説明

Fターム[3G384EB17]の内容

内燃機関の複合的制御 (199,785) | 演算処理B(制御パターン) (16,584) | 最大値、上限値 (1,387)

Fターム[3G384EB17]に分類される特許

1 - 20 / 1,387



【課題】この発明は内燃機関の制御装置に関し、プレイグ発生の抑制要求とNOx還元要求とを同時に処理可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】図3に示すように、本実施形態のリッチスパイクは、プレイグ検出直後のエンジンサイクルの燃料噴射タイミング(時刻t)において開始される。時刻tにおけるNOxカウンタは閾値を下回っているので、NOx触媒28用のリッチスパイクを開始するタイミング(図2の時刻t)ではない。しかしながら、リッチスパイクを実行すればNOx触媒28からNOxを放出できるので、NOxカウンタを減少できる。従って、本実施形態のリッチスパイクによれば、プレイグの連続発生の抑制と、NOx触媒28の吸蔵能力の回復とを同時に図ることが可能となる。 (もっと読む)


【課題】電子制御スロットルの製造バラつきがある場合でも、従来より最適なスロットル制御を行うことができる内燃機関の制御装置を提供する。
【解決手段】エンジンECUは、内燃機関のアイドル時のエンジン回転数制御後、この学習を行って(ステップS1)、アイドル時の単位時間あたりの吸入空気量を表す学習値を得て(ステップS2)、内燃機関のエンジン回転数を検出し(ステップS3)、学習値とエンジン回転数とに基づいて走行時の吸入空気量を算出し(ステップS4)、この値に基づいてスロットル開度を制御する(ステップS5)。 (もっと読む)


【課題】エネルギ不足による直噴インジェクタの開弁不能を回避しつつ、可能な限り筒内での燃料の燃焼悪化を抑制する。
【解決手段】直噴インジェクタ7を駆動するために必要な駆動エネルギが判定値よりも多いと、それに基づいて直噴圧が低下されて上記駆動エネルギが少なく抑えられるため、エネルギ不足による直噴インジェクタ7の開弁不能が回避される。また、上述した直噴圧の低下に伴い直噴インジェクタ7からの各燃料噴射における燃料噴射期間が長くされるとしても、それら燃料噴射期間は各々の最大値を越えて長くならないようガードされる。この場合、直噴インジェクタ7からの各燃料噴射では、要求燃料噴射量分の燃料を噴射しきれなくなる可能性が高い。しかし、要求燃料噴射量分の燃料を直噴インジェクタ7からの各燃料噴射によって噴射しきれない場合には、その噴射しきれない分の燃料量がポート噴射インジェクタ6から噴射される。 (もっと読む)


【課題】 空燃比制御系の故障判定の開始後における機関運転状態の変化を的確に監視し、故障判定精度を向上させることができる内燃機関の空燃比制御装置を提供する。
【解決手段】 故障判定期間中にLAFセンサ15の出力信号から算出される検出当量比KACTに含まれる周波数f1成分及び周波数f2成分を抽出し、これらの周波数成分に基づいてLAFセンサ15の応答特性劣化故障が判定される。故障判定開始後において特定運転状態パラメータXOPの変動状態を示し、かつ特定運転状態パラメータXOPの変動履歴が反映される変化量積算値IDXOPを算出し、変化量積算値IDXOPが所定閾値IDXOPTH以上であるときに、故障判定が中断(停止)される。 (もっと読む)


【課題】エンジン回転速度を目標エンジン回転速度に一致させるようにスロットル開度をフィードバック制御するアイドル回転速度制御の制御性を向上させる。
【解決手段】アイドル回転速度制御の際に、所定クランク角周期で、クランク角センサ29の出力信号に基づいてエンジン回転速度を算出すると共に所定クランク角周期の長さに相当する時間であるクランク角周期時間を算出し、所定時間周期で、エンジン回転速度をフィルタ処理して、このフィルタ処理後のエンジン回転速度と目標エンジン回転速度との偏差に基づいてフィードバック制御量(スロットル開度の補正量)を算出する。この際、フィルタ処理の時定数は、クランク角周期時間(所定クランク角周期の長さに相当する時間)に応じて設定する。これにより、フィルタ処理とフィードバック制御処理とを同期させて、フィードバック制御の出力(フィードバック制御量)が荒れることを防止する。 (もっと読む)


【課題】筒内圧センサでは検出が困難な筒内圧の値を推定することができる筒内圧推定装置を提供する。
【解決手段】ECU60は、エンジン10の膨張行程における筒内圧であるPθと、当該筒内圧の時の筒内容積であるVθと、ピストン上死点の筒内容積であるVTDCと、比熱比であるκと、κ=(logPθ−logP)/(logVθ−logVTDC)で定まる関係と、に基づいて基準筒内圧であるPを算出する。ECU60は、エンジン10のピーク筒内圧に応じたクランク角であるピーククランク角を取得する。ECU60は、算出したPと、取得したピーククランク角が上死点から離れるほど小さな値となるように定めた補正係数αと、に基づいて筒内圧の推定値を求める。 (もっと読む)


【課題】排気中のすすの量を確実に低減し得るとともに、排気中のすすの量が悪化(増加)したことを正確に検出して報知できるエンジンの制御装置を提供する。
【解決手段】排気中のすすの量を直接検出する手段を用いて、排気中のすすの量を正確にリアルタイムに検出し、排気中のすすの量が悪化したときは、それを抑制するようにエンジン制御パラメータ(例えば燃料噴射圧力)を変更(高く)する。また、かかる処理操作を行ってもすすの排出が抑制できないときは、その旨を報知する。 (もっと読む)


【課題】過給エンジンの吸気流量を正確且つ簡易に推定することのできる吸気流量推定装置を提供する。
【解決手段】吸気管圧力と筒内ガス量との間に近似的に成り立つ一次関係式を用いて、吸気管圧力“Pm”から筒内ガス量“Mcyl”を算出する。そして、吸気管圧力“Pm”が閾値圧力“Pc”より大きい場合、筒内ガス量“Mcyl”にスカベンジ量“Msca”を加算して得られる値を吸気流量“Mc”として算出する。一方、吸気管圧力“Pm”が閾値圧力“Pc”以下の場合、筒内ガス量“Mcyl”に内部EGR量“Megr”を加算して得られる値を吸気流量“Mc”として算出する。スカベンジ量“Msca”は、一次関係式“Msca=d*(Pm-Pc)”を用いて計算し、内部EGR量“Megr”は、一次関係式“Megr=c*(Pm-Pc)”を用いて計算する。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、異常燃焼の発生時におけるピストンの温度上昇を精度良く推定することを目的とする。
【解決手段】本発明の内燃機関の制御装置は、内燃機関10において異常燃焼が発生した場合に筒内圧に関する情報を取得する筒内圧情報取得手段と、筒内圧情報取得手段により取得された情報に基づいて、異常燃焼による内燃機関10のピストン12の温度上昇を推定するピストン温度上昇推定手段とを備える。ピストン温度上昇推定手段は、異常燃焼の1回当たりのピストン12の温度上昇幅を取得し、その温度上昇幅を積算する。ピストン温度上昇推定手段の推定結果に基づいて、異常燃焼の発生を抑制する異常燃焼抑制制御の実行の要否を判断する。 (もっと読む)


【課題】 本発明の課題は、自動車等の動作装置の運転条件及び動作装置の性能を示す出力変数とから、モデル予測制御により計算したその性能が最適となる動作装置を制御するための制御変数を、運転条件及び出力変数とから取得可能なテーブルを自動生成することを目的とする。
【解決手段】 上記課題は、動作装置を運転する運転条件と、該運転条件に応じて該動作装置を制御した際の該動作装置の性能を示す出力変数とを記憶する記憶部と、前記記憶部に記憶されている前記運転条件と前記出力変数との組み合せ毎に、該運転条件と該出力変数とから該動作装置の制御変数を予測するモデル予測制御によって、前記出力変数を最適にする該制御変数を計算する予測制御部と、前記組み合せ毎に、前記予測制御部によって計算された前記制御変数に係る変数データを対応付けたテーブルを生成するテーブル生成部とを有する情報処理装置により達成される。 (もっと読む)


【課題】この発明は、システム構成を簡略化しつつ、複数の制御装置間でクランク位置の算出値を確実かつ容易に同期させることを目的とする。
【解決手段】エンジン制御用マイコン10は、クランク角センサから入力されるNE信号に基いて現在のクランク位置を算出し、現在のクランク位置をエッジ時間Anに変換する。また、マイコン10は、NE信号の入力時刻とエッジ時間Anとの加算値に対応するエッジ出力時刻を算出し、エッジ出力時刻の到来時にCPS制御用マイコン20にエッジ信号を出力する。一方、マイコン20は、NE信号の入力時刻とエッジ信号の入力時刻との差分に基いてエッジ時間Anを算出し、エッジ時間Anから現在のクランク位置を算出する。これにより、専用のシリアル通信線や通信開始信号等を使用しなくても、マイコン10,20間で現在のクランク位置を同期させることができる。 (もっと読む)


【課題】エンジンの始動制御装置に関し、エンジン始動時における吹け上がりを抑制しつつ始動性を向上させる。
【解決手段】運転者の発進意思の大きさを検出する発進意思検出手段31,33を設ける。
また、発進意思検出手段31,33で検出された発進意思が小さいほど、エンジン回転速度の上限値としての上限回転速度を小さく設定する第一設定手段4aを設ける。
さらに、第一設定手段4aで設定された上限回転速度を超えないように、エンジンの実回転速度を制御する上限値制御を実施する上限値制御手段5を設ける。 (もっと読む)


【課題】エンジンの始動制御装置に関し、エンジン始動時における吹け上がりを抑制しつつ始動性を向上させる。
【解決手段】自動変速機26のセレクトレバーの操作位置が走行レンジであるか否かを検出する変速レンジ検出手段32を設ける。
また、エンジン10の始動時に変速レンジ検出手段32で検出された操作位置が走行レンジであるときに、操作位置が走行レンジではないときよりも、エンジン回転速度の上限値としての上限回転速度を小さく設定する第一設定手段4aを設ける。
さらに、第一設定手段4aで設定された上限回転速度を超えないように、エンジンの実回転速度を制御する上限値制御を実施する上限値制御手段5を設ける。 (もっと読む)


【課題】この発明は、筒内圧センサの出力がレンジオーバーする場合であっても、最大筒内圧を推定することのできる内燃機関の筒内圧推定装置を提供することを目的とする。
【解決手段】筒内圧が最大レンジを超える直前の第1クランク角度と、その後、最大レンジを下回った直後の第2クランク角度とを取得する。第1クランク角度及びその直前のPVκ値をそれぞれ取得し、最大レンジを越える直前のPVκ値の第1変化率を算出する。第2クランク角度及びその直後のPVκ値をそれぞれ取得し、最大レンジを下回った直後のPVκ値の第2変化率を算出する。レンジオーバーが発生している第1クランク角度から第2クランク角度までのクランク角区間のPVκ値を第1変化率と第2変化率とに基づいて直線補間する。直線補間したPVκ値をVκで除算して、このクランク角区間における筒内圧を算出する。 (もっと読む)


【課題】開度センサを用いることなく、EGR装置の故障の有無を診断することにより、該診断にかかるコストを低減する。
【解決手段】EGR装置20の故障診断装置10において、ECU110は、LAFセンサ108が検出した空燃比に基づいて、インジェクタ74から噴射される燃料の噴射時間又は噴射量に関わる燃料補正係数を算出する。また、ECU110は、少なくとも、エアフローメータ100が検出した吸入空気量、又は、負圧センサ102が検出した吸入空気の負圧と、該ECU110が算出した燃料補正係数とに基づいて、EGR装置20の故障の有無を診断する。 (もっと読む)


【課題】 定常状態、過度状態にかかわらず点火時期の安定化を実現する。
【解決手段】 ノックセンサからの信号に基づいてノックの有無を検出し、ノック有りのときに点火時期を遅角し(S7)、ノック無しのときに点火時期を進角する(S12)。ノックを検出して点火時期を遅角した後、所定の応答遅れ時間の間、ノック制御の感度を低下させ(S4、S5)、過遅角を防止する。また、ノック無しのときに点火時期を進角した後、所定の応答遅れ時間の間、点火時期の進角を禁止する(S11)。所定の学習条件にて、ノックを検出して点火時期を遅角した後、一時的に点火時期を当該遅角した点火時期に保持して、点火時期変化に対するノックレベルの応答遅れ時間を学習する(S3、S14〜S17)。 (もっと読む)


【課題】ノック判定基準値を運転者或いは搭乗者の好みに応じて変更できるようにする。
【解決手段】運転者がノック判定基準値設定スイッチ28を操作すると、指示レベル演算部33bはスイッチ28からの出力値nを読込み、この出力値nに応じた指示レベルkを設定する。そしてノック判定基準値演算部33cにおいて統計値演算部33aで求めた平均値m、標準偏差σと指示レベルkとに基づき、ノック判定基準値KNLVを算出する(KNLV←m+k・σ)。その結果ノック判定基準値設定スイッチ28を操作することで、ノック判定基準値KNLVを運転者や搭乗者の好みに応じて変更することができる。 (もっと読む)


【課題】ノック判定基準値を車室内の暗騒音に応じて自動的に切換えるようにする。
【解決手段】運転者がノック判定基準値自動設定スイッチ28をONすると、暗騒音レベル推定部33bは車室内の暗騒音の発生源を検出し、検出した各暗騒音発生源に付されているポイントを加算して暗騒音レベルLVを算出する。暗騒音レベル判定部33cは暗騒音レベルLVと暗騒音レベル判定基準値LVsとを比較し、暗騒音レベルLVが暗騒音レベル判定基準値LVsを越えているか否かを判定する。ノック判定部基準値演算部33dは暗騒音レベル判定部33cで暗騒音レベルLVが暗騒音レベル判定基準値LVsを越えていると判定した場合、統計値演算部33aで求めた平均値m、標準偏差σと、この標準偏差σの増加補正値kとに基づき、ノック判定基準値KNLVを算出する(KNLV←m+(u+k)・σ)。 (もっと読む)


【課題】運転者や搭乗者に対してノック音による聴感上の不快感を与えるとなく、エンジン出力や燃費の向上を図ることができるようにする。
【解決手段】騒音レベル推定部33bは、車速センサ、ワイパスイッチ、オーディオボリュームスイッチ等、車室内の暗騒音の発生源となる因子を含む各種スイッチ・センサ類等の各種暗騒音発生源29からのパラメータに基づき、暗騒音レベルLVを算出する。暗騒音レベル調整部33cは、暗騒音レベルLVと、ノック音が聴感不能となる暗騒音レベルLVの最大値である最大暗騒音レベルLVmaxとの比から自動暗騒音レベルLVnを算出し、この自動暗騒音レベルLVnに応じた増加補正値kを求める。ノック判定部基準値演算部33dは、統計値演算部33aで求めた平均値m、標準偏差σと、増加補正値kとに基づき、ノック判定基準値KNLVを算出する(KNLV←m+(u+k)・σ)。 (もっと読む)


1 - 20 / 1,387