説明

Fターム[4C082AA01]の内容

放射線治療装置 (15,937) | 治療のための照射線源 (744) | 加速装置 (494)

Fターム[4C082AA01]に分類される特許

141 - 160 / 494


【課題】一台の粒子加速器によって放射線治療用及びRI製造用の各用途に応じた電流量の加速粒子を取り出すことを可能とし、その結果として、稼働率の向上を図り易くなる粒子加速器及び粒子加速システムを提供することを目的とする。
【解決手段】放射線治療用の陽子ビームB1及びRI製造用の陽子ビームB2のそれぞれをサイクロン3から取り出すために、サイクロン3に少なくとも二つ設けられた取出ポート25,27と、サイクロン3内を周回する負イオンPを取出ポート25,27に誘導するフォイル21b,23bと、負イオンPをサイクロン3に供給するイオン源18と、フォイル21b,23bの進退量及びイオン源18による負イオンPの供給量の少なくとも一方を制御して取出ポート25,27から取り出される陽子ビームB1,B2の電流量を制御する制御装置35と、を備える粒子加速システム1Aである。 (もっと読む)


【課題】荷電粒子ビームの最大利用可能飛程の減少を抑えながら、ビームスポットの線量分布を拡大する粒子線照射装置を得る。
【解決手段】照射制御手段14は、複数の小領域のうち照射対象とする小領域を荷電粒子ビームが走査するように第一走査手段3を制御し、照射対象とする小領域を複数の小領域のうち別の小領域に変更するように第二走査手段4を制御し、かつ、第二走査手段4による標的領域における荷電粒子ビームの走査速度よりも、第一走査手段3による標的領域における荷電粒子ビームの走査速度の方が高速であるように制御する。 (もっと読む)


【課題】必要なビームエネルギー変更回数が多い場合でも、偏向電磁石を大きくすることなく、高速にビームエネルギーを変更できる粒子線治療装置を提供する。
【解決手段】ビームエネルギー減衰部を備えたビームエネルギー変更部を複数設け、ビームが複数のビームエネルギー変更部を順次通過するようにビームを偏向し、一つのビームエネルギー変更部をビームが通過している間に、他のビームエネルギー変更部のビームエネルギー減衰量を変更するようにした。 (もっと読む)


グライナッヘルカスケード(20)の形式で、ダイオード(24、30)により相互接続される、それぞれ直列に接続される2組(2、4)のコンデンサ(26、28)を備えるカスケード加速器(1)は、コンパクトな構造に、特に高い達成可能な粒子エネルギーを含むためのものである。したがって、カスケード加速器は、1組(2)のコンデンサの電極内の開口部により形成され、最高電圧を伴う電極(12)の領域に配置される粒子源(6)に向けられる加速チャネル(8)を有し、電極が、加速チャネル(8)を別として、固体または液体の絶縁材料(14)で相互に絶縁される。
(もっと読む)


RF生成器が、入力部分と出力部分、さらに前記入力部分と前記出力部分との間に伸長する開口部を有する構造物を含んで成り、出力部分は第1の空洞および第2の空洞を有し、前記第1および第2の空洞は互いに電磁気的に結合しないように互いに離されている。RFエネルギーを与える方法が、電子ビームを受け入れる工程と、前記電子ビームを使用して生成される第1のRFエネルギーを、第1の空洞を通して与える行程と、前記電子ビームを使用して生成される第2のRFエネルギーを、第2の空洞を通して与える行程と、を含み、前記第1および第2の空洞が、互いに電磁気的に連結されないように、互いに離れている。
(もっと読む)


【課題】荷電粒子照射システムにおいて、ビーム走査とエネルギースタッキングにより動く照射対象を照射し、一様な線量分布を形成したいニーズがある。
【解決手段】目標ビーム電流値を設定してイオンビームを出射する荷電粒子ビーム発生装置1と、走査電磁石23,24及びエネルギーフィルタ26を有し、イオンビームを出射する照射装置21と、照射対象の位置を測定し、照射対象の移動によって時間変化する信号を出力する監視装置66を備え、監視装置から出力される信号に基づいて、イオンビームの出射タイミングを決定し、イオンビームのエネルギーを順次変更して各エネルギーでリペイント照射することで、上記課題を解決する。 (もっと読む)


【課題】照射対象の移動に起因して生じる有限幅の呼吸位相領域でのイオン線照射の偏在を解消し、照射対象に対して計画にあった線量分布の放射線を照射システムを提供する。
【解決手段】放射線を生成する放射線生成装置1と、放射線生成装置から出射された放射線の線量を計測する線量計測装置と、照射対象の位置を計測する変動計測装置212と、放射線生成装置1からの放射線の出射開始及び出射停止を制御する制御装置を備え、この照射装置が、目標照射位置情報,線量計測装置からの線量情報及び変動計測装置からの照射対象の位置情報に基づいて、照射対象の照射位置を複数に分割した分割領域ごとに目標線量に達したかを判定し、目標線量に達していない層領域に対して放射線を照射するように出射開始及び出射停止を制御する。 (もっと読む)


【課題】ビーム取出し窓を照射対象に近づけることができ、安全なビーム照射を行うことができる回転ガントリを有する回転照射型の粒子線治療装置を得る。
【解決手段】荷電粒子ビームを走査するビーム走査装置とこのビーム走査装置よりも下流側にビーム取出し窓が設けられた第1のダクトを有し、この第1のダクト内部を通過させて荷電粒子ビームを照射対象に照射する照射装置と、第2のダクトを有し、加速器から出射された荷電粒子ビームを第2のダクトの内部を通過させて照射装置に輸送するビーム輸送装置と、ビーム輸送装置の一部と照射装置とを搭載した回転ガントリと、ビーム取出し窓を荷電粒子ビームの軸方向に移動可能とする第1のダクトのダクト伸縮手段とを備え、荷電粒子ビームを照射対象に照射する場合にはダクト伸縮手段を伸ばし、回転ガントリを回転する時はダクト伸縮手段を縮める。 (もっと読む)


【課題】
重イオン加速器に関する。重イオン加速器は電荷と質量の比が完全電離の状態でも2前後で、電場加速では電子や陽子に比べて核子あたりの加速効率は良いとはいえない。本発明は重イオン加速器の類例のないほどの超小型化を可能にする。あるいは大型にすることで、類例のないほどの高エネルギー重イオンを可能にする。
本発明はその応用の一つとして、重粒子線によるがん治療装置に大きなインパクトを与える。エネルギーが400MeV/u(uは核子を表す)強の重粒子線は放射線耐性の強いあるいは、低酸素腫瘍で、従来の放射線治療の効果が少ない悪性の腫瘍に治療効果が高い事がしられている。しかし、そのための重粒子線癌治療装置は規模が大きく、これを収容する建屋も既存の病院に収まらないほど長大で、初期コストも維持費も極めて割高なため、悪性腫瘍の治療などには極めて良い成績がしられているのも関わらず、一般への普及が遅れている。にもかかわらず、そのすぐれた治療効果から重粒子線加速器の小型化の実現とその普及はがんの放射線治療医学界から切望されていることである。
【解決手段】 重イオンを内包した高密度の中空電子雲あるいは電子リングを本発明で提案しているような特殊で新しいレーザー照射技術等によって瞬時に生成し、中空電子雲を直のRF電場により重イオンと共に瞬時に引き出し・加速する方法を提供することで、高い加速効率かつ極めて小型の安価な加速器を実現可能せしめる。その応用のひとつとして要望の強い、既設の病院のサイズに設置可能な重粒子の超小型テーブルトップ重イオン加速器を実現せしめる。 (もっと読む)


【課題】放射線治療における、高速な6自由度のベッド位置決め法を提供する。
【解決手段】本発明では、複数方向からX線透視画像を撮影し、各画像の撮影方向に対応するDRRを生成し、最適化アルゴリズムにて6自由度の患者ずれ量を仮生成する。ずれ量の面外回転成分を計算し、DRR生成時からの変化が既定値より大きい場合にDRRを再生成し、小さい場合にずれを各DRRの平面変換で近似する。ずれ量を各DRRの平面変換成分へ射影し、DRR生成時から既定位置以上変化した場合にDRRを平面変換する。変換されたDRRとX線透視画像の類似度の総和(総類似度)を計算し、総類似度を増大させるよう最適化アルゴリズムで探索範囲を更新する。探索範囲が収束条件を満たす場合に計算を終了し、満たさない場合、再び最適化アルゴリズムで仮のずれ量を生成し、計算を繰り返す。これにより上記課題を解決する。 (もっと読む)


【課題】シンクロトロン出射時の周回ビーム粒子数やチューンの変化に対し、高精度な照射ビーム電流の制御を安定に維持できる粒子線治療システムを提供する。
【解決手段】粒子線治療システム100は、シンクロトロン200と、ビーム輸送系300と、照射装置500から構成される。制御装置600は、ビーム輸送系300または治療室400内のビームモニタ52(33)で荷電粒子ビームの電流値を検出し、該電流値が予め定めた目標値に近づくように出射装置26に印加する高周波電圧の振幅と周波数を制御するフィードバック系を構成し、かつシンクロトロン200を周回する荷電粒子ビームの粒子数を検出するビームモニタ28の出力信号に基づきフィードバック系の利得を調整する利得演算器70を備えている。 (もっと読む)


この発明は、少なくとも部分的に照射されているか、または照射されることになっている物質に対する粒子ビーム(34a)の効果を決定するための方法であって、前記粒子ビーム(34a)を特徴付ける少なくとも1つのパラメータおよび物質の少なくとも1つの特性から、前記物質内の前記粒子ビームの前記効果が微視的ダメージ相関を基礎として少なくとも部分的に決定される方法に関する。さらにこの発明は、目標ボリュームについての照射プラン、及び粒子ビーム(34a)用いて目標ボリュームを照射する方法に関する。また本発明は、本発明による方法(200)を実行するために構成された特に能動的ビーム修正装置、および/または受動ビーム修正装置を備えた少なくとも1つのビーム修正装置(32,70)を有する照射装置(30,66)に関する。 (もっと読む)


【課題】シンクロトロンの出射ビーム電流の増強と安定化により、高い線量率が安定に得られる粒子線治療システム及びシンクロトロンの運転方法を提供する。
【解決手段】粒子線治療システム100は、シンクロトロン200と、ビーム輸送系300と、照射装置500から構成される。制御装置600は、シンクロトロン200で荷電粒子ビームを所定のエネルギーまで加速したのち、加速空胴25に印加した高周波電圧を少なくとも一度OFFしたのち再びONし、基本波成分とその整数倍の周波数を有する高調波成分を合成した高周波電圧を加速空胴25に印加した状態で、荷電粒子ビームを出射装置26と出射偏向装置27を用いてビーム輸送系300へと出射する。 (もっと読む)


【課題】荷電粒子ビームを進行方向に垂直な方向に走査して照射する粒子線治療装置において、ビーム走査中に周回ビーム電荷量が不足することがなく、横方向の線量分布がシンクロトロンの二つ以上の運転周期にわたって形成されることによる横方向線量一様度の悪化を防止することができる荷電粒子照射システムを提供することにある。
【解決手段】イオンビームを加速して出射するシンクロトロン2と、走査電磁石202を通過したイオンビームを照射対象に照射する照射野形成装置200と、走査電磁石202による荷電粒子ビームの照射位置の一回の走査が完了してから次の回の走査を開始するまでの期間におけるシンクロトロン2の周回ビーム電荷量に基づいて、シンクロトロン2の運転パターンを変更する制御装置を備えたことにより、上記課題を解決する。 (もっと読む)


【課題】オペレータが視認できる患者照射領域の模擬画像を作成することにより、安全性向上を図ることのできる粒子線治療装置の位置決めシステム及び粒子線治療システムを提供する。
【解決手段】 準備段階にて粒子線拡大起点位置21をX線線源位置22と想定して計画したDDR患者画像36を、ステップ110にて算出した患者位置誤差量の分、シフトし(画像シフト演算42)、ステップ105におけるコリメータX線撮像画像35から、コリメータ領域を抽出し、更にこのコリメータ領域が粒子線拡大起点位置21で撮影した画像となるように補正演算を行い(コリメータ領域抽出及び補正演算43)、補正されたコリメータ領域を画像シフト演算42の演算結果である画像に重ねて描画する(追加描画演算44)。これにより、模擬X線画像38が作成される。 (もっと読む)


【課題】意図しないビームの取り出しを抑制できる3次元スキャニング照射を実現する。
【解決手段】本発明に関わる粒子線照射装置は、加速器5内で加速され加速器5内の軌道を進む荷電粒子ビームに、該荷電粒子ビームを挟んで配置されるRF−KO電極12により、RF−KO電圧による電場を印加して荷電粒子ビームの幅を広げて荷電粒子ビームの一部をデフレクタ電極13を介して加速器5内から取り出す粒子線照射装置1であって、RF−KO電極12により、軌道振幅が大きくRF−KO電圧をオフした場合に加速器5内から取り出される可能性が高い荷電粒子ビームの振動数に共振する高周波電場を荷電粒子ビームに印加する制御を行うビーム選択取出し制御部S1を備える。 (もっと読む)


【課題】放射線の照射時間を短縮することが可能な放射線照射システムを提供する。
【解決手段】照射位置制御部44は、線量を積算する線量積算部44aと、照射位置変更完了信号を取得する照射位置変更完了信号取得部44bと、一の照射位置において、積算された線量が照射すべき線量に達し、かつ、照射位置変更完了信号が取得されない場合に、制御渋滞であると判定し、その後に照射位置変更完了信号が取得された場合に、制御渋滞が解消されたと判定する制御渋滞判定部44cと、照射位置変更装置31へ照射位置変更開始信号を出力する照射位置変更開始信号出力部44dと、を備え、制御渋滞であると判定された場合には、線量積算部44aは、モニタリングされた線量を次の照射位置における線量として積算し、照射位置変更開始信号出力部44dは、制御渋滞が解消されたと判定された際に、次の照射位置に関する照射位置変更開始信号を出力する。 (もっと読む)


【課題】本発明の課題は、線量不足の領域が発生してしまうことを防ぎつつ、精細な線量分布形成を可能とする粒子線照射装置を提供することにある。
【解決手段】本発明に関わる粒子線照射装置は、加速器6から送られる粒子線b1を照射対象P1に照射する粒子線照射装置1であって、照射対象P1に照射される粒子線b1の照射量を測定する線量モニタ3と、粒子線b1を照射対象P1に照射中の粒子線b1の線量を、線量モニタ3から送信される照射量の信号に基づいて、積算する第1のカウンタC1と、粒子線b1を照射対象P1に照射しないように設定される非照射時の意図せず照射対象P1に照射される粒子線b1の漏れ線量を、照射量の信号に基づいて、積算する第2のカウンタC2とを備える。 (もっと読む)


【課題】本発明の目的は、ガントリー回転によるSOBPの一様度悪化を抑制できる粒子線治療装置を提供することにある。
【解決手段】荷電粒子ビーム発生装置2から出射された荷電粒子ビームを照射対象に照射する照射野形成装置13は、RMW装置20を備える。RMW装置20のRMW21は、荷電粒子ビーム進行方向に対して直交する平面内を移動可能である。ガントリー角度が変わりRMW21へのビーム入射形状が変わったときには、テーブル25をビーム進行方向と直交する平面内で制御機構により移動させ、RMW21のビーム入射位置を変え、RMW21へのビーム入射形状が変わらないようにする。 (もっと読む)


【課題】被検者に対する電離性放射線の投射線量の指示を管理するためのデータに対するアクセスを改良すること。
【解決手段】このシステム100は、遠隔オフィス112と、被検者105に電離性放射線135を照射するシステム120との間で通信するためにブロードバンド接続118を確立する要求を顧客から受信し、電離性放射線135の照射が閾値を超える事象に関連する状態情報および個々の線量データを自動的に通信し、自動的に、報告240を生成し、ブロードバンド接続118を介して、顧客に報告240を通信する。報告240は、電離性放射線135の照射が閾値を超える事象の指示、ならびに、他のシステム170の母集団から収集される放射線線量データおよび状態情報によって規定されるベンチマークに対する、事象発生時のシステム120の個々の放射線線量データおよび個々の状態情報の比較を含む。 (もっと読む)


141 - 160 / 494