説明

Fターム[4C082AC05]の内容

放射線治療装置 (15,937) | 放射線の種類 (1,317) | 特定放射線 (1,209) | 粒子線 (786) | 陽子、α線、荷電粒子線 (367)

Fターム[4C082AC05]に分類される特許

101 - 120 / 367


【課題】 半導体粒子を電気的に絶縁体である担持体に担持さたときに生じる荷電粒子の効率を向上し、半導体粒子の配合量を減らしながら励起時に赤外線、磁力線及び荷電粒子の相乗効果を発揮する。
【解決手段】 活性化性化エネルギーレベルが0.1〜1eVを有する半導体粒子に、ルテニュウム酸化物と鉄酸化物粒子を配合した複合粒子からなる機能素子であり、半導体粒子から放射される荷電粒子の生体効果を増加させる。複合粒子は、全体積中半導体粒子を30〜95vol%とするとき、ルテニュウム酸化物粒子を0.1〜10vol%、鉄複合酸化物粒子を5〜70vol%の割合で配合され、電気的な絶縁体である有機高分子材料によって形成される担持体に対し0.1〜20vol%の割合で添加されることにより、パーコレーション効果を発生させ、体温程度の加温によって、複合粒子からの荷電粒子、磁力線及び赤外線の持続的な発生を実現する。 (もっと読む)


【課題】回転ガントリの小型化及び軽量化を可能とし、回転ガントリの高精度な回転制御、ターゲットの高精度な照射を可能にすること。
【解決手段】本発明では、照射治療装置の回転ガントリに格納され、荷電粒子線ビームの軌道を変える偏向磁場と、荷電粒子線ビームの軌道中心から遠ざかる発散成分を抑える集束磁場とを形成して、加速器で加速された荷電粒子線ビームをターゲットに導く荷電粒子線ビームの制御用電磁石において、偏向磁場と集束磁場を合成磁場として同時に形成するとともに、荷電粒子線ビームの軌道に沿って磁場の向きが切り替わるように形状設定された超伝導コイル41:42を有することを特徴とする。 (もっと読む)


【課題】放射線治療ベッド位置決めにおいて、臓器などの軟組織情報を用いて位置決め精度の向上を図る。
【解決手段】被検診者をのせるベッドと、放射線治療においてベッドを位置決めするベッド位置決め装置と、X線を発生するX線発生装置及びX線発生装置からのX線を受信するX線受像器を有するX線撮像装置とを備え、ベッド位置決め装置は、X線撮像装置で撮影した第1のX線透視画像データ、及び治療計画時に取得したX線CT画像データから生成された軟組織投影画像データに基づいて、ベッド位置決めデータを生成することによって、上記課題を解決することができる。 (もっと読む)


【課題】
スポットの集合の照射中における異常発生時のビーム出射処理(中断、再開)を適切に行うことにより、照射精度を上げて、安全かつ効率的に照射する。
【解決手段】
シンクロトロン12と、走査電磁石5A,5Bを有し、シンクロトロン12から出射されたイオンビームを走査するスキャニング照射装置15と、シンクロトロン12からのイオンビームの出射をビーム出射停止指令に基づいて停止させ、この状態で走査電磁石5A,5Bを制御することによりイオンビームの照射位置(スポット)を変更させ、この変更後にシンクロトロン12からのイオ
ンビームの出射を開始させる。ある照射スポットへのビームの照射中に、照射継続可能な比較的軽度な異常が発生した場合に、直ちにビーム出射を停止せず、その照射スポットを含む予め定義されたスポットの集合に属する全スポットについての照射を完了させた時点でビーム出射を停止する。 (もっと読む)


本発明は、ビームのライン制御の分野、特に、イオン化ビームおよび前記ビームの磁場によって堆積する線量の測定を可能にする複数の電離箱を備える装置に関する。少なくとも1つの電離箱が、厚さが100nm以下の支持フィルムから形成される。
(もっと読む)


本発明は、放射線治療に使用する粒子線治療装置、詳細には、粒子ビームをガントリの回転軸に直交して供給する小型アイソセントリックガントリに関する。このガントリは、3個の双極磁石を含み、最終双極磁石の角度を90度未満とし、この最終双極磁石の最も好適な偏向角度を60度とする。 (もっと読む)


【課題】径が小さい粒子ビームを用いる照射において、非円形形状のビームを円形に近づける技術を提供することにある。
【解決手段】荷電粒子ビームを加速する加速器と、加速器から出射された荷電粒子ビームを標的領域に照射する粒子線照射装置と、加速器と粒子線照射装置をつなぐビーム輸送系と、第1散乱部材及び荷電粒子ビームの散乱角が第1散乱部材よりも大きい物質で構成される第2散乱部材を少なくとも有する散乱体と、ビーム輸送系のビーム通過領域であって、通過する荷電粒子ビームのビーム径が短い領域を、第2散乱部材の長軸が横切るように散乱体を配置することによって、上記課題を解決する。 (もっと読む)


材料もしくは信号の送達または収集のための装置またはそのような装置の一部をヒトまたは動物の身体に固定的に埋込むために、身体の硬組織に開口部が設けられ、開口部は、硬組織層を通ってたとえば皮質骨層(2)を通って下方の海綿骨(1)に至る。装置は、プラグ部分(P)の周囲またはカバー部分(C)の組織対向面上に延在する熱可塑特性を有する材料のリング(7)を含むプラグ部分(P)および/またはカバー部分(C)を含む。硬組織に設けられた開口部(9)は、プラグまたはカバー部分に適合化された断面を少なくともその口の領域において有し、リング(7)が開口部の周囲においてその壁に沿っておよび/またはその口の周囲の硬組織表面上を延在するように、開口部(9)の口を通ってプラグ部分(P)を導入することができるか、または開口部(9)の口の上にカバー部分(C)を位置決めすることができる。埋込みのために、プラグ部分(P)が開口部の口内に、および/またはカバー部分(C)が開口部の上にある状態で装置が位置決めされ、次いで熱可塑特性を有する材料をたとえば振動エネルギの印加によって液化させ、開口部の壁および/または開口部の周囲全体の硬組織表面と接触させる。再凝固時には、熱可塑特性を有する材料が装置と硬組織との間に封止リング(11)を構成する。装置は、たとえば骨内または関節内薬剤送達のための薬剤送達装置として装備され、関節の近傍で皮質骨層を通って埋込まれる。封止リング(11)は、薬剤または他の望ましくない物質が装置面に沿って皮質骨層を通って移動することを十分に防ぐ。
(もっと読む)


【課題】粒子線ビームの照射中に線量プロファイルをモニタリングし、実際の照射状況を視覚的かつ定量的に確認することができる粒子線ビーム照射装置を提供する。
【解決手段】本発明に係る粒子線ビーム照射装置は、ビーム生成部と、粒子線ビームの出射を制御するビーム出射制御部と、照射対象の患部を粒子線ビームの軸方向に分割した各スライスに対して、粒子線ビームの位置を2次元で順次指示するビーム走査指示部と、ビーム走査指示部からの指示信号に基づいて粒子線ビームを2次元で走査するビーム走査部と、ビーム走査部と患者との間に配置され、透過する前記粒子線ビームの粒子線線量に応じた光量で発光する蛍光体板と、蛍光体板をスライス毎に撮像する撮像部と、撮像部で撮像された画像データからスライス毎の照射線量の分布を求め、求めた照射線量の分布を前記粒子線ビームの走査位置と関連付けて表示する表示部と、を備えたことを特徴とする。 (もっと読む)


【課題】走査電磁石のヒステリシスの影響を排除し、高精度なビーム照射を実現する粒子線照射装置を得ること。
【解決手段】走査電磁石3の磁場を測定する磁場センサ20と、走査電磁石3を通過した荷電粒子ビーム1bの出射量を制御する照射制御装置5とを備えた。照射制御装置5は、磁場センサ20で測定されるX方向及びY方向の磁場で定義された複数の領域Si,jを通過した荷電粒子ビーム1bの線量の積算値を前記領域Si,j毎に求め、前記領域Si,j毎の積算値に基づいて、荷電粒子ビーム1bの出射量を制御する。 (もっと読む)


【課題】照射するビーム粒子の散乱を低減し、かつ真空雰囲気の保持性能の高い荷電粒子線照射装置を提供する
【解決手段】荷電粒子線照射装置のビーム取り出し窓14を、粒子線透過膜101、連結ダクト104、及び粒子線透過膜102を有する二重構造とすることで、照射するビーム粒子の散乱を低減し、かつ荷電粒子線照射装置内の真空雰囲気の保持性能を高める。 (もっと読む)


2次元画像データスライスから、組織表面、例えば、心臓の内側表面の3次元モデルを生成する、システム。本表面上では、1つ以上のパターン線が、例えば、医師によって、ユーザインターフェースを使用して、描写され、表面上の所望の病変を指定する。パターン線から、病変の3次元体積が、既知の制約を使用して、決定可能である。有利には、3次元体積によって生成される一連の境界は、個々のCTスキャン上に逆投影され、次いで、標準的放射線外科手術計画ツールに転送されてもよい。また、線量分布図が、モデル上に投影され、計画を評価するのを支援してもよい。
(もっと読む)


【課題】本発明の目的は、ビーム軌道に関するパラメータ検証・調整時間を削減することにより加速器技師の負担を軽減し、稼働率を向上させることである。
【解決手段】上記目的を達成するための手段として、本発明の粒子線照射制御装置は、治療シーケンスの中にビーム軌道補正計算処理を組み込み、照射対象へのイオンビームの照射が終了した後、ビーム輸送系に設置された電磁石への励磁電流値のデータを、補正後の補正励磁電流値に基づいて更新して記憶する記憶装置と、その後は、更新後の励磁電流値に基づいて電磁石の励磁電流を制御する制御装置を備える。ここで言う治療シーケンスとは、粒子線照射制御装置が治療計画装置から患者処方箋データを受け取った後からビーム照射が完了するまでの一連の処理を示す。 (もっと読む)


【課題】積層照射における線量校正を各層事に行え、積層照射時における線量校正の精度を向上する。
【解決手段】標的体積の所定領域を粒子線の進行方向に複数の層に分割して粒子線を照射する粒子線治療装置の線量校正方法であって、粒子線治療装置は、粒子線の線量をカウント値としてモニタする線量モニタを有し、所定領域内に照射野を形成する粒子線照射部105と、粒子線照射部の動作を制御する治療制御部102とを備え、線量校正方法は、
複数の層のうち各層に粒子線を照射したときの物理線量をカウント値で除して各層ごとに校正係数αiを求めるステップを有する。 (もっと読む)


【課題】スポットスキャン法において、スポット数が多くなった場合でも照射時間を短縮し、かつ目標照射量のビームを精度良く各スポットに照射できるようにする。
【解決手段】中央制御装置46は、事前に目標照射量に応じて、スポット毎に照射時間がほぼ一定となるように目標ビーム電流値を決定し、加速器制御部47は、その目標ビーム電流値が得られるようシンクロトロン4から出射する荷電粒子ビームの電流値を調整する。また、中央制御装置46は事前にビーム電流値に対する遅延照射量を計算し、照射装置制御部48及び加速器制御部47は目標照射量から遅延照射量を引いた設定照射量に達した時点で出射停止信号を出力してビーム出射を停止する制御を開始する。 (もっと読む)


本発明は、粒子放射線治療用に使用可能なパルス化ビーム粒子加速器に関する。特に、ビームパルス内の粒子数を制御するデバイス及び方法が提供される。粒子加速器は、ビーム制御パラメータの値の関数として、最小値から最大値の間で、そのパルス化イオンビームの各ビームパルス内の粒子数を変更する手段を備える。各粒子照射に対して、各ビームパルスに対する所要の粒子数は、較正データに基づいてビーム制御パラメータに対する値を定めることによって、制御される。
(もっと読む)


【課題】実データに基づいたより実現象に近い高精度なビーム照射位置を実現できる粒子線照射装置を得る。
【解決手段】逆写像数式モデルは、目標照射位置座標を表す変数を含む多項式であり、前記多項式に含まれる未知の係数は、X方向とY方向スキャニング電磁石に予め設定した複数組のX方向とY方向指令値を入力すると共に、加速器に予め設定した複数の運動エネルギー指令値を入力して、荷電粒子ビームを制御し、実際に照射されたそれぞれの照射位置座標の実データに対して、一部のデータに低い重み付けをする重み付け最小二乗法により求める。 (もっと読む)


【課題】一台の粒子加速器によって放射線治療用及びRI製造用の各用途に応じた電流量の加速粒子を取り出すことを可能とし、その結果として、稼働率の向上を図り易くなる粒子加速器及び粒子加速システムを提供することを目的とする。
【解決手段】放射線治療用の陽子ビームB1及びRI製造用の陽子ビームB2のそれぞれをサイクロン3から取り出すために、サイクロン3に少なくとも二つ設けられた取出ポート25,27と、サイクロン3内を周回する負イオンPを取出ポート25,27に誘導するフォイル21b,23bと、負イオンPをサイクロン3に供給するイオン源18と、フォイル21b,23bの進退量及びイオン源18による負イオンPの供給量の少なくとも一方を制御して取出ポート25,27から取り出される陽子ビームB1,B2の電流量を制御する制御装置35と、を備える粒子加速システム1Aである。 (もっと読む)


【課題】荷電粒子ビームの最大利用可能飛程の減少を抑えながら、ビームスポットの線量分布を拡大する粒子線照射装置を得る。
【解決手段】照射制御手段14は、複数の小領域のうち照射対象とする小領域を荷電粒子ビームが走査するように第一走査手段3を制御し、照射対象とする小領域を複数の小領域のうち別の小領域に変更するように第二走査手段4を制御し、かつ、第二走査手段4による標的領域における荷電粒子ビームの走査速度よりも、第一走査手段3による標的領域における荷電粒子ビームの走査速度の方が高速であるように制御する。 (もっと読む)


【課題】必要なビームエネルギー変更回数が多い場合でも、偏向電磁石を大きくすることなく、高速にビームエネルギーを変更できる粒子線治療装置を提供する。
【解決手段】ビームエネルギー減衰部を備えたビームエネルギー変更部を複数設け、ビームが複数のビームエネルギー変更部を順次通過するようにビームを偏向し、一つのビームエネルギー変更部をビームが通過している間に、他のビームエネルギー変更部のビームエネルギー減衰量を変更するようにした。 (もっと読む)


101 - 120 / 367