説明

Fターム[3H089AA71]の内容

流体圧回路 (27,807) | 制御形態及び制御回路 (3,713) | 特に複数のアクチュエータに特有の制御 (881)

Fターム[3H089AA71]の下位に属するFターム

Fターム[3H089AA71]に分類される特許

1 - 20 / 49


【課題】メータアウト絞りに起因する無駄なエネルギ消費を回避し、かつ、掘削アタッチメントの動きを操作者の意に沿うものとする建設機械を提供すること。
【解決手段】本発明に係る建設機械は、アーム閉じパイロット圧センサ17Aと、ブーム上げパイロット圧センサ17Bと、制御実行判定部300と、ブームシリンダ7のロッド側油室とブーム流量制御弁156とを繋ぐ第一油路、及びバケットシリンダ9とメータアウト絞り154Aとを繋ぐ第二油路の少なくとも一方に配置される可変リリーフ弁20B、20Cのリリーフ圧を制御するリリーフ圧制御部301とを備え、制御実行判定部300は閉じ方向のアーム操作量が上限側操作領域にあり、かつ、上げ方向のブーム操作量が中間操作領域にある場合に制御開始条件が成立したと判定し、リリーフ圧制御部301は可変リリーフ弁20B、20Cのリリーフ圧の設定を変更する。 (もっと読む)


【課題】本発明の課題は、ブーム回路を独立化した油圧回路を採用した油圧ショベルにおいて、上部旋回体の旋回時間と、この旋回時間でのブーム上昇量とを同期させることにある。
【解決手段】油圧ショベルにおいて、油圧シリンダは、第1油圧ポンプから吐出された作動油によってブームを駆動する。第1油圧回路は、第1油圧ポンプと油圧シリンダとを接続し、第1油圧ポンプと油圧シリンダとの間で閉回路を構成する。油圧モータは、第2油圧ポンプから吐出された作動油によって上部旋回体を旋回させる。第2油圧回路は、第1油圧回路から独立して設けられ、第2油圧ポンプと油圧モータとを接続する。モータ油圧低減部は、所定条件が満たされたときには、油圧モータの駆動油圧を低減させる。所定条件は、ブームを上昇させるブーム操作部材の操作と、上部旋回体を旋回させる旋回操作部材の操作とが共に行われ、且つ、ブーム操作部材の操作量が所定の閾値以上であることである。 (もっと読む)


【課題】多額の設備費用が発生および生産の停滞および新装置の据付場所の確保および既設設備の廃棄処理などの諸問題を改善するべく、機械類に設備された既設油圧制御システムを省力化油圧制御システムへ構築する制御方法およびその制御装置を提供する。
【解決手段】既設電気制御盤53より出力された従来の出力手段60などをもとにプロブラマブルロジックコントローラB3の実行処理により、既設油圧制御装置52に設けられた各電動機の制御回転数および各油圧ポンプの制御吐出量を演算する。前記した各電動機の制御回転数若しくはD/A変換したINV回転数指令より、インバータ制御装置15にある制御機能および主回路の実行処理によって前記各電動機の回転数を変更させ、同時に前記各油圧ポンプの吐出量を制御する。 (もっと読む)


【課題】ブームシリンダへ十分なメークアップ油を供給可能な油圧制御装置を提供する。
【解決手段】油圧制御装置は、第1および第2可変容量油圧ポンプ101,102と、第1制御弁111および第2制御弁112と、ポンプ吐出油で駆動されるブームシリンダ32と、第1および第2制御弁111,112を切り換え制御する操作レバー131,132と、ブームシリンダ32からの戻り油をタンク109に戻す戻り油路と、戻り油路からブームシリンダ32のロッド室32Rへメークアップ油を供給するメークアップ油路と、ポンプ傾転を操作レバー131,132の操作量が大きくなるほど増加させる傾転制御手段とを備え、傾転制御手段は操作レバー131,132がブーム下げ操作から中立位置に操作されたとき、所定時間だけ、第1および第2可変容量油圧ポンプ101,102の少なくとも一方の傾転を所定傾転に制御することを特徴とする。 (もっと読む)


【課題】アキュムレータが長寿命化が可能となる作業機の油圧回路を提供する。
【解決手段】アキュムレータ40とアキュムレータ40が接続される戻り管路35との間にストップ弁41を設ける。油圧シリンダ8,10が収縮する側に操作された時にのみストップ弁41を開いてアキュムレータ40を戻り管路35に連通させる。油圧シリンダ8,10が収縮する側に操作された時以外にはストップ弁41を閉じ、アキュムレータ41を戻り管路35に対して遮断する。これによりアキュムレータ40の不要な動作が無くなり、アキュムレータ40の延命化が達成される。 (もっと読む)


【課題】回路構成がシンプルな建設機械の走行操作装置を提供する。
【解決手段】油圧モータ21L,21Rと、走行用切換弁20L,20Rと、単一の操作レバー70と、スピンターン用操作手段と、第1〜第4プッシュロッド51r〜54r、ならびに、各プッシュロッド51r〜54rが押圧されたときに第1〜第4パイロット管路1P〜4Pを介して走行用切換弁20R,20Lにパイロット圧を出力する第1〜第4減圧弁51〜54を有するパイロット弁50と、スピンターンを許可する操作がなされたときに第3、第4パイロット管路3P,4Pの接続を切り換えることにより、第3減圧弁53からのパイロット圧を第4パイロット管路4P2を介して走行用切換弁20Rの後進側に入力させ、第4減圧弁54からのパイロット圧を第3パイロット管路3P2を介して走行用切換弁20Lの後進側に入力させる方向切換弁30とを備えていることを特徴とする。 (もっと読む)


【課題】ロードセンシング制御を行う油圧駆動システムにおいて、アクチュエータ操作がない場合にポンプ出力上昇制御により排気ガス浄化装置のフィルタ堆積物を効率的に燃焼除去し、アクチュエータ操作とポンプ出力上昇制御を同時に行っても互いに影響し合わず、かつ簡便で低コストな構成とする。
【解決手段】エンジン回転数検出弁13の上流側のパイロットポンプ30の吐出圧とタンク圧を切り換えてシャトル弁45に出力する電磁切換弁46と、差圧減圧弁11の出力圧をLS制御弁17bに導く油路12bに配置され、ロードセンシング制御の有効、無効を切り換える電磁切換弁48を備え、コントローラ49は、排気ガス浄化装置42が再生を必要とするときに、電磁切換弁46がパイロットポンプ30の吐出圧を疑似負荷圧として出力し、電磁切換弁48がロードセンシング制御を無効するように切り換える。 (もっと読む)


【課題】油圧アクチュエータを流れる作動油の最大流量と、実際に作業している最中の作動油の流量とを確認することができる作業車両を提供する。
【解決手段】アタッチメントを装着可能な作業装置4と、作動油の最大流量を設定する流量制限設定手段55と、作動油の現在の流量を計測するエンジン回転数センサー52、斜板角度センサー53、及びバルブ開度センサー54と、単動式若しくは複動式に切り換えるための切換バルブ51と、作動油の流量及び前記油圧アクチュエータが単動式若しくは複動式のいずれかであることを表示するための表示装置84と、流量制限設定手段55、エンジン回転数センサー52、斜板角度センサー53、バルブ開度センサー54、切換バルブ51、及び表示装置84、と接続する主制御装置16と、を備え、表示装置84には、流量制限設定手段55により設定した最大流量Qmaxと、現在の流量qとを同時に表示させる。 (もっと読む)


【課題】 高負荷が作用している高速作動中のアクチュエータを急停止したとき、当該アクチュエータを確実に停止させることができ、しかも、電動・発電機に吸収能力以上の高トルクが作用しないようにする。
【解決手段】 コントローラCは、アクチュエータを制御する操作弁1〜5,12〜15が中立位置にあるかどうかを判定する機能と、アクチュエータからの戻り油で回転する油圧モータAMの入力動力を検出する機能と、上記操作弁1〜5,12〜15が中立位置にあって、かつ、油圧モータAMの入力動力があらかじめ設定した第1しきい値を超えたとき、上記比例電磁絞り弁40,41の開度をあらかじめ定めた設定値以下に絞る機能とを備えている。 (もっと読む)


【課題】加工機の空気圧駆動機器への圧縮空気を低・高圧の2系統に分けて電力消費量を削減する圧縮空気の供給システムの提供。
【解決手段】プレカット加工機11の複数の空気圧駆動機器21に対しコンプレッサ31を介して駆動制御用の圧縮空気を供給する圧縮空気の供給システムにおいて、コンプレッサ31は、低圧設定の第1コンプレッサと高圧設定の第2コンプレッサとの2系統で配置され、プレカット加工機11の空気圧駆動機器21は、低圧動作向け駆動機器22,25と高圧動作向け駆動機器23,26とに分別され、低圧動作向け駆動機器22,25に対しては、第1コンプレッサ32から供給される圧縮空気をその使用圧力まで減圧して供給可能とし、高圧動作向け駆動機器23,26に対しては、第2コンプレッサ33から供給される圧縮空気をその使用圧力まで減圧して供給可能とした。 (もっと読む)


【課題】作業機械の油圧回路に関し、簡素な構成で外部油圧源の利用時における走行装置の作動を防止する。
【解決手段】走行モータ10と制御弁8とを接続する走行回路42b上に第一切換弁19a,19bを介装し、これに外部油圧源へと接続される外部作動油導入路63aを接続する。
また、走行回路42b上における第一切換弁19a,19bよりも制御弁8側に第二切換弁20a,20bを介装し、これにメイン回路43aから分岐形成された第一流路60aを接続する。
第一切換弁19a,19bは、走行モータ10と制御弁8とを連通させる第一位置、及び、外部作動油導入路63aと制御弁8とを連通させる第二位置に切換自在とする。
また、第二切換弁20a,20bは、走行モータ10と制御弁8とを連通させる第三位置、及び、走行モータ10と第一流路60aとを連通させる第四位置に切換自在とする。 (もっと読む)


【課題】切換弁の大きさを従来程度に保ちながら、油圧アクチュエータからの戻り油がタンクに排出されるまでの通過圧損を安価に低減させることができる建設機械の油圧回路を提供する。
【解決手段】第二作業機用第2切換弁22は、第一作業機用油圧アクチュエータ80からの戻り油をタンクTに排出させるための排出通路22cを備え、また、油圧回路10は、第二作業機用第2切換弁22の切り換え位置を制御する第二作業機用第2切換弁制御機構30、32、34を備え、第一作業機84の動作がなされる作業状態であって所定の条件に合致する特定の作業状態のときに、第二作業機用第2切換弁22を排出通路22cが連通するように切り換える。 (もっと読む)


【課題】小型化及び軽量化を図ることができる流体圧伝達装置を提供する。
【解決手段】流体圧伝達装置は、高圧駆動流体圧シリンダ75と、複数の低圧駆動流体圧シリンダ71〜74と、各低圧駆動流体圧シリンダ71〜74に低圧側流体圧伝達路61〜64を介して夫々接続される複数の流動流体圧シリンダ51〜54と、高圧駆動流体圧シリンダ75に接続される高圧側流体圧伝達路65とを備える。高圧側流体圧伝達路65は、各低圧側流体圧伝達路61〜64に流路切換弁91〜94を介して接続される。各流路切換弁91〜94は、低圧駆動流体圧シリンダ71〜74と従動流体圧シリンダ51〜54とを接続させる低圧路状態と、高圧駆動流体圧シリンダ75と従動流体圧シリンダ51〜54とを接続させる高圧路状態とに切換自在に構成される。 (もっと読む)


【課題】小型化及び軽量化を図ることができる流体圧伝達装置を提供する。
【解決手段】流体圧伝達装置は、高圧駆動流体圧シリンダ55,56と、低圧駆動流体圧シリンダ51〜54と、複数の従動流体圧シリンダ41〜46と、駆動流体圧シリンダ51〜56に接続された駆動側流体圧伝達路Lm1〜Lm6と、従動流体圧シリンダ41〜46に接続された複数の従動側流体圧伝達路Ls1〜Ls6とを備える。各駆動側流体圧伝達路Lm1〜Lm6は、開閉弁V11〜V66を介して全ての従動側流体圧伝達路Ls1〜Ls6と接続されている。 (もっと読む)


【課題】 単純な操作により、油圧作業機の横方向の安定性を確保する。
【解決手段】昇降シリンダ140、170、拡縮シリンダ136、138、166、168の制御は、制御バルブ530、540、550、560によって行われる。制御バルブ530は、昇降シリンダ、拡縮シリンダの伸縮、停止を制御し得る。制御バルブ540は、後側の昇降シリンダ170、拡縮シリンダ166、168の制御の可否を設定し、制御バルブ550は、前側の拡縮シリンダ136、138の制御の可否を設定し、制御バルブ560は、後側の拡縮シリンダ166、168の制御の可否を設定し得る。すなわち、前方のブレード130のみを使用するか、前後のブレード130、160両者を使用するかを、制御バルブ540によって選択できる。制御バルブ550が開のときは、ブレード130の降下と同時に、拡幅部材132、134が拡幅し、制御バルブ560が開のときは、ブレード160の降下と同時に、拡幅部材162、164が拡幅する。 (もっと読む)


【課題】旋回モータと他のアクチュエータの同時操作時にサチュレーション状態が生じても旋回モータに優先的に圧油を供給して旋回の速度変化を抑え、旋回単独操作においても旋回起動時のショックを抑え、良好な操作性を実現する。
【解決手段】旋回用の流量制御弁6aを旋回の最大要求流量を設定する固定絞り20とオープンセンタ型の方向切換弁40から構成し、圧力補償弁7aにエンジン回転数検出弁13からLS制御の目標差圧としてポンプ傾転制御部17に導かれた出力圧と同一の出力圧を導いて目標補償差圧を設定し、他の圧力補償弁7b,7c…には検出弁11からの出力圧であるポンプ吐出圧と最高負荷圧との差圧により設定する。シャトル弁9a…は旋回モータ3aの負荷圧として固定絞り20と方向切換弁40との間の圧力を検出する。 (もっと読む)


【課題】圧力損失を低減できると共に、車体のジャッキアップ力などの大きな押し付け力を発生させることができる建設機械の油圧駆動装置を提供する。
【解決手段】油圧ポンプと、該油圧ポンプから吐出される圧油が供給される複数の油圧アクチュエータと、油圧ポンプから複数の油圧アクチュエータに供給される圧油の方向及び流量を制御する方向切換弁を備えたコントロールバルブグループとを有する建設機械の油圧駆動装置において、ブームシリンダのボトム側油室の圧油をロッド側油室へ導く再生流量制御弁手段と、ブーム下げ操作時に、油圧ポンプから前記ブームシリンダのロッド側油室への圧油流量を制御するメータイン回路を設けたブーム用方向切換弁と、ブームシリンダのボトム側油室の圧力を検出する圧力検出手段と、ブーム用方向切換弁と前記再生流量制御弁手段とを制御する制御装置とを備えた。 (もっと読む)


本発明は、金属成形機(72〜77)等の加工機を液圧により作動させるための装置及び方法と、前記金属成形機を作動させるための装置の制御方法及び使用とに関する。加工機は、水等の加圧された流体を用いる少なくとも2つの圧力ジェネレータ(1,2)によって駆動され、圧力ジェネレータは、圧力をかけられた異なる流体、例えば作動液を用いて可変ポンプ(31〜33)によって作動させられる。
(もっと読む)


【課題】車両の走行速度に合わせてアプリケーションの作動速度が調節される油圧走行作業車両を提供する。
【解決手段】アプリケーション変速機30は、エンジン50によって駆動されるアプリケーション油圧ポンプ31と、アプリケーション(モア72)を駆動するアプリケーション油圧モータ32と、アプリケーション油圧ポンプ31とアプリケーション油圧モータ32との間で作動油を循環させるアプリケーション油圧回路33と、ランニング油圧回路13に介装される走行速度検出絞り(第一、第二オリフィス21、22)の前後差圧が増大するのに応動してアプリケーション油圧モータ32に供給される作動油の流量を増大させるアプリケーション流量調節手段(流量調節弁23)とを備える構成とした。 (もっと読む)


【課題】流体圧アクチュエータにかかる荷重が増加しても、荷重の増加に応じた専用のコントロール弁を用いることなく、微操作域でも良好な操作性が得られる流体圧回路を提供する。
【解決手段】コントロール弁26は、パイロット弁27の操作量の増加に応じてブームシリンダ24に供給する作動油を増加させるように変位する。このコントロール弁26の変位量に応じてポンプ25からタンク28に戻る作動油の流量を減少させるセンタバイパス通路29がある。このセンタバイパス通路29中にあってコントロール弁26より下流側にバイパス流量制御弁32を設ける。コントローラ44は、このバイパス流量制御弁32を、パイロット弁27がブームシリンダ24にかかるフロント荷重Wを自重と逆方向に動作させる操作量および荷重の増加分に応じて絞る方向に制御する。 (もっと読む)


1 - 20 / 49