説明

Fターム[4C082AC05]の内容

放射線治療装置 (15,937) | 放射線の種類 (1,317) | 特定放射線 (1,209) | 粒子線 (786) | 陽子、α線、荷電粒子線 (367)

Fターム[4C082AC05]に分類される特許

81 - 100 / 367


【課題】高い信頼性でビーム毎の線量を計測すると共に、瞬間的なビーム出射による漏れ線量に対しても高い感度で計測することができる粒子線ビーム照射装置を提供する。
【解決手段】本発明に係る粒子線ビーム照射装置は、粒子線ビームの出射と停止を制御する出射制御部と、患部に対する前記粒子線ビームの照射位置を順次変更する制御部と、患部に向けて照射される粒子線ビームの線量率を測定する第1、及び第2の線量計と、第1、及び第2の線量計から出力される線量率を所定の判定期間毎に累積して第1、及び第2の区間線量測定値を夫々求め、第1の区間線量測定値が予め定められた第1の基準範囲を超えた場合、及び、前記第2の区間線量測定値が予め定められた第2の基準範囲を超えた場合の少なくとも何れかの場合に、異常有りと判定する第2の異常判定を行い、粒子線ビームの出射を停止させるインターロック信号を出力する異常判定部と、を備える。 (もっと読む)


【課題】粒子線ビーム形状の劣化を低く抑えつつ、簡素な構成でスキャン時の線量2次元分布を測定し表示することができる粒子線ビーム照射装置を提供する。
【解決手段】本発明に係る粒子線ビーム照射装置は、粒子線ビームを生成するビーム生成部と、粒子線ビームの出射を制御するビーム出射制御部と、粒子線ビームを2次元走査するビーム走査部と、複数の第1の線状電極が第1の方向に並列配置され、複数の第2の線状電極が第1の方向と直交する第2の方向に並列配置されるセンサ部と、各第1の線状電極から出力される第1の信号と、各第2の線状電極から出力される第2の信号とから粒子線ビームの重心位置を算出し、重心位置の周辺の粒子線ビームの2次元ビーム形状を求めるビーム形状算出部と、2次元ビーム形状を累積記憶する記憶部と、2次元ビーム形状を線量の2次元分布として表示する表示部と、を備えたことを特徴とする。 (もっと読む)


【課題】全ての回転角度において安全性を確保するとともに、経済性、信頼性、保守性の高い放射線治療ケージを提供する。
【解決手段】放射線治療ケージは、特徴的構成として、放射線照射ノズル5と移動床群2A,2Bの端部とを、回転ガントリー径方向にスライド自在に接続する1対のスライダー4を備える。放射線照射ノズル5の回転角度に連動してスライダー4が自動的に動作する。また、放射線照射ノズル5は、回転ガントリー1の回転中心に向かって先細り形状をしており、傾斜した側面を有する。これにより、移動床群2A,2Bの間の開口3の長さは微小長さに維持される。従来技術にかかる駆動装置106や制御装置107を必要としない簡素なシステムにより、安全性は確保される。その結果、経済性、信頼性、保守性、作業性が向上する。 (もっと読む)


【課題】走査電磁石のヒステリシスの影響を低減し、高精度なビーム照射を実現する粒子線治療装置を得ることを目的とする。
【解決手段】荷電粒子ビーム1bの目標照射位置座標Piに基づいて走査電磁石3を制御する照射管理装置32と、荷電粒子ビーム1bの測定位置座標Psを測定する位置モニタ7とを備え、照射管理装置32は、走査電磁石の励磁パターンが本照射の計画と同一である事前照射において位置モニタ7により測定された測定位置座標Ps及び目標照射位置座標Piに基づいて生成された補正データIaと、補正データIaを保存するメモリと、メモリに保存された補正データIaと目標照射位置座標Piとに基づいて走査電磁石3への制御入力Io(Ir)を出力する指令値生成器25を有する。 (もっと読む)


陽子コンピュータ断層撮影に関連するシステムと、デバイスと、方法とが開示される。幾つかの実施態様では、陽子の検出は、各陽子についてオブジェクトの前及び後のトラック情報をもたらすことができ、それによってオブジェクト内での各陽子の、可能性が高い経路を求めることが可能になる。さらに、各陽子が受けるエネルギー損失の測定によって、所与の可能性の高い経路が所与のエネルギー損失をもたらすという判定が可能になる。こうしたデータの集合によって、オブジェクトの特徴付けが可能になる。エネルギー損失に関して、こうした特徴付けは、オブジェクトの相対阻止能の画像マップを含むことができる。限定はしないが、総変動等のメリット関数の優秀化を含むこうした画像を取得するための種々の再構成方法が開示される。幾つかの実施態様では、種々の形態の総変動優秀化方法は、計算的に効率的であり、かつ、計算時間を低減しながら、優れた結果をもたらすことができる。幾つかの実施態様では、こうした方法は、比較的低い陽子線量を使用して、高品質陽子CT画像をもたらすことができる。 (もっと読む)


【課題】ビーム走査方式の照射法でより細径のビームを実現させるため、照射ノズル装置内にビーム輸送チェンバを設置する場所を確保することができる粒子線治療装置及び照射ノズル装置を提供する。
【解決手段】走査電磁石を備えた走査式の照射ノズル装置の内側にあったX線管1を従来設置していたX線検出器3の位置に移動し、X線検出器3を逆に照射ノズル装置55の内側に設置する。X線検出器3はX線管1よりもビーム軸方向に薄く、構造が単純であるため、照射ノズル装置55内にビーム輸送チェンバ12を設置する場所を確保することができ、かつ照射ノズル装置55内のビーム輸送チェンバ12を伸長することができる。これによりビーム輸送時の空気による散乱を抑え、従来の設計よりビームを細径化できる。 (もっと読む)


処置中患者の解剖学的部分を位置決めするクレードルは、複数の膨張可能流体チャンバと、各流体チャンバに流体を供給するか又は各流体チャンバから流体を抜き取るべく構成された圧力レギュレータとを含む。処置中患者の解剖学的部分を位置決めするシステムは、上記クレードルと、各流体チャンバの圧力を制御するべく構成された制御ユニットとを含む。処置中患者の解剖学的部分を位置決めする方法は、当該解剖学的部分を上記クレードルに配置するステップと、当該解剖学的部分を所望位置に維持するべく各流体チャンバの圧力を調整するステップとを含む。
(もっと読む)


【課題】この発明は、照射中においても、可変コリメータの形状を精度よく確認することができるとともに小型化を図ることができる粒子線治療装置を提供するものである。
【解決手段】粒子線ビームの形状を被照射体の疾患部分の形状に合わせて変化させる可変コリメータと、可変コリメータの上流側で粒子線ビームの照射領域内に配設され、光源からの光を反射させて可変コリメータを通過させる光源ミラーと、光源ミラーを支持する支持体と、可変コリメータの下流側に配設され、可変コリメータを通過した光により可変コリメータにより整形された照射野形状が投影される撮影スクリーンと、投影部を撮影する撮影装置と、撮影装置により撮影した映像を解析する画像処理装置とを備え、粒子線ビームが光源ミラーを透過したときのビームエネルギーロス量と支持体を透過したときのビームエネルギーロス量がほぼ同じになるように構成したものである。 (もっと読む)


対象物のまわりを移動し治療用放射線のビームを対象物に向けて送る放射線源と、対象物のまわりを移動し撮像放射線のビームを対象物に向けて送る撮像源とを含む放射線治療システム。システムはさらに、対象物が上に配置され、平行移動可動および回転可動である台を含む。システムはまた、1)治療用放射線源で発生された、対象物を透過する放射線を受け取り第1の画像情報を形成する第1の撮像装置と、2)撮像源で発生された、対象物を透過する放射線を受け取り第2の画像情報を形成する第2の撮像装置とを含み、第1の画像情報と第2の画像情報は同時に形成される。 (もっと読む)


【課題】粒子線ビームの走査範囲や照射時間を拡大することなく患部の深さ方向の全域に渡って所望の線量分布平坦度を確保することができる粒子線ビーム照射装置を提供する。
【解決手段】粒子線ビーム照射装置は、ビーム走査部と、粒子線ビームのビーム幅を所定のビーム幅に拡大する散乱体と、粒子線ビームの体内飛程を、患部のビーム進行方向の大きさに合わせて分散し拡大するビーム飛程拡大装置と、粒子線ビームの最深体内飛程を、患部の奥側の外郭形状に合致させる補償フィルタと、ビーム進行方向と直交する面における患部の外周形状の外側へのビーム照射を遮蔽するコリメータと、ビーム進行方向と直交する面における線量分布の平坦度を測定する平坦度モニタと、を備え、各構成品は、患部に近い方から、補償フィルタ、コリメータ、ビーム飛程拡大装置、平坦度モニタ、散乱体、ビーム走査部、の順に配置される。 (もっと読む)


【課題】加速器において、エネルギーの異なる複数のビームを短時間で取り出す。
【解決手段】本発明の加速器の制御装置は、磁場基準発生部と電流基準変換部とを備える。磁場基準発生部は、磁束密度が初期値から初期加速完了レベルまで増加する初期上げパターンと、所定の減少幅で磁束密度が減少する減少パターンと、磁束密度が終了値まで減少する終了パターンとを記憶しており、初期上げ指令を受けた場合には初期上げパターンに従った磁束密度情報を、初期上げパターンに従った磁束密度情報の出力後に減少指令を受けた場合には減少パターンに従った磁束密度情報を、終了指令を受けた場合には終了パターンに従った磁束密度情報を、経過時間に応じて出力する。電流基準変換部は、更新された磁束密度情報に応じた磁場を発生させるコイル電流値を求めて、これを加速器の磁場コイルの電源供給部に入力する。 (もっと読む)


【課題】リッジフィルタを駆動することに伴う騒音をなくし、患者に対して不快感や不安感を与えることなく、特許文献2の装置で得られるものと同等な、均一な線量分布を達成することを目的とする。
【解決手段】荷電粒子ビーム1が通過する位置によって失うエネルギーが異なる厚さ分布を有するリッジフィルタ6と、荷電粒子ビーム1を偏向する偏向器2と、荷電粒子ビーム1がリッジフィルタ6の前記厚さ分布を通過するように偏向器2を制御する制御器を備えた。 (もっと読む)


本発明は、対象物(34)を照射する装置(1)を起動する方法(41)に関する。対象物(34)は、少なくとも1つの照射される標的体積領域(14,20)と、少なくとも1つの保護される体積領域(10,16,17,21)とを含む。保護される体積領域(10,16,17,21)に対して少なくとも1つの信号線量値(30,31)が規定される。対象物(34)の照射(43)中、保護される体積領域(10,16,17,21)に導入された線量が判定され(44)、導入された線量が保護される体積領域(10,16,17,21)の少なくとも1つの箇所(25)で少なくとも1つの信号線量値(30,31)を超えた場合、直ちに信号が出力される(47,48)。
(もっと読む)


本発明は、可動標的ボリュームを走査するのに利用するエネルギービーム、特に細針状イオンビームによる体内の標的ボリュームの照射中に線量付与を制御する方法に関する。更に本発明は、方法を実現する構成要素を備える照射装置に関する。i番目のグリッド位置を照射する前に、照射プロセス中の線量が移動データを使用して判定され、この線量は既に前のグリッド位置(1<=k<i)の照射中のi番目のグリッド位置を含んでいる。その後、前のグリッド位置(1<=k<i)の照射中にi番目のグリッド位置を既に含む判定された線量に依存してi番目のグリッド位置に対する補償値が算出され、i番目のグリッド位置について決定された補償された粒子フルエンス(Fcomp)によりi番目のグリッド位置を照射するために、i番目のグリッド位置に対する補償値及び公称粒子フルエンスに依存してi番目のグリッド位置についての補償された粒子フルエンス(Fcomp)が算出される。
(もっと読む)


【課題】レーザー駆動放射線発生システムにおいて高密度プラズマを生成した際に反射してレーザーシステムの上流に戻る戻り光による光学素子の損傷を防止するプラズマシャッター形成装置および形成方法を提供する。
【解決手段】レーザーパルス5をターゲット2に照射して高密度プラズマ3を生成させることにより放射線を発生、加速させるシステムにおいて、高密度プラズマ3に吸収されないでシステム上流への戻り光4となったレーザーパルスを遮断するためにプラズマシャッター11を形成する装置であって、プラズマシャッター用ターゲット10と、プラズマシャッター用レーザー照射部を有し、前記プラズマシャッター用レーザー照射部からのレーザーパルスをプラズマシャッター用ターゲット10に照射して高密度プラズマを生成させプラズマシャッター11を形成し、戻り光4となったレーザーパルスを遮断させる。 (もっと読む)


【課題】照射装置が設置される建屋の小型化を図ることができ、設備コストの低減に有効である加速粒子照射設備を提供すること。
【解決手段】本発明の加速粒子照射設備1は、回転軸周りに回転可能な回転部を有すると共に粒子加速器2で生成された加速粒子を照射する照射装置3と、照射装置3を設置する設置スペース8を有する建屋6と、を備える構成とする。そして、照射装置3は、回転軸P線方向での長さが短い薄型とし、照射装置3の最大幅となる部分を設置スペース8の最大幅に沿って配置する。例えば、照射装置3の回転軸Pを建屋6の長辺方向Xに対して傾斜して配置する。これにより、設定スペース8を有効活用し、建屋6の小型化を図る。 (もっと読む)


【課題】陽子発生用のターゲット物質を含む、陽子を利用した治療装置が提供される。
【解決手段】陽子発生用のターゲット物質を含む、陽子を利用した治療装置は、患者が入ることができる内部空間を有する円筒形のボア部材と、ボア部材の内側面に形成された陽子発生用のターゲット物質と、陽子発生用のターゲット物質から陽子を発生させて患者の腫瘍部位に投射するため、陽子発生用のターゲット物質にレーザービームを供給するレーザーとを具備する。陽子発生用のターゲット物質は、支持薄膜と、支持薄膜上に形成された、水素化されたアモルファスシリコン(a−Si:H)薄膜から成る。 (もっと読む)


【課題】照射装置が設置される建屋の小型化を図ることができ、設備コストの低減を図ることが可能な加速粒子照射設備を提供すること。
【解決手段】本発明の加速粒子照射設備1は、回転軸P周りに回転可能な回転部34を有すると共に粒子加速器で生成された加速粒子を照射する照射装置3と、照射装置3を収納する収納室8と、を備え、照射装置3の回転部は、回転部本体34から径方向の外側に張り出す張出部33b,38を有する構成とする。そして、収納室8の放射線遮蔽壁86,87は、照射装置3の回転部の周縁部分となる張出部33b,38を収容可能な収容凹部92,91を有する構成とする。これにより、照射装置3の形状に対応した収納室8を実現することができ、収納室8の寸法を抑えることが可能となり、建屋6の小型化を図る。 (もっと読む)


現在市販されている陽子線治療システムに関連するサイズ、重量、コスト、及び放射線ビームロスを低減する改善点を有する、陽子線治療を行うためのガントリ。該ガントリは、磁石が双極子、及び四重極を含み得る色収差補正超電導多機能電磁石システムを利用する。ランプ可能な磁石システムの色収差補正特性により、磁場強度、又は双極子の設定を変更することなく、広範囲の様々なエネルギーによってビームのエネルギーが急速に変化する該ビームの伝送が容易になる。該磁石は、低温超電導体、又は高温超電導体から形成することができる。ガントリ設計は、ビーム走査をさらに統合するが、ガントリのアイソセントリックは維持する。該ガントリによって、現行の技術よりもはるかに大きい割合でビームを伝送できるため、放射線を遮蔽する要件、及び多量の陽子ビームを生成するために加速器に求められる要求が緩和される。 (もっと読む)


本発明は、放射線治療に使用される粒子線治療装置に関するものである。より具体的には、本発明は、入射ビームを分析する手段を備える、粒子ビーム照射のためのガントリに関する。ビームの運動量幅及び/又はビームのエミッタンスを制限するための手段が、ガントリに組み込まれている。 (もっと読む)


81 - 100 / 367