説明

Fターム[4C082AG44]の内容

Fターム[4C082AG44]に分類される特許

1 - 20 / 23


【課題】粒子線治療装置におけるIMRTの過照射問題を解決することを目的としたものである。
【解決手段】荷電粒子ビーム1を走査する走査照射系34と、荷電粒子ビーム1のブラッグピークを拡大し、柱状の照射野を生成する柱状照射野生成装置4とを備えた粒子線治療装置に対する治療計画を作成する治療計画装置であって、荷電粒子ビーム1が照射される照射対象40のディスタル形状に応じて柱状の照射野44を配置するとともに、照射対象40の内側に柱状の照射野45を敷き詰めて配置する照射野配置部と、照射野配置部により柱状の照射野44、45が敷き詰められた状態を初期状態として、照射対象40への照査線量が所定の範囲に入るように柱状の照射野44、45の配置を調整する最適化計算部とを有する。 (もっと読む)


【課題】取り出される荷電粒子ビームの線量を一定に保つことが可能な粒子線照射システムを提供する。
【解決手段】粒子線照射システム1Aにおいて、シンクロトロン40を駆動制御する加速器制御部71及びRF−KO電極駆動装置80Aは、RF−KO電極45の駆動を停止したまま、シンクロトロン40を駆動し、続いて、RF−KO電極45に対して、第一のRF−KO信号をRF−KO電圧として印加し、続いて、RF−KO電極45に対して、第一のRF−KO信号と、第二のRF−KO信号と、をRF−KO電圧として印加するとともに、シンクロトロン40から取り出された荷電粒子ビームの線量に基づくRF−KO電圧に関するフィードバック制御を開始し、当該フィードバック制御のゲインをゼロから所定値まで連続的に上昇させ、続いて、RF−KO電圧に関するフィードバック制御を、当該フィードバック制御のゲインを所定値としたまま行う。 (もっと読む)


本発明は、照射されるべき標的体積に線量分布を蓄積する照射装置であって、標的体積を照射するための粒子ビームを提供する加速装置と、照射装置が作動してきるときに、粒子ビームが引き続いて所定の走査体積中の異なる点に向けられ、それにより走査体積にわたる走査が行われるように、粒子ビームのビーム特性を変更する走査装置と、を備える照射装置に関する。走査装置は、標的体積とは無関係に設定される固定の走査経路に沿って走査体積を走査し、粒子ビームが走査経路に沿って走査される間に、粒子ビームの強度を調節することにより、標的体積に蓄積されるべき線量分布を調整するように構成される。本発明はさらに、照射装置に対応する照射方法に関する。
(もっと読む)


患者の一部にある病変の放射線治療は、固定化装置を用いて定位置で患者支持テーブル上に患者を維持することによって行われ、その間、該テーブルは、磁気共鳴画像診断システムと、病変の位置で患者の360度のスキャン画像を生成するためのCT撮像システムと、病変の処置のために放射線ビームを発生させるための、および、病変の周囲360度でビームをスキャンするための、放射線治療システムとの間で回転する。MR画像は病変を見つけ、CTシステムは処置の計算のために使用される。MR画像、CT画像、および、放射線治療の間の登録は、テーブル上の患者の一部の定位置によって提供され、患者は、頭部が含まれる成形した頭部マスクを含む関連部分に適切な固定化システムを用いて固定される。 (もっと読む)


本発明は、粒子放射線治療用に使用可能なパルス化ビーム粒子加速器に関する。特に、ビームパルス内の粒子数を制御するデバイス及び方法が提供される。粒子加速器は、ビーム制御パラメータの値の関数として、最小値から最大値の間で、そのパルス化イオンビームの各ビームパルス内の粒子数を変更する手段を備える。各粒子照射に対して、各ビームパルスに対する所要の粒子数は、較正データに基づいてビーム制御パラメータに対する値を定めることによって、制御される。
(もっと読む)


RF生成器が、入力部分と出力部分、さらに前記入力部分と前記出力部分との間に伸長する開口部を有する構造物を含んで成り、出力部分は第1の空洞および第2の空洞を有し、前記第1および第2の空洞は互いに電磁気的に結合しないように互いに離されている。RFエネルギーを与える方法が、電子ビームを受け入れる工程と、前記電子ビームを使用して生成される第1のRFエネルギーを、第1の空洞を通して与える行程と、前記電子ビームを使用して生成される第2のRFエネルギーを、第2の空洞を通して与える行程と、を含み、前記第1および第2の空洞が、互いに電磁気的に連結されないように、互いに離れている。
(もっと読む)


【課題】1台の回転照射型の粒子線照射装置において、2つの照射を行うことができる粒子線照射装置を得る。
【解決手段】入射される粒子線を照射する照射装置が照射基準点を回転中心として回転自在に駆動される粒子線照射装置において、入射される粒子線を第1照射系統14と第2照射系統23に切り替える照射系統切り替え手段31と、前記第1照射系統14に配置された第1の照射装置15と、前記第2照射系統23に配置された第2の照射装置24とを備え、種々の照射形態を選択できるようにしたものである。 (もっと読む)


【課題】レーザー駆動粒子線を用いた治療照射を可能にすると共に、レーザー駆動粒子線を患者の患部まで輸送する過程でレーザー駆動粒子線の強度低下を抑えつつ集束性を高めることができるレーザー駆動粒子線照射技術を提供すること。
【解決手段】ターゲット101にレーザーパルス光102を照射してレーザー駆動粒子線103を射出する粒子線発生装置1と、この射出されたレーザー駆動粒子線103を患者の患部9へと導く輸送路を形成し、レーザー駆動粒子線103を空間的に集束させるビーム集束装置2と、このレーザー駆動粒子線103のエネルギーおよびエネルギー幅を選択するエネルギー選択装置3と、レーザー駆動粒子線103を走査して患部9の照射位置を調節する照射ポート4と、各装置1〜4の動作制御を行う照射制御装置6とを備える。 (もっと読む)


放射線療法治療のデリバリを最適化する方法。この方法は、患者の解剖学的および生理的な変化(例えば、呼吸性運動や、その他の運動など)や、機械パラメータの変化(例えば、ビーム出力係数、治療台エラー、リーフ・エラーなど)などのような様々な因子を考慮するように、リアルタイムで治療デリバリを最適化する。
(もっと読む)


荷電粒子治療を用いた被験者内標的の照射方法は、被験者を支持装置上に位置決めするステップと、荷電粒子を送達するよう適合させた送達装置を位置決めするステップと、被験者内の標的に荷電粒子を送達するステップで、少なくとも一部荷電粒子の送達中に送達装置を標的周りに回動させるステップとを含む。
(もっと読む)


【課題】
本発明の目的は、スポットスキャニング法による粒子線治療に好適な照射ビームが得られ、小型で安価かつ調整容易な粒子線治療システムを提供することにある。
【解決手段】
粒子線治療システム100は、シンクロトロン200と、ビーム輸送系300と、照射装置500から構成され、ビーム輸送系300に設置され照射装置500への荷電粒子ビームの供給を遮断するビーム遮断装置700が、ビーム輸送系300を構成する偏向電磁石31の入口側に設置された2つの異なる応答速度の遮断電磁石33,34とその励磁電源33Aと34A、および出口側に設置されたビームダンプ35から構成される。制御装置600は励磁電源33Aと34Aを制御して遮断電磁石33,34の動作タイミングを調整する。 (もっと読む)


【課題】ガントリーの回転により照射角度が変更になった場合、ガンマ線検出器の配置を適切な位置に配置することができず、精度良く照射野位置を計測することが出来なかった。
【解決手段】回転ガントリー12と、荷電粒子ビームを発生させる荷電粒子ビーム発生装置と、回転ガントリー12に設けられ、荷電粒子ビームを照射対象に出射する照射装置21と、照射対象から発生する即発ガンマ線を検出するガンマ線検出器46とを有し、即発ガンマ線検出器46を回転ガントリー12に設けることにより、上記課題を解決することができる。 (もっと読む)


放射線療法用治療システムのテーブル・アセンブリの2つの対向する端部を実質的に同期させるように構成される方法およびシステム。このシステムは、横方向運動制御システムを備える。横方向運動制御システムは、テーブル・アセンブリと結合され、テーブル・アセンブリが放射線療法用治療システムのガントリに対して横方向に移動される際に、テーブル・アセンブリの2つの対向する端部の位置を検出し、それらの位置を実質的に同期させるように構成される。
(もっと読む)


時間領域の放射ビームの治療標的への変調された適用のステップと、放射ビームのエネルギーピークに関して位相外れ適用期間の間に、変調された磁気共鳴(MR)信号の時間領域の適用を治療標的に提供するステップとを含む治療処置の方法。前記放射ビームがプロトンビームを含み得る。前記放射ビームがX線ビームを含み得る。前記磁気MR信号が電子磁気共鳴(EMR)信号を含み得る。前記方法は前記治療標的に向けられた導電性トロイドによって前記MR信号を提供するステップを含み得る。
(もっと読む)


【課題】出射されるイオンビームの強度制御を簡素な装置構成で実現できる荷電粒子ビーム出射方法及び粒子線照射システムを提供することを課題とする。
【解決手段】荷電粒子ビームを加速して出射するシンクロトロン3と、シンクロトロン3から導かれた荷電粒子ビームを出射する照射装置32と、シンクロトロンの運転サイクルにおける出射制御区間で、シンクロトロンから出射する荷電粒子ビームのビーム強度を制御する第1のビーム強度変調手段14と、運転サイクルにおける出射制御区間に含まれる複数の照射区間のそれぞれにおいてビーム強度を制御する第2のビーム強度変調手段15とを備えたことによって、上記課題を解決する。 (もっと読む)


線量体積ヒストグラムを使用して既存の関心領域に対して新しい関心領域を限定するシステムおよび方法。本方法は関心の以前に存在する領域に対して線量体積ヒストグラムを生成するステップ、前記線量体積ヒストグラムのサブセットを選択するステップ、そして前記線量体積ヒストグラムの前記選択されたサブセットに対応する新しい関心領域を限定するステップの動作を含む。
(もっと読む)


放射線療法治療計画に関連するデータを自動的に処理するシステムおよび方法。本方法は、患者の画像データを取得するステップと、少なくとも部分的に画像データに基づいて、患者にデリバリーすべき計算された放射線量を含む患者に対する治療計画を生成するステップと、実質的に治療位置にある患者のオンライン画像を取得するステップと、計算された放射線量の少なくとも一部分を患者にデリバリーするステップと、患者が受けた放射線量を自動的に再計算するステップとを含む。
(もっと読む)


放射線療法治療プランを適合させるシステムおよび方法。本方法は、患者に対する治療プランを作成するステップと、患者の画像を取得するステップと、画像のデフォーメーション可能なレジストレーションを実施するステップと、患者へ送達される放射線量に関連するデータを取得するステップと、送達される放射線量と患者効果とを関連付ける生物学的モデルを適用するステップと、デフォーメーション可能なレジストレーションおよび生物学的モデルに基づいて、放射線療法治療プランを適合させるステップとを含む。
(もっと読む)


【課題】放射線療法での治療シノグラムにおいて、生理学的な又はその他の運動に起因する患者又は患者の部位のリアルタイムの修正動作を行う。
【解決手段】患者43の治療部位をあらわす予め計算された部分シノグラム41を、従来の法手法による治療計画ソフトウェア59から遅れることなく患者全体についての治療シノグラム57を得るように組み立てる。前記部分シノグラム41は、それらの対応する部位の表現の通り修正され、且つ実際の患者の特定の寸法に一致させるべく操作される。この構成されたシノグラムは、繰り返し最適化のために直接的に又はその出発点として使用されても良い。 (もっと読む)


1つ以上の物質からなるプログラマブル・経路長を粒子ビームに介装することによって、散乱角度およびビームの奥行きを所定の要領で変調し、所定の距離に所定の拡散ブラッグ・ピークを生成する。物質は、流体を含む「低原子番号」および「高原子番号」の物質であってよい。荷電粒子ビームの散乱体/距離変調装置が、粒子ビームの経路内に対向する壁を有している流体容器、およびプログラマブル・コントローラによる制御のもとで流体容器の壁の間の距離を調節する駆動部を有する。直列に配置された「高原子番号」および「低原子番号」の容器を、個別に使用可能である。放射線治療に使用される場合、ビーム強度を測定することによってビームを監視することができ、プログラマブル・コントローラが、総ビーム強度への所定の関係に従って、「高原子番号」容器の対向する壁の間の距離および「低原子番号」容器の対向する壁の間の距離が個別に、調節可能である。 (もっと読む)


1 - 20 / 23