説明

Fターム[3G092BA03]の内容

Fターム[3G092BA03]に分類される特許

1 - 20 / 334




【課題】エンジンのクランクシャフトにフライホイールが装備されている場合でも、エンジンを自動停止させる過程において、エンジンを早期に完全停止させることができる圧縮自己着火式エンジンの始動制御装置を提供する。
【解決手段】ECU50は、フライホイールをクランクシャフトに装備するエンジンを自動停止させる過程において、自動停止条件が成立した時点から所定の遅れ時間が経過した時点に燃料噴射弁15からの燃料噴射を停止し、燃料噴射を停止した時点から所定の待機時間が経過した時点に吸気通路28に設けられた吸気絞り弁30の開度を自動停止条件が成立する前の開度よりも小さくし、待機時間が経過する前に再始動要求があり、且つエンジン回転速度が再始動可能な回転速度であるときは、燃料噴射弁15からの燃料噴射を再開する。 (もっと読む)


【課題】筒内環境に応じた適切な燃料噴射制御を実行することにより、1圧縮始動による迅速な再始動の機会を増やす。
【解決手段】本発明では、エンジンの自動停止後の再始動時に、停止時圧縮行程気筒のピストンが相対的に下死寄りの特定範囲にあるか否かを判定し、特定範囲にある場合には、停止時圧縮行程気筒に最初の燃料を噴射することでエンジンを再始動させる。この停止時圧縮行程気筒への最初の燃料噴射では、圧縮上死点を過ぎてから熱発生率のピークを迎えるようなメイン燃焼を起こさせるメイン噴射と、それよりも前のプレ燃焼を起こさせるプレ噴射とが実行される。プレ噴射は、噴射した燃料がピストンのキャビティ内に収まるようなタイミングで少なくとも1回以上実行されるものであり、その回数および1回あたりの噴射量は、停止時圧縮行程気筒のピストンが圧縮上死点まで上昇する途中のエンジン回転速度(始動時回転速度)に基づいて決定される。 (もっと読む)


【課題】 実際の吸入空気流量の変化をより高精度に推定することにより、吸入空気流量制御と点火時期制御の協調制御をより適切に実行し、機関出力トルクの制御精度を向上させることができる内燃機関の制御装置を提供する。
【解決手段】 要求トルクに余裕トルクを加算することにより吸気制御目標トルクTRQGAが算出され、吸気制御目標トルクTRQGAに応じて目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDが算出される。弁作動位相VTC及びスロットル弁開度THが、目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDと一致するように制御され、推定弁作動位相HVTC及び推定スロットル弁開度HTHに応じて推定吸気制御トルクHTRQGAが算出され、要求トルクTRQEと推定吸気制御トルクHTRQGAとの比率を用いて点火時期IGLOGの算出が行われる。 (もっと読む)


【課題】燃焼室内でのスワールを確保しつつ、バルブオーバーラップ時での混合気の吹き抜けを抑制する。
【解決手段】 吸気バルブ3の開口部に向けて燃料を噴射する燃料噴射弁12を備えた吸気通路内燃料噴射エンジンにおいて、吸気バルブ3が開閉する吸気ポート8の開口部は、燃焼室7の中心からシリンダ2の径方向外方にオフセットした位置に向けて開口し、排気バルブ4が開閉する排気ポート9の開口部は、燃焼室7の中心からシリンダ2の径方向外方にオフセットした位置に向けて開口し、且つ吸気ポート8の開口方向の延長線からシリンダ2の径方向にオフセットして配置されるとともに、排気バルブ4が開閉する排気ポート9の開口部の縁部に燃焼室7内へ突出するシュラウド15を備え、シュラウド15は、排気ポート9の開口部の縁部の全周のうち、吸気ポート8の開口方向の延長線側の一部に配置する。 (もっと読む)


【課題】 簡単かつ安価な構成でありながら、ポンピングロス等を増大させずに、高いEGR率での運転を実現することができ、以って排出黒煙濃度の増加を抑制しながらNOx排出量を効果的に低減することができるEGR装置を提供する。
【解決手段】 本発明は、内燃機関1の排気の一部をEGRガスとして燃焼室5に還流させるEGR装置100であって、EGRガスが導かれ吸気通路2に接続される複数のEGR通路102、103と、各EGR通路102、103に介装される少なくとも一つの開閉バルブ120、130、140と、が備えられ、内燃機関1の運転状態に応じて、EGRガスが流れるEGR通路102、103を切り換えると共に、利用しないEGR通路の開閉バルブの開閉状態を切り換えることにより、吸気通路2或いはEGR通路102、103の少なくとも一方の共鳴効果に変化を生じさせるようにしたことを特徴とする。 (もっと読む)


【課題】エンジン回転速度の瞬間的な上昇に瞬時に対応することができる船舶推進機を提供する。
【解決手段】船舶推進機は、エンジンと、ドライブシャフトと、プロペラシャフトと、回転速度検出部と、制御部と、を備える。ドライブシャフトは、エンジンからの動力を伝達する。プロペラシャフトは、ドライブシャフトから伝達される動力によって回転駆動される。回転速度検出部は、エンジン回転速度を検出する。制御部は、エンジン回転速度の変化率RNが所定値r以上であるときに、エンジン回転速度を抑制する抑制制御を実行するS101。 (もっと読む)


【課題】低負荷領域で燃費を悪化させることなくEGR量を増加させたディーゼルエンジンを提供する。
【解決手段】ディーゼルエンジン10を、排気によって駆動されるタービン22及びタービンによって駆動され新気を圧縮するコンプレッサ21を有するターボ過給器20と、タービンの下流側の排気管路42から排ガスの一部を抽出してコンプレッサの上流側の吸気管路31内に導入する第1のEGR装置60と、タービンの上流側の排気管路41から排ガスの一部を抽出してコンプレッサの上流側の吸気管路内に導入する第2のEGR装置90と、エンジンの負荷状況に応じて第1のEGR装置と第2のEGR装置とを切り替える制御手段100とを備える構成とする。 (もっと読む)


【課題】リフトセンサを用いることなく、EGR装置のバルブの開度を推定することにより、EGR装置を精度よく制御すると共に、コストを低減する。
【解決手段】EGRシステム10では、EGR装置20の非作動状態において、各センサ100〜108、130〜134を用いて吸気装置14の吸気状態と吸入空気量、吸入空気の負圧及び/又はエンジン回転数とをそれぞれ検出する。ECU110は、検出された吸気状態と吸入空気量、吸入空気の負圧及び/又はエンジン回転数とに基づいて、EGR装置20のバルブ24の開度をマップ138、140、144を用いて推定する。 (もっと読む)


【課題】吸気弁の閉弁時期がかなり遅角側となっている場合であっても、回転数の収束性及び回転数制御の応答性を高く維持することができるようにする。
【解決手段】内燃機関は吸気弁7の閉弁時期を変更可能な可変バルブタイミング機構Bと、スロットル弁17とを具備する。制御装置は、内燃機関のアイドル運転中には実際の機関回転数と目標アイドル回転数とにズレがあるときに、このズレがなくなるように吸気弁の閉弁時期とスロットル弁開度とを補正する回転数制御を行う。回転数制御を実行するにあたり、回転数制御の実行時に吸気弁の閉弁時期が遅角側の時期にある場合には、進角側の時期にある場合に比べて、実際の機関回転数と目標アイドル回転数との同一ズレ量に対する吸気弁の閉弁時期の補正量が大きくされると共にスロットル弁開度の補正量が小さくされる。 (もっと読む)


【課題】圧縮自己着火式エンジンを再始動させる際に、できるだけ高い頻度でエンジンを1圧縮始動で迅速に再始動させる。
【解決手段】再始動条件が成立したときに(ステップS21でYES)、エンジンの停止時に圧縮行程にある停止時圧縮行程気筒のピストンの停止位置が相対的に下死点寄りに設定された基準停止位置範囲内にある場合は(ステップS25でYES)、スタータモータを用いてエンジンに回転力を付与しつつ、停止時圧縮行程気筒に燃料噴射を実行することにより、エンジンを1圧縮始動で再始動させる(ステップS26)。エンジンの自動停止制御によるエンジンの停止時間が短いほど上記基準停止位置範囲を上死点側に拡大する(ステップS22〜S24)。 (もっと読む)


【課題】電動アクチュエータを備えることに起因した問題を招来することなくアイドリング運転を停止して燃料消費量の低減や排出する二酸化炭素量の低減を図る。
【解決手段】発電電動機44が発電動作した場合の電力を蓄積する一方、発電電動機44が電動動作する場合に電力を供給する蓄電器61と、旋回用電動モータ10とを備え、操作レバー50,70の操作により油圧アクチュエータ21,22,23,31,32及び旋回用電動モータ10を動作させるようにした作業機械において、エンジン40が運転されている状態において操作レバー50,70のニュートラル状態が所定の停止時間継続した場合に、少なくとも蓄電器61が所定の電圧以上蓄電されていることを条件にエンジン40のアイドリング運転を停止させ、かつ旋回用電動モータ10を動作禁止状態に保持するアイドリング停止制御手段110を備えた。 (もっと読む)


【課題】単純な制御で、内燃機関の停止後の振動を抑制すると共に、次回の始動時にかかる時間を短縮することができる内燃機関の停止方法、内燃機関、及びそれを搭載した車両を提供する。
【解決手段】エンジン1の停止要求後に、吸気スロットル30が、各気筒20a〜20dへ送る空気の供給量を減少させて、各気筒20a〜20dの筒内圧を低下させ、エンジン1の回転数が低下する過程で、エンジン1が停止する時に圧縮行程を行う最終圧縮気筒20aと、最終圧縮機筒20aの一つ前の着火順である最終膨張気筒20bを予測し、最終膨張気筒20bの吸気が完了した後に、吸気スロットル30が最終圧縮気筒20aへ送る空気の供給量を増加させて、最終圧縮気筒20aの筒内圧を上昇させることを特徴とする。 (もっと読む)


【課題】バルブタイミング調整装置を用いたエンジンに適用され、クランク角信号の異常時に、カム角信号に基づいてエンジン回転位置を判定するエンジン制御装置を提供する。
【解決手段】エンジン制御装置は、クランク角信号が異常であり(S400:Yes)、クランク軸に対してカム軸が進角している場合(S404:No)、カム軸が最値遅角位置に向けて回転するようにバルブタイミング調整装置を遅角制御する(S406)。エンジン制御装置は、疑似クランク角信号の信号間隔(30°CA)に対する今回推定進角量の余りを考慮して、初回の疑似クランク角信号の生成タイミングをタイマに設定し(S412)、気筒位置情報を更新し(S414〜S418)、今回推定進角量の余りを除いて今回と次回とのカム角信号間隔を推定する(S422)。エンジン制御装置は、推定カム角信号間隔の間、30°CA毎に疑似クランク角信号を生成する。 (もっと読む)


【課題】LPGエンジンについて、コストの高騰を伴うことなく使用するLPGの組成をその都度判定して、良好な空燃比制御を実行できるようにする。
【解決手段】LPGエンジンの排気管に設けた排気性状検出手段を介して排気の状態を連続的に検知することによりフィードバック制御で燃料噴射量を調整する空燃比制御装置が行う空燃比制御方法において、その空燃比制御装置が、所定の操作を行うことにより排気性状検出手段の出力信号に変化を生じさせ、この変化を基に所定の判定方法で現在使用しているLPGの燃料組成を判定し、その後の制御に反映させることを特徴とするものとした。 (もっと読む)


【課題】内部EGRによる気筒内燃焼室の昇温効果を一層高める。
【解決手段】可変バルブタイミング機構を備えた内燃機関における、吸気弁及び排気弁の開閉タイミングを制御して内部EGRを実施するにあたり、低中負荷域では排気弁を排気上死点以降に閉じ、その後所要のクランク角度が経過してから吸気弁を開くこととした。吸気弁と排気弁とがともに開いているバルブオーバラップ期間を設けないため、気筒内の排気ガスが一部吸気通路側に流出して冷却され気筒に再充填されることを阻止でき、気筒内燃焼室の温度降下が有効に回避される。 (もっと読む)


【課題】自動的に停止・再始動される内燃機関と、内燃機関の停止中に車両を自動的に制動する制動装置を有する場合において、それらを適切に制御することにより、車両の円滑な発進と燃費の向上を実現できる車両の停止制御装置を提供する。
【解決手段】車両Vは、アイドルストップが行われるエンジン3と、アイドルストップ中に作動し、車両Vを制動するパーキングブレーキ60を有している。停止制御装置1によれば、アイドルストップ中に検出された路面の勾配に応じて、再始動時目標回転数NECMDRSTおよびブレーキ解除時間TBRKOFFを設定し、エンジン3が再始動される際に、エンジン回転数NEが再始動時目標回転数NECMDRSTになるようにエンジン3の出力を制御するとともに、再始動時制御の開始時から解除終了時間TBRKOFFが経過したときに、パーキングブレーキ60による制動を解除する。 (もっと読む)


【課題】吸気バルブの作用角の小ずれ、大ずれによる気筒間インバランスを的確に判定することのできる多気筒内燃機関の異常判定装置を提供する。
【解決手段】エンジンコントロールコンピューター15は、吸気バルブ7の作用角を小さくした状態と同作用角を大きくした状態とのそれぞれでアイドリング中の多気筒内燃機関の回転変動を計測し、それらの結果に基づいて気筒間インバランスの判定を行うようにしている。そしてエンジンコントロールコンピューター15は、吸気バルブ7の作用角を小さくした状態でのみ回転変動が大きくなったときには、吸気バルブ7の作用角の小ずれと判定し、同作用角を大きくした状態でのみ回転変動が大きくなったときには、吸気バルブ7の作用角の大ずれと判定し、双方の状態で回転変動が大きくなったときには、インジェクター5のリーンずれと判定している。 (もっと読む)


【課題】排気再循環を実行しているときに加速要求がなされた場合に、排気再循環を実行していないときに比べて加速感が悪化してしまうことを抑制することのできるハイブリッド車両の制御装置を提供する。
【解決手段】パワーマネジメントコントロールコンピュータ500は、等パワー曲線と燃費動作線との交点となるエンジン動作点に基づいて目標エンジン回転数と目標エンジントルクとを設定して排気再循環機構115を備えたエンジン110を制御する。パワーマネジメントコントロールコンピュータ500は、排気再循環が実行されているか否かに応じて燃費動作線を変更し、排気再循環が実行されているときには目標エンジン回転数が高くなるようにする。パワーマネジメントコントロールコンピュータ500は、排気再循環が実行されているときは、排気再循環が実行されていないときよりもエンジン動作点の単位時間当たりの変化量を小さくする。 (もっと読む)


1 - 20 / 334