度を増加させることで、蒸気温度を目標温度に速やかに収束させるとともに、膨張機を停止または停止に近い微小回転で回転数制御して自転するのを防止することで、蒸気圧力を速やかに立ち上げて膨張機を起動する。逆にエンジンの始動時に内部密度が設定値よりも高ければ、給水量を減少させて蒸発器の内部密度を減少させることで、蒸気温度を目標温度に速やかに収束させるとともに、膨張機を予め回転させる回転数制御して蒸発器の内部に溜まった液相作動媒体を効率的に排出する。 (もっと読む)


【課題】 燃料ガス圧縮用の専用のガスコンプレッサを不要として燃料ガス圧縮のためのエネルギー損失を低減すると共に構造を簡単化し、また低カロリーガス(低発熱量のガス)燃料を容易に使用可能とし、さらには過給機出口での混合ガスの爆発の可能性を皆無としたガスエンジンのガス供給装置を提供する。
【解決手段】 ガスエンジンにおいて、排気ターボ過給機を、燃料ガスを圧縮する燃料ガスコンプレッサ及び排気ガスのエネルギーにより燃料ガスコンプレッサを駆動する第1タービンをそなえた燃料ガス用過給機と、空気を圧縮する空気コンプレッサ及び排気ガスのエネルギーにより空気コンプレッサを駆動する第2タービンをそなえた空気用過給機とにより構成し、前記燃料ガス用過給機で圧縮された燃料ガスと前記空気用過給機で圧縮された空気とを混合して前記各シリンダに供給するように構成されたことを特徴とする。 (もっと読む)


【課題】 既設の発電設備を活用して、外部からの要求に応じて可変且つ迅速に蒸気供給できる技術を提供する。
【解決手段】 蒸気供給装置であって、蒸気を発生させる蒸気発生手段10と、蒸気発生手段10に設けられ且つ導入された水を過熱して蒸気を供給する過熱器101と、過熱器101から供給される蒸気を導入する第一次タービン11と、蒸気発生手段10に設けられ且つ第一次タービン11から供給される蒸気を導入して再過熱する再熱器102と、再熱器102から供給される蒸気を導入する第二次タービン12と、再熱器102に導入される蒸気又は再熱器102から供給される蒸気の一部を供給する蒸気供給手段32と、蒸気発生手段10の燃焼負荷が一定となるように供給される蒸気の圧力変動に応じて第二次タービン12へ導入される蒸気量を調整する調整手段15とを具備する。 (もっと読む)


【課題】 ランキンサイクル装置を備えた車両において、アクセル開度の急増時に蒸発器から膨張機に供給される気相作動媒体の圧力の過剰な増加を抑制する。
【解決手段】 アクセル開度APが急激に増加したときに、蒸発器への給水量を増加させて膨張機に供給される蒸気の温度や圧力を目標温度や目標圧力に制御しようとしても、蒸気の温度や圧力が目標温度や目標圧力をオーバーシュートする懸念があるが、ドライブ・バイ・ワイヤ装置がスロットル開度を制御して排気ガスの熱エネルギーの立ち上がりを抑制することで、蒸気の温度や圧力が目標温度や目標圧力をオーバーシュートするのを抑制し、膨張機の効率低下や耐久性の低下を防止することができる。スロットル開度の抑制によるエンジンの出力の不足分は、ランキンサイクル装置により駆動されるモータ・ジェネレータの出力により補償される。 (もっと読む)


【課題】 ランキンサイクル装置において蒸発器から膨張機に供給される蒸気の圧力を目標圧力に応答性良く制御する。
【解決手段】 目標圧力設定手段M5が膨張機12に供給される蒸気の実流量および温度に基づいて該蒸気の目標圧力を設定し、予測流量演算手段M1がエンジンのスロットル開度THおよび回転数Neに基づいて膨張機12に供給される蒸気の予測流量Qsを演算し、目標回転数演算手段M6が前記予測流量Qsおよび目標圧力に基づいて膨張機12の目標回転数を演算するので、膨張機12に供給される蒸気の実流量の応答遅れの影響を受けることなく、スロットル開度THの変化に即座に応答する蒸気の予測流量Qsを用いて蒸気の圧力を目標圧力に応答性良く制御することができる。 (もっと読む)


【課題】 排気ガス中に含まれる異物がガス通路の壁面とこれに対向するノズルベーンとの間に堆積するのを抑制することにより、ターボチャージャの過給圧変更機能を長期間に亘って良好に維持することのできる過給圧可変式ターボチャージャを提供する。
【解決手段】 過給圧可変式ターボチャージャのタービンハウジング12内には、スクロール通路の内周に沿って環状のガス通路15が形成されている。また、タービンハウジング12内には、ガス通路15の通路断面積を調節する複数のノズルベーン20と、各ノズルベーン20を回動可能に支持し、かつタービンハウジング12とともにガス通路15を構成するノズルリング16とが配設されている。各ノズルベーン20は、タービンハウジング12の壁面12aに対向配置される対向面22と、ノズルリング16の壁面16aに対向配置される対向面26とにそれぞれ突条21を備えている。 (もっと読む)


【課題】 十分な圧力制御機能とアンチサージ制御機能を果たすこともできるガス化複合発電プラントにおける抽気空気昇圧設備の制御装置を提供する。
【解決手段】 例えば、抽気空気昇圧設備の制御装置の第2の制御部42では、インレットガイドベーン12が全閉又は所定開度以下の低開度となったときには圧力偏差ΔPに基づき、昇圧機出口圧力検出値P2が圧力設定値Psetに等しくなるようにアンチサージ弁13の開度を制御する圧力制御を、アンチサージ制御に代えて又はアンチサージ制御とともに行う構成とする。また、第2の制御部では、圧力比P2/P1が圧力比設定値P2/P1setよりも大きいときにはインレットガイドベーン12が全閉であっても、アンチサージ制御を行うことなども有効である。 (もっと読む)


【課題】 発電負荷要求の変動が大きい場合でも、発電負荷要求の変動に対して複合発電設備の運転を確実に安定追従させる。
【解決手段】 燃料ガスを製造するガス化炉23を備えたガス化設備を設ける。蒸気タービンとともにガス化設備にて製造された燃料ガスによってガスタービンを回転させて発電する複合発電設備25を設ける。複合発電設備25への発電負荷要求に応じ、複合発電設備25にて必要となる燃料ガスをガス化設備にて製造させるべく、ガス化設備をフィードフォワード制御する制御系を設ける。ガス化設備に存在する無駄時間及び制御の遅れに基づいて複合発電設備25への発電負荷要求を遅らせて複合発電設備25を一定の遅れをもって追従運転させる無駄時間補償回路46を設ける。 (もっと読む)


【課題】タービン制御弁(28)動作安全試験工程中の蒸気ボイラ圧力変化またはタービン出力変化を最小限に抑える方法を提供する。
【解決手段】本発明の方法は、制御弁(28)位置を補償アルゴリズムへのフィードバックとして使用して、周期的動作試験中のタービン制御弁(28)の閉じおよび再開によって引き起こされる流れの乱れを最小限に抑える。平行タービン入口制御弁(28)を流れる全質量流量を一定に保ち、蒸気発生器圧力が一定に維持され、入口制御弁試験中に入口圧力調整器が影響を受けない。平行タービン入口制御弁(28)を通る全質量流量を一定に保ち、入口制御弁(28)試験中のタービン出力変化も最小限に抑えられる。追加プロセスパラメータの監視は不要である。個々の平行弁の位置が、入口弁(28)位置の閉ループ制御のために使用され、一定の流量を維持するのに十分である。 (もっと読む)


【課題】ガスタービンエンジンの流路面積の非線形制御を実現する装置およびこの装置を用いたガス流の制御方法を提供する。
【解決手段】本発明によれば、バーニアダクト遮断装置31は、それぞれが、あるベーン幅Yを有しかつ複数のガス経路を形成するように前方部分15と後方部分13とを備える複数のベーン21であって、ある離間幅Wでもって離間された複数のベーン21と、それぞれが、ある開口幅を有する複数の開口部17を備えかつ前方部15分と後方部分13との間に配置された回転リングと、を備え、かつ、複数のベーン21の1枚のベーン幅Yは、複数のベーン21の他の1枚のベーン幅Y’と異なることを特徴とする。 (もっと読む)


61 - 80 / 91