説明

Fターム[3G384FA49]の内容

内燃機関の複合的制御 (199,785) | 入力パラメータ、センサ (66,899) | 吸,排気バルブ(タイミング,リフト等) (1,023)

Fターム[3G384FA49]に分類される特許

1 - 20 / 1,023


【課題】誤判定を防止して十分な検出精度を確保する。
【課題手段】本発明に係る気筒間空燃比ばらつき異常検出装置は、多気筒内燃機関における各気筒の吸気弁の作用角を可変にする作用角可変機構と、各気筒の回転変動に関するパラメータX(i)を検出し、この検出されたパラメータに基づき気筒間空燃比ばらつき異常の有無を検出する異常検出手段とを備える。異常検出手段は、パラメータの検出時における作用角Sが所定の大作用角領域にあるとき(ステップS207:イエス)には正常判定を保留し、パラメータの検出時における作用角が、大作用角領域よりも小作用角側の所定の小作用角領域にあるとき(ステップS207:ノー)には正常判定(ステップS208)を実行可能である。 (もっと読む)


【課題】内燃機関のシリンダの壁面に沿って形成される高温気体の断熱層の状態によって生じる排気ガスや燃費の悪化を抑えることができる内燃機関の制御装置を提供することを目的としている。
【解決手段】ECU27に、高温気体制御機能28、断熱層最適厚み算出機能29、スワール制御機能30、吸気制御機能31、が搭載され、ECU27からEGRバルブ24の開度Eの調整指令と、第1スワール流動制御バルブ25および第2スワール流動制御バルブ26の開度SCV1,SCV2の調整指令と、吸気バルブ11のリフト量IVLの調整指令を出すことにより断熱層の厚みを最適化する。これにより、排気ガス、燃費およびドライバビリティを向上させることができる。 (もっと読む)


【課題】過渡条件の下での気筒内の既燃ガス部分を調節することができる内燃機関の制御方法を提供する。
【解決手段】内燃機関の制御方法は、内燃機関(1)用のトルク設定値Tspを取得する工程と、第1のアクチュエータ(8)用の位置設定値VVTintおよび第2のアクチュエータ(9)用の位置設定値VVTexhを内燃機関トルク設定値Tspに関係付ける、気筒充填モデル(MR)を有する既燃ガス流モデル(MEGB)を適用することによって、これらのアクチュエータの位置設定値を求める工程と、位置設定値VVTintおよびVVTexhを各可変タイミング手段(8、9)に適用することによって気筒内の既燃ガス部分を調節する工程とを有する。 (もっと読む)


【課題】内燃機関の制御装置に関し、燃料の吹き抜けを抑制してエンジン出力,排気性能を向上させる。
【解決手段】気筒20内に燃料を噴射する筒内噴射弁11と、吸気ポート17に燃料を噴射するポート噴射弁12とを有する内燃機関10の制御装置1に、筒内噴射弁11から噴射される筒内噴射量を算出する噴射量算出手段5を設ける。また、ポート噴射弁12から噴射されるポート噴射量を制御するポート噴射制御手段2と、吸気弁27及び排気弁28がともに開弁状態となる重複期間を制御する重複期間制御手段4とを設ける。
さらに、筒内噴射量に基づいて、ポート噴射弁12からのポート噴射量及び重複期間をともに変更する変更手段6を設ける。 (もっと読む)


【課題】過給エンジンの吸気流量を正確且つ簡易に推定することのできる吸気流量推定装置を提供する。
【解決手段】吸気管圧力と筒内ガス量との間に近似的に成り立つ一次関係式を用いて、吸気管圧力“Pm”から筒内ガス量“Mcyl”を算出する。そして、吸気管圧力“Pm”が閾値圧力“Pc”より大きい場合、筒内ガス量“Mcyl”にスカベンジ量“Msca”を加算して得られる値を吸気流量“Mc”として算出する。一方、吸気管圧力“Pm”が閾値圧力“Pc”以下の場合、筒内ガス量“Mcyl”に内部EGR量“Megr”を加算して得られる値を吸気流量“Mc”として算出する。スカベンジ量“Msca”は、一次関係式“Msca=d*(Pm-Pc)”を用いて計算し、内部EGR量“Megr”は、一次関係式“Megr=c*(Pm-Pc)”を用いて計算する。 (もっと読む)


【課題】最適化および制御のために1つのシステムに統合されたエンジンおよび1つまたは複数の後処理サブシステムを提供すること。
【解決手段】少なくとも1つの制御装置は、エンジンおよび1つまたは複数の後処理サブシステムに接続することができる。制御装置は、1つのシステムの最適化および制御のためのプログラムを含み、それを実行することができる。制御装置は、プログラム用にエンジンおよび1つまたは複数の後処理サブシステムに関する情報を受け取ることができる。制御装置は、1つのシステムの最適化および制御を有効にする際に助けになるプログラムに従って、測定変数および作動装置の位置に関する設定点および制約条件を規定することができる。 (もっと読む)


【課題】ポート噴射式内燃機関において、大量にEGRを導入した場合でも酸素不足による不完全燃焼を防止して燃費効率を改善する。
【解決手段】吸気ポート内に燃料を噴射し、内部EGR率を推定する手段を備えた内燃機関において、排気行程内の燃料噴射期間と吸気行程内の燃料噴射期間の比率を、前記内部EGR率の推定手段によって推定した内部EGR率の大きさによって変えるようにした。また、EGR率の推定はバルブオーバーラップ期間の長短で行うことができる。 (もっと読む)


【課題】 実際の吸入空気流量の変化をより高精度に推定することにより、吸入空気流量制御と点火時期制御の協調制御をより適切に実行し、機関出力トルクの制御精度を向上させることができる内燃機関の制御装置を提供する。
【解決手段】 要求トルクに余裕トルクを加算することにより吸気制御目標トルクTRQGAが算出され、吸気制御目標トルクTRQGAに応じて目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDが算出される。弁作動位相VTC及びスロットル弁開度THが、目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDと一致するように制御され、推定弁作動位相HVTC及び推定スロットル弁開度HTHに応じて推定吸気制御トルクHTRQGAが算出され、要求トルクTRQEと推定吸気制御トルクHTRQGAとの比率を用いて点火時期IGLOGの算出が行われる。 (もっと読む)


【課題】高圧燃料系内の燃料圧力が高い状態で筒内用噴射弁から燃料を噴射するに際して、トルクショックの発生を抑えることのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】内燃機関1は、低圧燃料系から供給される燃料を吸気通路に噴射するポート噴射用インジェクタ22と、高圧燃料系170から供給される燃料を燃焼室内に直接噴射する筒内噴射用インジェクタ17とを備える。電子制御装置30は、ポート噴射用インジェクタ22のみによる燃料噴射が行われている状態から筒内噴射用インジェクタ17による燃料噴射が開始されるときに、高圧燃料系170内の燃料圧力が所定の判定値以上となっているときには、吸入吸気量を増量する吸気増量処理を行うとともに、この吸気増量処理による機関出力の増大を抑える出力抑制処理を行う。 (もっと読む)


【課題】燃焼室内でのEGRガスの旋回性を向上させて耐ノッキング性能を向上させるとともに、高回転時での出力確保を可能とする。
【解決手段】1つの気筒に2つの吸気バルブ3、4、及び2つの排気バルブ5、6を備え、燃焼室8の中央部に点火プラグ9が配置されるとともに、排気の一部を吸気通路に導入するEGR装置22を備えたエンジン1であって、2つの吸気バルブ3、4及び2つの排気バルブ5、6の全てを開閉する通常開閉モードと、第1の吸気バルブ3及び第2の排気バルブ6を開閉して、燃焼室8内で吸気にスワールを発生させる部分開閉モードと、に切り換え可能であり、EGR装置22は、燃焼室8の外周部に向けてスワールの旋回方向に沿うように、EGRガスの排出方向が設定されている。そして、所定の低回転時には部分開閉モードが選択され、所定の高回転時には通常開閉モードが選択される。 (もっと読む)


【課題】検出空燃比の波形が近似する場合においても、どの気筒がインバランス状態にあるのかを決定(判別)することができる空燃比インバランス気筒決定装置を提供する。
【解決手段】所定の特定条件が成立した場合にインバランス気筒決定処理を実行するとき、空燃比センサ66L,66Rの出力値が、複数の気筒のうちの排気行程が連続する任意の一対の第1の気筒及び第2の気筒のうち排気行程が後に到来する同第2の気筒の排気弁開弁時に発生するブローダウンガスの空燃比に追従して変化する前に同第1の気筒の排気弁開弁時に発生するブローダウンガスの空燃比に追従して変化するように、可変排気タイミング制御機構22L,22Rにより、少なくとも同第1の気筒の排気弁の開弁タイミングを同特定条件不成立であるときに比較して遅角させる排気弁開弁タイミング遅角処理を実行した上でインバランス気筒判定処理を実行するように構成される。 (もっと読む)


【課題】カムシャフトのねじれに起因する気筒間の空燃比のばらつきを抑制する。
【解決手段】カムシャフト23に、このカムシャフト23のねじれを検出する歪みセンサ35を設ける。このカムシャフト23のねじれに基づいて、各気筒のバルブタイミングを算出し、算出したバルブタイミングに基づいて各気筒の吸入空気量を算出し、この吸入空気量に基づいて、各気筒の空燃比が目標空燃比となるように、燃料噴射量を各気筒毎に補正する。歪みセンサ35には、半導体基板に複数の拡散抵抗からなるホイートストンブリッジ回路を形成した半導体型歪みセンサを用いる。 (もっと読む)


【課題】吸気弁の閉弁時期がかなり遅角側となっている場合であっても、回転数の収束性及び回転数制御の応答性を高く維持することができるようにする。
【解決手段】内燃機関は吸気弁7の閉弁時期を変更可能な可変バルブタイミング機構Bと、スロットル弁17とを具備する。制御装置は、内燃機関のアイドル運転中には実際の機関回転数と目標アイドル回転数とにズレがあるときに、このズレがなくなるように吸気弁の閉弁時期とスロットル弁開度とを補正する回転数制御を行う。回転数制御を実行するにあたり、回転数制御の実行時に吸気弁の閉弁時期が遅角側の時期にある場合には、進角側の時期にある場合に比べて、実際の機関回転数と目標アイドル回転数との同一ズレ量に対する吸気弁の閉弁時期の補正量が大きくされると共にスロットル弁開度の補正量が小さくされる。 (もっと読む)


【課題】多様でより体感的な心地よさを演出することができるエンジンの制御装置を提供する。
【解決手段】エンジン17が運転状態にある場合、制御ユニット71が、エンジン17により発生する可聴音または体感可能な振動の周期を変化させるように燃焼調整部75を制御するようにした。 (もっと読む)


【課題】直噴式内燃機関の制御装置に関し、減筒運転から全筒運転への切り換え時に、空気が十分に供給されていない気筒内への燃料噴射を防止する。
【解決手段】複数気筒のうち選択的に任意の気筒における吸排気バルブの開閉動作を休止させると共に、該気筒の燃料噴射を停止させる減筒運転が可能な直噴式内燃機関の制御装置において、吸排気バルブの開閉動作を検出する筒内圧センサ16と、エンジン10の運転状態に応じて各気筒の燃料噴射を制御する燃料噴射制御部44とを備え、燃料噴射制御部44は、減筒運転から全筒運転に切り換わる時に、対象気筒の筒内圧センサ16の検出値が所定の閾値に達するまで、対象気筒の燃料噴射を停止させるようにした。 (もっと読む)


【課題】可変圧縮比機構を備えた内燃機関のアイドル制御の精度を向上させる。
【解決手段】アイドル運転中に点火時期及び吸気量の補正を行うにあたり、そのときの可変圧縮比機構により実現している圧縮比及び点火時期に基づいてアイドル運転中の要求吸気量を決定することとした、点火時期が同等の条件の下では、圧縮比が高いほど吸気量の補正幅を大きくする;そのために、電子スロットルバルブまたはアイドルスピードコントロールバルブの開度を大きく開き/閉じ操作する。 (もっと読む)


【課題】添加燃料の着火性および燃焼性を向上する。
【課題手段】内燃機関は、排気処理装置の上流側に設けられ燃料添加弁と加熱手段を含むバーナー装置と、バーナー装置付近の基準位置における排気流速の変動波形を変更するための変更手段と、バーナー装置および変更手段を制御する制御手段とを備える。制御手段は、基準位置における排気流速の変動に同期して燃料添加が実行されるよう燃料添加弁から間欠的に燃料を添加させ、且つ、燃料の添加タイミングt0が、基準位置における排気流速の絶対値が所定値未満である添加可能期間Aから外れているとき、添加タイミングt0を添加可能期間A内に含めるよう、変更手段を制御する。 (もっと読む)


【課題】火花点火式直噴エンジン1において、吸気弁21における少なくとも傘部21aの裏側部分に設けられた断熱層21cにカーボンが堆積したとの判定を容易に行えるようにする。また、カーボンが堆積したとの判定を行った場合には、そのカーボンを容易に除去できるようにする。
【解決手段】所定回転数以上のエンジン回転数での累積運転時間を検出し、この累積運転時間が所定時間を超えたときに、断熱層21cにカーボンが堆積したとの判定を行う。また、その判定を行った場合において、加速要求後のアクセル開度が所定開度以下の定常状態になったときに、吸気弁21と排気弁22との開弁期間のオーバーラップにより、吸気ポート18に既燃ガスを導入することによって、断熱層21cに堆積したカーボンを焼去する。 (もっと読む)


【課題】背圧調節装置を利用した暖機促進を好適に図ることが可能なエンジンの制御システムを提供する。
【解決手段】エンジンの制御システム100Aはエンジン50Aが備える排気弁55の最大リフト量を一定にしつつ、作用角を変更可能な作用角可変機構57と、排気系20で発生する背圧を調節可能な背圧調節弁40と、エンジン50Aの暖機時に排気系20で発生する背圧を高めるように背圧調節弁40を制御するとともに、排気弁55の作用角を拡大するように作用角可変機構57を制御するECU1Aと、を備える。吸排気弁54、55のバルブタイミングは排気弁55の作用角を拡大することで、吸排気弁54、55のオーバラップ量が拡大するように設定されている。 (もっと読む)


【課題】バルブタイミング調整装置を用いたエンジンに適用され、クランク角信号の異常時に、カム角信号に基づいてエンジン回転位置を判定するエンジン制御装置を提供する。
【解決手段】エンジン制御装置は、クランク角信号が異常であり(S400:Yes)、クランク軸に対してカム軸が進角している場合(S404:No)、カム軸が最値遅角位置に向けて回転するようにバルブタイミング調整装置を遅角制御する(S406)。エンジン制御装置は、疑似クランク角信号の信号間隔(30°CA)に対する今回推定進角量の余りを考慮して、初回の疑似クランク角信号の生成タイミングをタイマに設定し(S412)、気筒位置情報を更新し(S414〜S418)、今回推定進角量の余りを除いて今回と次回とのカム角信号間隔を推定する(S422)。エンジン制御装置は、推定カム角信号間隔の間、30°CA毎に疑似クランク角信号を生成する。 (もっと読む)


1 - 20 / 1,023