説明

Fターム[3G384BA03]の内容

内燃機関の複合的制御 (199,785) | 制御対象又は関連する機関、部位 (32,549) | 出力 (2,295) | 回転数 (1,146)

Fターム[3G384BA03]に分類される特許

1 - 20 / 1,146




【課題】この発明は、内燃機関と無段変速機を備えた車両において、適切に動作線を変更して、ドライバビリティを確保しつつ異常燃焼を回避することのできる車両の制御装置を提供することを目的とする。
【解決手段】内燃機関と当該内燃機関に接続された無段変速機を備える。前記内燃機関のトルクとエンジン回転数との組み合わせで定めた出力毎の動作点を繋げた動作線に基づいて内燃機関の動作を制御する。前記動作線上の所定動作点において発生した異常燃焼を検出する。前記異常燃焼が検出された場合は、前記動作線を、前記異常燃焼が検出された動作点及びその周辺の動作点を等出力線上の高回転側に変更した変更後動作線に変更する。 (もっと読む)


【課題】モータを用いてエンジンのクランク角度を適切に推定することができるハイブリッド電気自動車におけるエンジンのクランク角度推定装置、及び始動性に優れたエンジン自動停止始動制御を行うことのできるエンジン停止制御装置を提供すること。
【解決手段】モータECUは、エンジン自動停止フラグがONになったt1時点を0°としてエンジン回転数に応じた相対クランク角度を算出し始め、これを推定クランランク角度に設定し、モータトルクが判定閾値より大となっているピーク値が検出されたt2時点で、相対クランク角度からピーク値クランク角度にオフセットして、当該ピーク値クランク角度を推定クランク角度とする。そして、当該推定クランク角度が所定の停止クランク角度に達したときに、モータの回転を0としてエンジンの回転を停止させる。 (もっと読む)


【課題】EGR装置を備えたエンジンにおいて、EGRガスの漏れに起因する燃焼状態の悪化を抑制できるようにする。
【解決手段】EGR弁31が全閉位置に制御されるアイドル運転中にEGRガス漏れ量を検出又は推定し、このEGRガス漏れ量が所定の許容値を越えたときにEGRガス漏れ量が所定値以下となるように目標インマニ圧を設定し、インマニ圧が目標インマニ圧となるように吸入空気量を増加させる吸入空気量増加制御を実行する。これにより、吸入空気量を増加させると共にEGR弁31の前後差圧を小さくしてEGRガス漏れ量を減少させて、EGR率を効果的に減少させる。更に、吸入空気量増加制御による吸入空気量の増加に応じて点火時期を遅角させて、吸入空気量増加制御によるトルク増加(吸入空気量増加)を点火時期の遅角による要求トルク増加(要求吸入空気量増加)によって吸収する。 (もっと読む)


【課題】 空燃比制御系の故障判定の開始後における機関運転状態の変化を的確に監視し、故障判定精度を向上させることができる内燃機関の空燃比制御装置を提供する。
【解決手段】 故障判定期間中にLAFセンサ15の出力信号から算出される検出当量比KACTに含まれる周波数f1成分及び周波数f2成分を抽出し、これらの周波数成分に基づいてLAFセンサ15の応答特性劣化故障が判定される。故障判定開始後において特定運転状態パラメータXOPの変動状態を示し、かつ特定運転状態パラメータXOPの変動履歴が反映される変化量積算値IDXOPを算出し、変化量積算値IDXOPが所定閾値IDXOPTH以上であるときに、故障判定が中断(停止)される。 (もっと読む)


【課題】車両等に搭載されるエンジンにおいて、良好な始動性を確保することが可能な始動制御を実現する。
【解決手段】エンジン停止中におけるインジェクタの油密洩れが大きくて、油密洩れ判定条件が成立している場合には、吸入空気量を増量してエンジンを始動する。このような制御により、始動時におけるエンジンのクランキング中に、HCが高濃度の混合気を早期に掃気することができ、エンジン始動時の空燃比を適正化する(可燃範囲内の適正な値にする)ことができる。その結果として、燃焼状態が良くなり、エンジン始動時のトルクがアップしてエンジン1の始動性が向上する。 (もっと読む)


【課題】燃焼圧力及びエンジンの運転変数を利用して、別途の排気分析装置やノックス測定センサーがなくても、リアルタイムで正確にノックスの量を予測することができるノックス発生量予測方法を提供する。
【解決手段】ノックス発生量予測方法はエンジン燃焼圧力及びエンジン運転変数を利用してNO発生率を計算する段階、前記エンジン燃焼圧力を利用してNO生成期間を算出する段階、前記NO発生率と前記NO生成期間からNO発生量を計算する段階、及び前記NO発生量とエンジン運転領域によるNOとNOの比率からNO発生量を算出して、ノックス(NOx)発生量を予測する段階、を含む。 (もっと読む)


【課題】エンジン回転速度を目標エンジン回転速度に一致させるようにスロットル開度をフィードバック制御するアイドル回転速度制御の制御性を向上させる。
【解決手段】アイドル回転速度制御の際に、所定クランク角周期で、クランク角センサ29の出力信号に基づいてエンジン回転速度を算出すると共に所定クランク角周期の長さに相当する時間であるクランク角周期時間を算出し、所定時間周期で、エンジン回転速度をフィルタ処理して、このフィルタ処理後のエンジン回転速度と目標エンジン回転速度との偏差に基づいてフィードバック制御量(スロットル開度の補正量)を算出する。この際、フィルタ処理の時定数は、クランク角周期時間(所定クランク角周期の長さに相当する時間)に応じて設定する。これにより、フィルタ処理とフィードバック制御処理とを同期させて、フィードバック制御の出力(フィードバック制御量)が荒れることを防止する。 (もっと読む)


【課題】筒内噴射弁とポート噴射弁とを有する内燃機関の制御装置に関し、筒内噴射弁の噴射能力の回復を図りつつエンジン出力を確保する。
【解決手段】内燃機関10の負荷を検出する負荷検出手段2aと、筒内噴射弁11から噴射される筒内噴射量を算出する噴射量算出手段5とを設ける。
また、筒内噴射量の低下時に、筒内噴射弁11からの燃料噴射の頻度を高める第一制御を実施する第一制御手段2eと、筒内噴射量の低下時に、ポート噴射弁12からの燃料噴射量を増加させる第二制御を実施する第二制御手段6とを設ける。
さらに、負荷に応じて、第一制御手段2eによる第一制御と第二制御手段6による第二制御とを切り換える切り換え制御手段7を設ける。 (もっと読む)


【課題】過渡条件の下での気筒内の既燃ガス部分を調節することができる内燃機関の制御方法を提供する。
【解決手段】内燃機関の制御方法は、内燃機関(1)用のトルク設定値Tspを取得する工程と、第1のアクチュエータ(8)用の位置設定値VVTintおよび第2のアクチュエータ(9)用の位置設定値VVTexhを内燃機関トルク設定値Tspに関係付ける、気筒充填モデル(MR)を有する既燃ガス流モデル(MEGB)を適用することによって、これらのアクチュエータの位置設定値を求める工程と、位置設定値VVTintおよびVVTexhを各可変タイミング手段(8、9)に適用することによって気筒内の既燃ガス部分を調節する工程とを有する。 (もっと読む)


【課題】最適化および制御のために1つのシステムに統合されたエンジンおよび1つまたは複数の後処理サブシステムを提供すること。
【解決手段】少なくとも1つの制御装置は、エンジンおよび1つまたは複数の後処理サブシステムに接続することができる。制御装置は、1つのシステムの最適化および制御のためのプログラムを含み、それを実行することができる。制御装置は、プログラム用にエンジンおよび1つまたは複数の後処理サブシステムに関する情報を受け取ることができる。制御装置は、1つのシステムの最適化および制御を有効にする際に助けになるプログラムに従って、測定変数および作動装置の位置に関する設定点および制約条件を規定することができる。 (もっと読む)


【課題】車両の制御装置に関し、エンジンの燃費を効果的に向上させる。
【解決手段】エンジン10と変速機12とを搭載した車両の制御装置であって、アクセルセンサ18と、回転数センサ19と、変速機の出力回転数と出力トルクとに対応する座標平面上に等アクセル開度線が設定された第1のマップから変速機出力トルクを設定する変速機出力トルク設定部41と、変速機の出力回転数と設定された変速機出力トルクとに基づいてエンジン出力を算出するエンジン出力演算部42と、エンジン出力と燃料噴射量とに対応する座標平面上に最少燃料噴射量線が設定された第2のマップから目標燃料噴射量を設定する目標燃料噴射量設定部43と、エンジン10の燃料噴射量が目標燃料噴射量となるようにエンジン10を制御するエンジンECU20とを備えた。 (もっと読む)


【課題】エタノール濃度に関わらず良好な始動性を得ることができる内燃機関の始動制御装置を提供する。
【解決手段】ガソリンとエタノールとの混合燃料によってエンジン20を運転すると共に、モータ68によって吸入空気量を調整するスロットルバルブ69を駆動するようにした内燃機関の始動制御装置において、モータ68および燃料噴射装置66を制御する制御部38と、混合燃料のエタノール混合比率としてのエタノール濃度Cを検知するエタノール濃度センサ61と、燃料噴射を禁止したままクランキングを行う空クランキング制御を実行する回数Nを少なくともエタノール濃度Cに基づいて導出する空クランキング回数設定部51とを具備する。制御部38は、エンジン20の始動時に、スロットルバルブ69を予め定められた所定開度θ1に駆動すると共に、空クランキング制御を導出された回数Nだけ実行する。 (もっと読む)


【課題】車両発進時の走行負荷の大小に対応してエンジンの出力回転数及び出力トルクを可変に制御することにより、常に確実かつ迅速な発進を行えるようにした車両駆動装置を提供する。
【解決手段】出力パワーを制御することで出力軸の出力回転数及び出力トルクを可変に調整できるエンジンと、クラッチ及び変速機を含むパワートレーンと、アクセルペダルの操作量に基づいてエンジンを制御する制御部と、を備える車両駆動装置であって、前記制御部は、車両発進時の走行負荷を推定する負荷推定手段と、推定した走行負荷に対応する車両推進力を得るために必要となる出力回転数及び出力トルクの少なくとも一方の下限値Tmin、Nminを可変に設定する下限値設定手段と、出力回転数NEが減少して前記下限値Nminに到達したときにエンジンの出力パワーを大きく制御する(スロットルバルブの開度S1を大きな開度S2に制御する)推進力保持手段と、を有する。 (もっと読む)


【課題】エンジンの制御装置に関し、環境条件に沿った適切なアイドル制御領域を規定する。
【解決手段】エンジン10の無負荷損失に基づき無負荷運転目標トルクを演算する無負荷運転目標トルク演算手段2aと、エンジン10に対して要求される要求トルクを演算する要求トルク演算手段2cとを設ける。また、要求トルクがエンジン10の負荷として作用する度合いに相当する要求負荷率を、無負荷運転目標トルクを基準にして演算する要求負荷率演算手段3を設ける。さらに、要求負荷率に基づきエンジン10の運転領域がアイドル制御領域であることを判定する判定手段4を設ける。 (もっと読む)


【課題】本発明は、内燃機関が正常であるにもかかわらず、センサ類の応答が間に合わないために生じる誤診断を防止できる内燃機関の故障診断装置を提供することを目的としている。
【解決手段】このため、内燃機関の運転状態を検出する複数のセンサに基づいて故障を診断するための故障診断値を求め、故障診断値によって故障を診断する内燃機関の故障診断装置であって、故障診断装置は、故障診断処理を実行するか否かを判定する故障診断実行判定部と、故障診断実行判定部により実行判定が成された場合に、故障診断処理を実行する故障診断部とを備えた内燃機関の故障診断装置において、故障診断処理は、故障診断値を複数回分求め、複数回分の故障診断値の平均値である平均故障診断値によって故障を診断している。 (もっと読む)


【課題】エンジンの始動制御装置に関し、エンジン始動時における吹け上がりを抑制しつつ始動性を向上させる。
【解決手段】自動変速機26のセレクトレバーの操作位置が走行レンジであるか否かを検出する変速レンジ検出手段32を設ける。
また、エンジン10の始動時に変速レンジ検出手段32で検出された操作位置が走行レンジであるときに、操作位置が走行レンジではないときよりも、エンジン回転速度の上限値としての上限回転速度を小さく設定する第一設定手段4aを設ける。
さらに、第一設定手段4aで設定された上限回転速度を超えないように、エンジンの実回転速度を制御する上限値制御を実施する上限値制御手段5を設ける。 (もっと読む)


【課題】通信線を介した信号に異常が生じた場合においても電動機の機能制限を最小限に抑え、車両の走行安定性を極力保持することのできるハイブリッド電気自動車の制御装置を提供すること。
【解決手段】TCU36は、CAN38を介して受信する信号をモータ4の回転数制御に関わる信号であるか否かで類別し、回転数制御に関わる信号であるモータ動作信号、実モータ回転数信号、瞬間最大駆動・回生トルク信号のいずれか1つでもフェイルした場合は、モータ4の使用を禁止すべく、走行トルク配分制御及びモータ4による回転合わせ制御の両方を禁止し、回転数制御に関わらない信号である定格最大駆動・回生トルク信号、及びSOC信号のみがフェイルした場合には、走行トルク配分制御は禁止しつつ、モータ4による回転合わせ制御の実行は許可する。 (もっと読む)


【課題】エンジンの始動制御装置に関し、エンジン始動時における吹け上がりを抑制しつつ始動性を向上させる。
【解決手段】運転者の発進意思の大きさを検出する発進意思検出手段31,33を設ける。
また、発進意思検出手段31,33で検出された発進意思が小さいほど、エンジン回転速度の上限値としての上限回転速度を小さく設定する第一設定手段4aを設ける。
さらに、第一設定手段4aで設定された上限回転速度を超えないように、エンジンの実回転速度を制御する上限値制御を実施する上限値制御手段5を設ける。 (もっと読む)


1 - 20 / 1,146