説明

Fターム[4C082AC04]の内容

放射線治療装置 (15,937) | 放射線の種類 (1,317) | 特定放射線 (1,209) | 粒子線 (786)

Fターム[4C082AC04]の下位に属するFターム

Fターム[4C082AC04]に分類される特許

61 - 80 / 229


【課題】患部の移動に合わせて精度よく照射野を追従させ、患部組織に正確に粒子線ビームを照射できる粒子線治装置を得ることを目的とする。
【解決手段】呼吸に伴う患部の変位を測定する患部変位測定装置9と、加速器1から供給された荷電粒子ビームの軌道を偏向させるステアリング電磁石6と、ステアリング電磁石6を経由して入射した荷電粒子ビームを所定の照射形状に加工して患部に照射する照射装置4と、ステアリング電磁石6と照射装置4との間に設置され、照射装置4に入射する荷電粒子ビームのビーム位置を測定するビーム位置モニタ5と、測定したビーム位置に基づくフィードバック制御機能を有し、測定した患部の変位に対応して荷電粒子ビームの軌道を偏向するように、ステアリング電磁石6の励磁量を制御するステアリング電磁石制御部10と、患部の変位に対応して照射装置4を移動させる照射装置位置制御部4と、を備える (もっと読む)


本発明は、対象物(34)を照射する装置(1)を起動する方法(41)に関する。対象物(34)は、少なくとも1つの照射される標的体積領域(14,20)と、少なくとも1つの保護される体積領域(10,16,17,21)とを含む。保護される体積領域(10,16,17,21)に対して少なくとも1つの信号線量値(30,31)が規定される。対象物(34)の照射(43)中、保護される体積領域(10,16,17,21)に導入された線量が判定され(44)、導入された線量が保護される体積領域(10,16,17,21)の少なくとも1つの箇所(25)で少なくとも1つの信号線量値(30,31)を超えた場合、直ちに信号が出力される(47,48)。
(もっと読む)


【課題】放射線治療の前に、治療装置と患者或いは他の治療装置との物理的干渉の有無をチェックする干渉チェックシミュレーションの精度を向上させる事を目的とする。
【解決手段】患者24を光学ステレオカメラ23により撮影した光学画像と放射線治療の治療計画に用いるCT画像とを関連付けされた患者3Dモデル15を生成する患者3Dモデル撮影部5と、患者3Dモデル15と治療装置の3Dモデルに基づいて物理的干渉の有無をチェックする干渉チェックシミュレーション部2とを備えた。 (もっと読む)


a)プラスチックまたは水等価材料のクッション(4)、あるいは、プラスチックまたは水等価材料の少なくとも2つのソフトシートの積層体(4)と、b)クッションの表面またはプラスチックまたは水等価材料のソフトシートの表面に設けられた、あるいは、クッション中に埋め込まれた、または、プラスチックまたは水等価材料のソフトシート中または2つのプラスチックまたは水等価材料のソフトシート(4)の間に埋め込まれた、複数の金属粒子(8)好ましくは金属球体の層(6)であって、組織に入射する前の粒子線装置の出射口におけるビーム走査領域の断面積に少なくとも相当する断面積を有する層(6)と、を有する、ことを特徴とする粒子線治療用フレキシブルエネルギーフィルタ(2)。
(もっと読む)


【課題】小型化が可能な構成で、高いビーム制御性で、安定して荷電粒子を高エネルギーに加速する。
【解決手段】このパルス出力中で最も高い強度をもつ主部の強度Iは、第1の電離度までこのガスを電離できるだけの強度である。ただし、Iの強度を持つパルスレーザー光がプラズマ中で相対論的自己集束された際には、第1の電離度よりも高い第2の電離度までこのガスが電離されるように、Iは設定される。また、この主部の前に、Iよりも低い強度Iをもつ前駆部が存在する。前駆部の強度Iは、第1の電離度よりも低い第3の電離度までこのガスを電離できるだけの強度とする。この前駆部によって、主部が照射される前のプラズマ中において、光導波路構造が形成される。主部の照射においては、パルスレーザー光をこの光導波路構造中において伝搬させることができるため、充分な長さの加速場をより安定して形成することができる。 (もっと読む)


【課題】照射装置が設置される建屋の小型化を図ることができ、設備コストの低減を図ることが可能な加速粒子照射設備を提供すること。
【解決手段】本発明の加速粒子照射設備1は、回転軸P周りに回転可能な回転部34を有すると共に粒子加速器で生成された加速粒子を照射する照射装置3と、照射装置3を収納する収納室8と、を備え、照射装置3の回転部は、回転部本体34から径方向の外側に張り出す張出部33b,38を有する構成とする。そして、収納室8の放射線遮蔽壁86,87は、照射装置3の回転部の周縁部分となる張出部33b,38を収容可能な収容凹部92,91を有する構成とする。これにより、照射装置3の形状に対応した収納室8を実現することができ、収納室8の寸法を抑えることが可能となり、建屋6の小型化を図る。 (もっと読む)


【課題】機能の特化と分散により効率よく採算性のよい粒子線治療装置の導入を可能にする粒子線治療ネットワークシステムを得る。
【解決手段】粒子線治療装置本体24を有する粒子線治療センター5と、この粒子線治療センター5と提携する窓口病院1a、1b、1cに、それぞれ粒子線治療装置本体24の線源データ及びジオメトリデータを有する放射線治療計画装置16、21を設置し、窓口病院1a、1b、1cの放射線治療計画装置16にて治療計画を立案し、この立案した治療計画を粒子線治療センター5に送り、粒子線治療センター5では、放射線治療計画装置21にて、送られた治療計画を確認し、確認された治療計画に基づき、粒子線治療を行うようにした。 (もっと読む)


現在市販されている陽子線治療システムに関連するサイズ、重量、コスト、及び放射線ビームロスを低減する改善点を有する、陽子線治療を行うためのガントリ。該ガントリは、磁石が双極子、及び四重極を含み得る色収差補正超電導多機能電磁石システムを利用する。ランプ可能な磁石システムの色収差補正特性により、磁場強度、又は双極子の設定を変更することなく、広範囲の様々なエネルギーによってビームのエネルギーが急速に変化する該ビームの伝送が容易になる。該磁石は、低温超電導体、又は高温超電導体から形成することができる。ガントリ設計は、ビーム走査をさらに統合するが、ガントリのアイソセントリックは維持する。該ガントリによって、現行の技術よりもはるかに大きい割合でビームを伝送できるため、放射線を遮蔽する要件、及び多量の陽子ビームを生成するために加速器に求められる要求が緩和される。 (もっと読む)


【課題】イメージングステーションの占有スペースを削減することで粒子線治療施設の敷地面積を縮小できる粒子線治療施設を提供することにある。
【解決手段】本発明は、加速された荷電粒子ビームを照射対象に出射する照射装置2、照射対象を支持する支持台10、及びX線を発生して前記照射対象のX線撮像をするX線撮像装置8a,8b,9a,9cを設置する治療照射室3と、X線撮像装置8a,8b,9a,9cを操作する機器を設置するイメージングステーション4と、治療照射室3とその外部である廊下6とをつなぐ通路5とを備え、イメージングステーション4を、この廊下6から治療照射室3へ向かう通路5の終端部に設置することによって、上記課題を解決する。 (もっと読む)


【課題】 荷電粒子の径皮注入による生体効果及びゴミ除去及び獣毛等の付着物の付かない機能性布を提供する。
【解決手段】 半導体粒子を繊維中及び/又は繊維高分子の結晶界面領域もしくは非結晶領域に選択的に分散させてなる、赤外線及び荷電粒子放射特性を有する機能性繊維を使用した機能性製品において、半導体粒子の原料として、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1−1.0eVである半導体又は禁制帯を有する半導体を用い、その半導体粒子を絶縁体繊維マトリクスに0.001−10wt%配合して、繊維中及び/又は繊維表面に配列させることにより、生体赤外線及び荷電粒子放射能の大きな繊維を作成した。半導体粒子は繊維高分子結晶の間隙に浸透し、擬似的に直列接続され、体温程度の加熱での励起で発生した粒子間の電位が積算され、大きな起電力を発生し、生体効果を発揮する。 (もっと読む)


【課題】ビーム取り出しの高速ON/OFFが可能な環状加速器、ならびにそれを用いた、柔軟な照射に対応可能な粒子線治療システムを提供する。
【解決手段】上記課題を解決する本発明の特徴は、周回する荷電粒子ビームを加速・減速する環状加速器200と、環状加速器を制御する加速器制御装置501とを備え、環状加速器200は、荷電粒子ビームのビーム軌道上に、少なくとも1台の六極電磁場成分発生装置26と、この六極電磁場成分発生装置26の設置位置での荷電粒子ビームのビーム軌道を変位させる少なくとも1台の軌道偏向電磁石とを有し、加速器制御装置500は、六極磁場成分発生装置26を励磁して環状加速器200から荷電粒子ビームを取り出している期間に、軌道偏向電磁石の励磁を開始するように制御することにある。 (もっと読む)


本発明は、放射線治療に使用する粒子線治療装置、詳細には、粒子ビームをガントリの回転軸に直交して供給する小型アイソセントリックガントリに関する。このガントリは、3個の双極磁石を含み、最終双極磁石の角度を90度未満とし、この最終双極磁石の最も好適な偏向角度を60度とする。 (もっと読む)


【課題】スポットスキャニング照射で治療精度を容易に向上できる粒子線治療システムを提供する。
【解決手段】粒子線治療システム100は、シンクロトロン200とビーム輸送系300と照射装置500から構成される。制御装置600は、照射装置500に荷電粒子ビームを供給する際には出射装置26に印加する高周波電力をONし、荷電粒子ビームの供給を遮断する際には出射装置26に印加する高周波電力をOFFした後に、シンクロトロン200に設置した電磁石の励磁量を変化させて安定限界を広げ荷電粒子ビームの出射を停止し、次に荷電粒子ビームの供給を再開する前に安定限界を狭め荷電粒子ビームの一部を出射し、該荷電粒子ビームをビーム輸送系300に設置した電磁石で遮断する。 (もっと読む)


本発明は運動する目標体積を照射する照射装置を制御するための装置に関するものであり、この装置は、代替運動信号を評価するための評価装置と、運動する目標体積の画像データを記録するための画像形成装置とを有し、画像形成装置のための制御装置が、画像形成装置を代替運動信号の評価に依存して作動または非作動にするよう構成されており、さらに画像形成装置により記録された画像データを評価するための画像評価装置と、画像データの評価に依存して照射制御装置により作動または非作動にされる照射装置とを有する。本発明はさらにこの種の装置で実施される、照射装置の制御方法に関する。
(もっと読む)


本発明は、目標体積の照射計画方法に関するものであり、この方法では、個別に走査可能な目標点を備える目標領域が設定され、目標領域が繰り返しスキャンされる再スキャン試行の数が、該目標領域の目標点が再スキャン試行中に異なる頻度で走査されるように設定され、これにより該目標点の少なくとも一部が各再スキャン試行の際に走査されないようにされ、ここで目標点の走査は、各再スキャン試行で走査されない少なくとも1つの目標点において、この目標点が走査される最後の再スキャン試行の前に、この目標点が走査されない少なくとも1つの別の再スキャン試行が行われるように分散される。本発明はさらに、対応する照射方法、対応する照射計画装置、照射装置を制御するための対応する制御装置、ならびにこの種の照射装置に関する。
(もっと読む)


【課題】積層照射における線量校正を各層事に行え、積層照射時における線量校正の精度を向上する。
【解決手段】標的体積の所定領域を粒子線の進行方向に複数の層に分割して粒子線を照射する粒子線治療装置の線量校正方法であって、粒子線治療装置は、粒子線の線量をカウント値としてモニタする線量モニタを有し、所定領域内に照射野を形成する粒子線照射部105と、粒子線照射部の動作を制御する治療制御部102とを備え、線量校正方法は、
複数の層のうち各層に粒子線を照射したときの物理線量をカウント値で除して各層ごとに校正係数αiを求めるステップを有する。 (もっと読む)


【課題】照射自由度が高く、正常組織への照射量を低減できる粒子線治療装置を得ることを目的とする。
【解決手段】供給された荷電粒子ビームBecを治療計画に基づく3次元の照射形状に整形するよう前記荷電粒子ビームをそれぞれ異なる方向に走査制御する2つのスキャニング電磁石2a,2bを備えた走査電磁石2と、走査電磁石2により走査された荷電粒子ビームBecが走査電磁石2の下流に設定された複数のビーム軌道7のうち、選択されたひとつのビーム軌道を通るように荷電粒子ビームBecの軌道を切り替える偏向電磁石4,5と、を備え、走査電磁石2からアイソセンタまでの距離を長くとるようにした。 (もっと読む)


【課題】実データに基づいたより実現実に近い高精度なビーム照射位置を実現できる粒子線照射装置が得られる
【解決手段】X方向とY方向逆写像数式モデルは、それぞれ、荷電粒子ビームの照射位置平面における目標照射位置座標を2変数で表示したときの前記2変数のいずれも含んだ多項式であり、前記多項式に含まれる未知の係数は、前記X方向とY方向スキャニング電磁石に予め設定した複数組のX方向とY方向指令値を入力して、荷電粒子ビームを制御し、実際に照射されたそれぞれの照射位置座標の実データに対して、一部のデータに低い重み付けをする重み付け最小二乗法により求める。 (もっと読む)


【課題】粒子線の侵入位置や照射方向の自由度を高めつつ、かつ被検体から発生するガンマ線を検出するPET検出部を備えることを課題とする。
【解決手段】粒子線照射部103は、天板100に載置された被検体に向けて粒子線を照射する。すると、PET検出部201は、被検体から発生するガンマ線を検出素子にて検出する。また、天板110およびPET検出部201は、照射に応じて移動する。このため、補正係数算出部300は、減弱マップの原点とPET検出部201の検出素子との相対的な位置関係を示す座標を、天板110およびPET検出部201の移動量を用いて算出し、算出した座標を用いて吸収補正係数を算出する。そして、画像生成部202は、PET検出部201によって検出されたガンマ線と補正係数算出部300によって算出された吸収補正係数とを用いて画像を生成する。 (もっと読む)


グライナッヘルカスケード(20)の形式で、ダイオード(24、30)により相互接続される、それぞれ直列に接続される2組(2、4)のコンデンサ(26、28)を備えるカスケード加速器(1)は、コンパクトな構造に、特に高い達成可能な粒子エネルギーを含むためのものである。したがって、カスケード加速器は、1組(2)のコンデンサの電極内の開口部により形成され、最高電圧を伴う電極(12)の領域に配置される粒子源(6)に向けられる加速チャネル(8)を有し、電極が、加速チャネル(8)を別として、固体または液体の絶縁材料(14)で相互に絶縁される。
(もっと読む)


61 - 80 / 229