説明

Fターム[3G093FA09]の内容

車両用機関又は特定用途機関の制御 (95,902) | 制御部の特徴 (6,324) | 演算部内での処理 (5,972) | 帰還制御 (2,284) | 学習 (189)

Fターム[3G093FA09]に分類される特許

181 - 189 / 189


【課題】予め燃費率マップを作成する必要をなくすことにより、コストダウンを図ると共に、車両を選ばずに搭載することができ、しかも、車両の状態に適した運転支援を行うことができる運転支援装置を提供する。
【解決手段】走行状態検出手段10a−1が車両の走行状態情報を検出し、車両状態検出手段10a−2が車両状態情報を検出し、燃費検出手段10a−3が車両の燃費情報を検出する。学習手段10a−4が検出された走行状態情報及び車両状態情報を入力とし、検出された燃費情報を出力とする学習を行う。推論手段10a−5は、学習手段が行った学習結果を用いて、入力された走行状態情報及び車両状態情報に対する燃費情報を推論する。支援手段10a−7が燃費検出手段により検出された現燃費情報と、推論手段により推論された燃費情報との比較に基づいて、運転の支援を行う。 (もっと読む)


【課題】 この発明は、開発段階にある内燃機関制御ユニットの状態を検査するための検査システムに関し、その検査の効率改善を目的とする。
【解決手段】 内燃機関制御用の試作ECU10をHILSシステム20に連結させる。HILSシステム20に、内燃機関モデル22と共に自動判定モデル24を実装する。自動判定モデル24は、排ガス測定試験モード(La♯4モード)で内燃機関モデル22を運転させ、その運転の進行と同期して、ECU10により実現されるべき複数の機能がそれぞれ適性に実現されているかを順次検査する。 (もっと読む)


【課題】 下流側排気センサに起因する制御の乱れを抑制することができる。
【解決手段】 エンジンECU50は、駆動軸17とエンジン20とモータMG1,MG2とがクラッチを介さずに機械的に接続され、駆動軸17に対するエンジン20の動力及びモータMG1,MG2の動力の入出力を制御するハイブリッド自動車10に搭載されている。このエンジンECU50では、エンジン20の排気浄化触媒の上流側に設置された排気センサのセンサ出力値に基づいて空燃比制御を実行する。また、下流側に設置された排気センサのセンサ出力値に基づいて排気浄化触媒の浄化に関わる制御を実行するが、エンジン20が所定の無負荷運転状態又は小空気量運転状態のときには、下流側の排気センサの周囲のガス交換が十分に行われず下流側排気センサのセンサ出力値が実際の排気を正確に反映していないことがあるため、この制御を禁止する。 (もっと読む)


【課題】予め燃費率マップを作成する必要をなくすことにより、コストダウンを図ると共に、車両を選ばずに搭載することができる運転支援装置を提供する。
【解決手段】走行状態検出手段10a−1が、車両の走行状態を検出する。燃費検出手段10a−2が、車両の燃費情報を検出する。学習手段10a−3が、検出された走行状態情報を入力とし、検出された燃費情報を出力とする学習を行う。推論手段10a−4が、学習手段が行った学習結果を用いて、入力された走行状態情報に対する燃費情報を推論する。入力手段10a−5が、推論手段に走行状態情報を入力する。支援手段10a−6が、燃費検出手段10a−2により検出された現燃費情報と、推論手段10a−4により推論された燃費情報との比較に基づいて、省燃費運転の支援を行う。 (もっと読む)


【課題】 アイドルストップ機能を有する車両に搭載された各種アクチュエータ等の位置情報の学習、異常検出や初期化の頻度を増すこと。
【解決手段】 内燃機関1がアイドル時に自動停止中となると、電動モータ4によってスロットルバルブ5が全閉位置に駆動され、このときのスロットルバルブ5の位置情報がスロットル開度センサ22のスロットル開度TAとして検出される。このスロットル開度TAに基づくスロットルバルブ5の全閉位置と目標スロットル開度の全閉位置に対応する指令値とに偏差があるとその分だけズレているとして、全閉位置に対応する出力値が学習される。このため、内燃機関1がアイドル時の自動停止後に自動始動された際、スロットルバルブ5の開度位置に対応するスロットル開度センサ22からのスロットル開度TAのズレが解消され、学習の頻度が増すことで制御性の良い、かつ信頼性の高いシステムを構築することができる。
(もっと読む)


【課題】 アクセルON時のダウンシフト制御に関して、アクセル操作の相違に拘らず学習制御が安定して行われるようにして常に適切な変速制御が行われるようにする。
【解決手段】 自動変速機10をダウンシフトする際の変速過渡時には、エンジン40のスロットル弁開度θTHが、ダウンシフト時学習制御手段122の学習領域が定められた複数の車速領域V1 、V2 、V3 ・・・毎にそれぞれ同じ値となるようにアクセル操作量Accと無関係にスロットル指令値マップ114に設定されたスロットル指令値に従って制御されるため、車速領域V1 、V2 、V3 ・・・が同じであればアクセル操作の相違に拘らずエンジン出力が略一定とされ、且つその車速領域V1 、V2 、V3 ・・・に応じてダウンシフトの学習制御が行われるため、ダウンシフト時学習制御手段122による学習制御が安定して、常に適切な変速制御が行われるようになる。 (もっと読む)


【課題】 船体抵抗特性が異なる場合でも、スロットル開度指令値設定手段で設定されたスロットル開度指令値とエンジン回転速度とを所定の目標特性に維持する。
【解決手段】 スロットル開度指令値を設定するスロットル開度指令値設定手段と、該スロットル開度指令値設定手段で設定したスロットル開度指令値に基づいてエンジンのスロットル弁を制御するスロットル制御手段と、前記エンジンのエンジン回転速度を検出するエンジン回転速度検出手段を備え、前記スロットル制御手段は、前記エンジン回転速度検出手段で検出したエンジン回転速度に対する、前記スロットル開度指令値設定手段で設定されたスロットル開度指令値と目標スロットル開度との偏差に基づいてスロットル開度を学習制御する。 (もっと読む)


【課題】 内燃機関のアイドルストップ(自動停止)後における自動始動時に適切なパージ制御を実行してエミッション悪化を防止すること。
【解決手段】 内燃機関1の通常運転時のパージ制御では、内燃機関1の運転状態に応じてパージバルブ33が開閉され、キャニスタ30に蓄えられた蒸発燃料が内燃機関1の吸気通路2内に放出される。これに対して、内燃機関1のアイドルストップ中では、パージ制御ができないため、内燃機関1の状態を特定するアイドルストップ経過時間に応じてパージ制御におけるエバポ濃度学習値が補正され、また、アイドルストップ経過時間が所定値以上であるときには、パージ制御におけるエバポ濃度学習値が初期値に戻される。これにより、アイドルストップ後の自動始動直後であってもパージ制御におけるエバポ濃度学習値が適切に設定されるためエミッション悪化を防止することができる。
(もっと読む)


本発明は、内燃機関を自動的にスタートおよびストップさせる方法に関する。内燃機関(1)に関するストップモードの解放が、自動車の内室(9)の温度と、ドライバによって所望される目標温度との温度差に依存する期間に依存して行われる。
(もっと読む)


181 - 189 / 189